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NS32CG16-10/NS32CG16-15
High-Performance Printer/Display Processor

General Description
The NS32CG16 is a 32-bit microprocessor in the Series

32000/EPTM family that provides special features for graph-

ics applications. It is specifically designed to support page

oriented printing technologies such as Laser, LCS, LED,

Ion-Deposition and InkJet.

The NS32CG16 provides a 16 Mbyte linear address space

and a 16-bit external data bus. It also has a 32-bit ALU, an

eight-byte prefetch queue, and a slave processor interface.

The capabilities of the NS32CG16 can be expanded by us-

ing an external floating point unit which interfaces to the

NS32CG16 as a slave processor. This combination pro-

vides optimal support for outline character fonts.

The NS32CG16’s highly efficient architecture, in addition to

the built-in capabilities for supporting BITBLT (BIT-aligned

BLock Transfer) operations and other special graphics func-

tions, make the device the ideal choice to handle a variety

of page description languages such as PostscriptTM and

PCLTM.

Features
Y Software compatible with the Series 32000/EP

processors
Y 32-bit architecture and implementation
Y Special support for graphics applications

Ð 18 graphics instructions

Ð Binary compression/expansion capability for font

storage using RLL encoding

Ð Pattern magnification

Ð Interface to an external BITBLT processing units for

fast color BITBLT operations
Y On-chip clock generator
Y Floating-point support via the NS32081 or NS32181
Y Optimal interface to large memory arrays via the

NS32CG821 and the DP84xx family of DRAM control-

lers
Y Power save mode
Y High-speed CMOS technology
Y 68-pin PLCC package

Block Diagram
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1.0 Product Introduction
The NS32CG16 is a high speed CMOS microprocessor in

the Series 32000/EP family.

The NS32CG16 is software-compatible with all other CPUs

in the family.

The device incorporates all of the Series 32000 advanced

architectural features, with the exception of the virtual mem-

ory capability.

Brief descriptions of the NS32CG16 features that are

shared with other members of the family are provided be-

low:

Powerful Addressing Modes. Nine addressing modes

available to all instructions are included to access data

structures efficiently.

Data Types. The architecture provides for numerous data

types, such as byte, word, doubleword, and BCD, which may

be arranged into a wide variety of data structures.

Symmetric Instruction Set. While avoiding special case

instructions that compilers can’t use, the Series 32000 fami-

ly incorporates powerful instructions for control operations,

such as array indexing and external procedure calls, which

save considerable space and time for compiled code.

Memory-to-Memory Operations. The Series 32000 CPUs

represent two-address machines. This means that each op-

erand can be referenced by any one of the addressing

modes provided.

This powerful memory-to-memory architecture permits

memory locations to be treated as registers for all useful

operations. This is important for temporary operands as well

as for context switching.

Large, Uniform Addressing. The NS32CG16 has 24-bit

address pointers that can address up to 16 megabytes with-

out any segmentation; this addressing scheme provides

flexible memory management without add-on expense.

Modular Software Support. Any software package for the

Series 32000 architecture can be developed independent of

all other packages, without regard to individual addressing.

In addition, ROM code is totally relocatable and easy to

access, which allows a significant reduction in hardware and

software cost.

Software Processor Concept. The Series 32000 architec-

ture allows future expansions of the instruction set that can

be executed by special slave processors, acting as exten-

sions to the CPU. This concept of slave processors is

unique to the Series 32000 architecture. It allows software

compatibility even for future components because the slave

hardware is transparent to the software. With future ad-

vances in semiconductor technology, the slaves can be

physically integrated on the CPU chip itself.

To summarize, the architectural features cited above pro-

vide three primary performance advantages and character-

istics:

# High-Level Language Support

# Easy Future Growth Path

# Application Flexibility

1.1 NS32CG16 SPECIAL FEATURES

In addition to the above Series 32000 features, the

NS32CG16 provides features that make the device ex-

tremely attractive for a wide range of applications where

graphics support, low chip count, and low power consump-

tion are required.

The most relevant of these features are the graphics sup-

port capabilities, that can be used in applications such as

printers, CRT terminals, and other varieties of display sys-

tems, where text and graphics are to be handled.

Graphics support is provided by eighteen instructions that

allow operations such as BITBLT, data compression/expan-

sion, fills, and line drawing, to be performed very efficiently.

In addition, the device can be easily interfaced to an exter-

nal BITBLT Processing Unit (BPU) for high BITBLT perform-

ance.

The NS32CG16 allows systems to be built with a relatively

small amount of random logic. The bus is highly optimized

to allow simple interfacing to a large variety of DRAMs and

peripheral devices. All the relevant bus access signals and

clock signals are generated on-chip. The cycle extension

logic is also incorporated on-chip.

The device is fabricated in a low-power, CMOS technology.

It also includes a power-save feature that allows the clock

to be slowed down under software control, thus minimizing

the power consumption. This feature can be used in those

applications where power saving during periods of low per-

formance demand is highly desirable.

The power save feature and the Bus Characteristics are

described in the ‘‘Functional Description’’ section. A general

overview of BITBLT operations and a description of the

graphics support instructions is provided in Section 2.5. De-

tails on all the NS32CG16 instructions can be found in the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence Supplement.
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1.0 Product Introduction (Continued)

Below is a summary of the instructions that are directly ap-

plicable to graphics along with their intended use.

Instruction Application

BBAND The BITBLT group of instructions provide a

BBOR method of quickly imaging characters,

BBFOR creating patterns, windowing and other

BBXOR block oriented effects.

BBSTOD

BITWT

EXTBLT

MOVMP Move Multiple Pattern is a very fast

instruction for clearing memory and drawing

patterns and lines.

TBITS Test Bit String will measure the length of 1’s

or 0’s in an image, supporting many data

compression methods (RLL), TBITS may

also be used to test for boundaries of

images.

SBITS Set Bit String is a very fast instruction for

filling objects, outline characters and

drawing horizontal lines.

The TBITS and SBITS instructions support

Group 3 and Group 4 CCITT standards for

compression and decompression

algorithms.

SBITPS Set Bit Perpendicular String is a very fast

instruction for drawing vertical, horizontal

and 45§ lines.

In printing applications SBITS and SBITPS

may be used to express portrait and

landscape respectively from the same

compressed font data. The size of the

character may be scaled as it is drawn.

SBIT The Bit group of instructions enable single

CBIT pixels anywhere in memory to be set,

TBIT cleared, tested or inverted.

IBIT

INDEX The INDEX instruction combines a multiply-

add sequence into a single instruction. This

provides a fast translation of an X-Y

address to a pixel relative address.

2.0 Architectural Description
2.1 REGISTER SET

The NS32CG16 CPU has 17 internal registers grouped ac-

cording to functions as follows: 8 general purpose, 7 ad-

dress, 1 processor status and 1 configuration. Figure 2-1
shows the NS32CG16 internal registers.

Address General Purpose

w 32 Bits x w 32 Bits x
PC R0

SP0 R1

SP1 R2

FP R3

SB R4

INTBASE R5

MOD R6

R7

Processor Status Configuration

PSR CFG

FIGURE 2-1. NS32CG16 Internal Registers

2.1.1 General Purpose Registers

There are eight registers (R0–R7) used for satisfying the

high speed general storage requirements, such as holding

temporary variables and addresses. The general purpose

registers are free for any use by the programmer. They are

32 bits in length. If a general purpose register is specified for

an operand that is 8 or 16 bits long, only the low part of the

register is used; the high part is not referenced or modified.

2.1.2 Address Registers

The seven address registers are used by the processor to

implement specific address functions. Except for the MOD

register that is 16 bits wide, all the others are 32 bits. A

description of the address registers follows.

PCÐProgram Counter. The PC register is a pointer to the

first byte of the instruction currently being executed. The PC

is used to reference memory in the program section.

SP0, SP1ÐStack Pointers. The SP0 register points to the

lowest address of the last item stored on the INTERRUPT

STACK. This stack is normally used only by the operating

system. It is used primarily for storing temporary data, and

holding return information for operating system subroutines

and interrupt and trap service routines. The SP1 register

points to the lowest address of the last item stored on the

USER STACK. This stack is used by normal user programs

to hold temporary data and subroutine return information.

When a reference is made to the selected Stack Pointer

(see PSR S-bit), the terms ‘‘SP Register’’ or ‘‘SP’’ are used.

SP refers to either SP0 or SP1, depending on the setting of

the S bit in the PSR register. If the S bit in the PSR is 0, SP

refers to SP0. If the S bit in the PSR is 1 then SP refers to

SP1.

Stacks in the Series 32000 architecture grow downward in

memory. A Push operation pre-decrements the Stack Point-

er by the operand length. A Pop operation post-increments

the Stack Pointer by the operand length.
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2.0 Architectural Description (Continued)

FPÐFrame Pointer. The FP register is used by a procedure

to access parameters and local variables on the stack. The

FP register is set up on procedure entry with the ENTER

instruction and restored on procedure termination with the

EXIT instruction.

The frame pointer holds the address in memory occupied by

the old contents of the frame pointer.

SBÐStatic Base. The SB register points to the global vari-

ables of a software module. This register is used to support

relocatable global variables for software modules. The SB

register holds the lowest address in memory occupied by

the global variables of a module.

INTBASEÐInterrupt Base. The INTBASE register holds

the address of the dispatch table for interrupts and traps

(Section 3.2.1).

MODÐModule. The MOD register holds the address of the

module descriptor of the currently executing software mod-

ule. The MOD register is 16 bits long, therefore the module

table must be contained within the first 64 kbytes of memo-

ry.

2.1.3 Processor Status Register

The Processor Status Register (PSR) holds status informa-

tion for the microprocessor.

The PSR is sixteen bits long, divided into two eight-bit

halves. The low order eight bits are accessible to all pro-

grams, but the high order eight bits are accessible only to

programs executing in Supervisor Mode.

15 8 7 0

B I P S U N Z F J K L T C

FIGURE 2-2. Processor Status Register (PSR)

C The C bit indicates that a carry or borrow occurred after

an addition or subtraction instruction. It can be used with

the ADDC and SUBC instructions to perform multiple-

precision integer arithmetic calculations. It may have a

setting of 0 (no carry or borrow) or 1 (carry or borrow).

T The T bit causes program tracing. If this bit is set to 1, a

TRC trap is executed after every instruction (Section

3.3.1).

L The L bit is altered by comparison instructions. In a com-

parison instruction the L bit is set to ‘‘1’’ if the second

operand is less than the first operand, when both oper-

ands are interpreted as unsigned integers. Otherwise, it

is set to ‘‘0’’. In Floating-Point comparisons, this bit is

always cleared.

K Reserved for use by the CPU.

J Reserved for use by the CPU.

F The F bit is a general condition flag, which is altered by

many instructions (e.g., integer arithmetic instructions

use it to indicate overflow).

Z The Z bit is altered by comparison instructions. In a com-

parison instruction the Z bit is set to ‘‘1’’ if the second

operand is equal to the first operand; otherwise it is set

to ‘‘0’’.

N The N bit is altered by comparison instructions. In a

comparison instruction the N bit is set to ‘‘1’’ if the sec-

ond operand is less than the first operand, when both

operands are interpreted as signed integers. Otherwise,

it is set to ‘‘0’’.

U If the U bit is ‘‘1’’ no privileged instructions may be exe-

cuted. If the U bit is ‘‘0’’ then all instructions may be

executed. When Ue0 the processor is said to be in Su-

pervisor Mode; when Ue1 the processor is said to be in

User Mode. A User Mode program is restricted from exe-

cuting certain instructions and accessing certain regis-

ters which could interfere with the operating system. For

example, a User Mode program is prevented from

changing the setting of the flag used to indicate its own

privilege mode. A Supervisor Mode program is assumed

to be a trusted part of the operating system, hence it has

no such restrictions.

S The S bit specifies whether the SP0 register or SP1 reg-

ister is used as the Stack Pointer. The bit is automatical-

ly cleared on interrupts and traps. It may have a setting

of 0 (use the SP0 register) or 1 (use the SP1 register).

P The P bit prevents a TRC trap from occurring more than

once for an instruction (Section 3.3.1). It may have a

setting of 0 (no trace pending) or 1 (trace pending).

I If Ie1, then all interrupts will be accepted. If Ie0, only

the NMI interrupt is accepted. Trap enables are not af-

fected by this bit.

B Reserved for use by the CPU. This bit is set to 1 during

the execution of the EXTBLT instruction and causes the

BPU signal to become active. Upon reset, B is set to

zero and the BPU signal is set high.

Note 1: When an interrupt is acknowledged, the B, I, P, S and U bits are set

to zero and the BPU signal is set high. A return from interrupt will

restore the original values from the copy of the PSR register saved

in the interrupt stack.

Note 2: If BITBLT (BB) or EXTBLT instructions are executed in an interrupt

routine, the PSR bits J and K must be cleared first.

2.1.4 Configuration Register

The Configuration Register (CFG) is 8 bits wide, of which

four bits are implemented. The implemented bits are used to

declare the presence of certain external devices and to se-

lect the clock scaling factor. CFG is programmed by the

SETCFG instruction. The format of CFG is shown in Figure
2-3 . The various control bits are described below.

7 0

C M F I

FIGURE 2-3. Configuration Register (CFG)

I Interrupt vectoring. This bit controls whether maskable

interrupts are handled in nonvectored (Ie0) or vectored

(Ie1) mode. Refer to Section 3.2.3 for more information.

F Floating-point instruction set. This bit indicates whether

a floating-point unit (FPU) is present to execute floating-

point instructions. If this bit is 0 when the CPU executes

a floating-point instruction, a Trap (UND) occurs. If this

bit is 1, then the CPU transfers the instruction and any

necessary operands to the FPU using the slave-proces-

sor protocol described in Section 3.1.3.1.

M Clock scaling. This bit is used in conjuction with the C bit

to select the clock scaling factor.

C Clock scaling. Same as the M bit above. Refer to Sec-

tion 3.4.3 on ‘‘Power Save Mode’’ for details.
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2.0 Architectural Description (Continued)

2.2 MEMORY ORGANIZATION

The main memory of the NS32CG16 is a uniform linear ad-

dress space. Memory locations are numbered sequentially

starting at zero and ending at 224 b 1. The number specify-

ing a memory location is called an address. The contents of

each memory location is a byte consisting of eight bits. Un-

less otherwise noted, diagrams in this document show data

stored in memory with the lowest address on the right and

the highest address on the left. Also, when data is shown

vertically, the lowest address is at the top of a diagram and

the highest address at the bottom of the diagram. When bits

are numbered in a diagram, the least significant bit is given

the number zero, and is shown at the right of the diagram.

Bits are numbered in increasing significance and toward the

left.

7 0

A

Byte at Address A

Two contiguous bytes are called a word. Except where not-

ed, the least significant byte of a word is stored at the lower

address, and the most significant byte of the word is stored

at the next higher address. In memory, the address of a

word is the address of its least significant byte, and a word

may start at any address.

15 8 7 0

Aa1 A

MSB LSB
Word at Address A

Two contiguous words are called a double-word. Except

where noted, the least significant word of a double-word is

stored at the lowest address and the most significant word

of the double-word is stored at the address two higher. In

memory, the address of a double-word is the address of its

least significant byte, and a double-word may start at any

address.

31 24 23 16 15 8 7 0

Aa3 Aa2 Aa1 A

MSB LSB
Double Word at Address A

Although memory is addressed as bytes, it is actually orga-

nized as words. Therefore, words and double-words that are

aligned to start at even addresses (multiples of two) are

accessed more quickly than words and double-words that

are not so aligned.

2.3 MODULAR SOFTWARE SUPPORT

The NS32CG16 provides special support for software mod-

ules and modular programs.

Each module in a NS32CG16 software environment con-

sists of three components:

1. Program Code Segment.

This segment contains the module’s code and constant

data.

2. Static Data Segment.

Used to store variables and data that may be accessed

by all procedures within the module.

3. Link Table.

This component contains two types of entries: Absolute

Addresses and Procedure Descriptors.

An Absolute Address is used in the external addressing

mode, in conjunction with a displacement and the current

MOD Register contents to compute the effective address

of an external variable belonging to another module.

The Procedure Descriptor is used in the call external pro-

cedure (CXP) instruction to compute the address of an

external procedure.

Normally, the linker program specifies the locations of the

three components. The Static Data and Link Table typically

reside in RAM; the code component can be either in RAM or

in ROM. The three components can be mapped into non-

contiguous locations in memory, and each can be indepen-

dently relocated. Since the Link Table contains the absolute

addresses of external variables, the linker need not assign

absolute memory addresses for these in the module itself;

they may be assigned at load time.

To handle the transfer of control from one module to anoth-

er, the NS32CG16 uses a module table in memory and two

registers in the CPU.

The Module Table is located within the first 64 kbytes of

memory. This table contains a Module Descriptor (also

called a Module Table Entry) for each module in the ad-

dress space of the program. A Module Descriptor has four

32-bit entries corresponding to each component of a mod-

ule:

# The Static Base entry contains the address of the begin-

ning of the module’s static data segment.

# The Link Table Base points to the beginning of the mod-

ule’s Link Table.

# The Program Base is the address of the beginning of the

code and constant data for the module.

# A fourth entry is currently unused but reserved.

The MOD Register in the CPU contains the address of the

Module Descriptor for the currently executing module.

The Static Base Register (SB) contains a copy of the Static

Base entry in the Module Descriptor of the currently execut-

ing module, i.e., it points to the beginning of the current

module’s static data area.

This register is implemented in the CPU for efficiency pur-

poses. By having a copy of the static base entry or chip, the

CPU can avoid reading it from memory each time a data

item in the static data segment is accessed.

In an NS32CG16 software environment modules need not

be linked together prior to loading. As modules are loaded,

a linking loader simply updates the Module Table and fills

the Link Table entries with the appropriate values. No modi-

fication of a module’s code is required. Thus, modules may

be stored in read-only memory and may be added to a sys-

tem independently of each other, without regard to their in-

dividual addressing. Figure 2-4 shows a typical NS32CG16

run-time environment.
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2.0 Architectural Description (Continued)

TL/EE/9424–2

Note: Dashed lines indicate information copied to register during transfer of control between modules.

FIGURE 2-4. NS32CG16 Run-Time Environment

2.4 INSTRUCTION SET

2.4.1 General Instruction Format

Figure 2-5 shows the general format of a Series 32000 in-

struction. The Basic Instruction is one to three bytes long

and contains the Opcode and up to two 5-bit General Ad-

dressing Mode (‘‘Gen’’) fields. Following the Basic Instruc-

tion field is a set of optional extensions, which may appear

depending on the instruction and the addressing modes se-

lected.

Index Bytes appear when either or both Gen fields specify

Scaled Index. In this case, the Gen field specifies only the

Scale Factor (1, 2, 4 or 8), and the Index Byte specifies

which General Purpose Register to use as the index, and

which addressing mode calculation to perform before index-

ing.

Following Index Bytes come any displacements (addressing

constants) or immediate values associated with the select-

ed addressing modes. Each Disp/lmm field may contain

one of two displacements, or one immediate value. The size

of a Displacement field is encoded within the top bits of that

field, as shown in Figure 2-7 , with the remaining bits inter-

preted as a signed (two’s complement) value. The size of an

immediate value is determined from the Opcode field. Both

Displacement and Immediate fields are stored most-signifi-

cant byte first. Note that this is different from the memory

representation of data (Section 2.2).

Some instructions require additional ‘‘implied’’ immediates

and/or displacements, apart from those associated with ad-

dressing modes. Any such extensions appear at the end of

the instruction, in the order that they appear within the list of

operands in the instruction definition (Section 2.4.3).

TL/EE/9424–3

FIGURE 2-5. General Instruction Format
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2.0 Architectural Description (Continued)

TL/EE/9424–80

FIGURE 2-6. Index Byte Format

2.4.2 Addressing Modes

The NS32CG16 CPU generally accesses an operand by cal-

culating its Effective Address based on information avail-

able when the operand is to be accessed. The method to be

used in performing this calculation is specified by the pro-

grammer as an ‘‘addressing mode.’’

Addressing modes in the NS32CG16 are designed to opti-

mally support high-level language accesses to variables. In

nearly all cases, a variable access requires only one ad-

dressing mode, within the instruction that acts upon that

variable. Extraneous data movement is therefore minimized.

NS32CG16 Addressing Modes fall into nine basic types:

Register: The operand is available in one of the eight Gen-

eral Purpose Registers. In certain Slave Processor instruc-

tions, an auxiliary set of eight registers may be referenced

instead.

Register Relative: A General Purpose Register contains an

address to which is added a displacement value from the

instruction, yielding the Effective Address of the operand in

memory.

Memory Space: Identical to Register Relative above, ex-

cept that the register used is one of the dedicated registers

PC, SP, SB or FP. These registers point to data areas gen-

erally needed by high-level languages.

Memory Relative: A pointer variable is found within the

memory space pointed to by the SP, SB or FP register. A

displacement is added to that pointer to generate the Effec-

tive Address of the operand.

Byte Displacement: Range b64 to a63

Word Displacement: Range b8192 to a8191

Double Word Displacement:

Range (Entire Addressing Space)

TL/EE/9424–4

FIGURE 2-7. Displacement Encodings

Immediate: The operand is encoded within the instruction.

This addressing mode is not allowed if the operand is to be

written.

Absolute: The address of the operand is specified by a

displacement field in the instruction.

External: A pointer value is read from a specified entry of

the current Link Table. To this pointer value is added a dis-

placement, yielding the Effective Address of the operand.

Top of Stack: The currently-selected Stack Pointer (SP0 or

SP1) specifies the location of the operand. The operand is

pushed or popped, depending on whether it is written or

read.

Scaled Index: Although encoded as an addressing mode,

Scaled Indexing is an option on any addressing mode ex-

cept Immediate or another Scaled Index. It has the effect of

calculating an Effective Address, then multiplying any Gen-

eral Purpose Register by 1, 2, 4 or 8 and adding into the

total, yielding the final Effective Address of the operand.

Table 2-1 is a brief summary of the addressing modes. For a

complete description of their actions, see the Series 32000

Instruction Set Reference Manual.

In addition to the general modes, Register-Indirect with

auto-increment/decrement and warps or pitch are available

on several of the graphics instructions.
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2.0 Architectural Description (Continued)

TABLE 2-1. NS32CG16 Addressing Modes

ENCODING MODE ASSEMBLER SYNTAX EFFECTIVE ADDRESS

Register

00000 Register 0 R0 or F0 None: Operand is in the specified

00001 Register 1 R1 or F1 register.

00010 Register 2 R2 or F2

00011 Register 3 R3 or F3

00100 Register 4 R4 or F4

00101 Register 5 R5 or F5

00110 Register 6 R6 or F6

00111 Register 7 R6 or F7

Register Relative

01000 Register 0 relative disp(R0) Disp a Register.

01001 Register 1 relative disp(R1)

01010 Register 2 relative disp(R2)

01011 Register 3 relative disp(R3)

01100 Register 4 relative disp(R4)

01101 Register 5 relative disp(R5)

01110 Register 6 relative disp(R6)

01111 Register 7 relative disp(R7)

Memory Relative

10000 Frame memory relative disp2(disp1 (FP)) Disp2 a Pointer; Pointer found at

10001 Stack memory relative disp2(disp1 (SP)) address Disp 1 a Register. ‘‘SP’’

10010 Static memory relative disp2(disp1 (SB)) is either SP0 or SP1, as selected

in PSR.

Reserved

10011 (Reserved for Future Use)

Immediate

10100 Immediate value None: Operand is input from

instruction queue.

Absolute

10101 Absolute @disp Disp.

External

10110 External EXT (disp1) a disp2 Disp2 a Pointer; Pointer is found

at Link Table Entry number Disp1.

Top Of Stack

10111 Top of stack TOS Top of current stack, using either

User or Interrupt Stack Pointer,

as selected in PSR. Automatic

Push/Pop included.

Memory Space

11000 Frame memory disp(FP) Disp a Register; ‘‘SP’’ is either

11001 Stack memory disp(SP) SP0 or SP1, as selected in PSR.

11010 Static memory disp(SB)

11011 Program memory *a disp

Scaled Index

11100 Index, bytes mode[Rn:B] EA (mode) a Rn.

11101 Index, words mode[Rn:W] EA (mode) a 2cRn.

11110 Index, double words mode[Rn:D] EA (mode) a 4cRn.

11111 Index, quad words mode[Rn:Q] EA (mode) a 8cRn.

‘‘Mode’’ and ‘‘n’’ are contained

within the Index Byte.

EA (mode) denotes the effective

address generated using mode.
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2.0 Architectural Description (Continued)

2.4.3 Instruction Set Summary

Table 2-2 presents a brief description of the NS32CG16

instruction set. The Format column refers to the Instruction

Format tables (Appendix A). The Instruction column gives

the instruction as coded in assembly language, and the De-

scription column provides a short description of the function

provided by that instruction. Further details of the exact op-

erations performed by each instruction may be found in the

Series 32000 Instruction Set Reference Manual and the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence.

Notations:

ieInteger length suffix: B e Byte

We Word

D e Double Word

feFloating Point length suffix: FeStandard Floating

LeLong Floating

geneGeneral operand. Any addressing mode can be speci-

fied.

shorteA 4-bit value encoded within the Basic Instruction

(see Appendix A for encodings).

immeImplied immediate operand. An 8-bit value appended

after any addressing extensions.

dispeDisplacement (addressing constant): 8, 16 or 32 bits.

All three lengths legal.

regeAny General Purpose Register: R0–R7.

aregeAny Processor Register: SP, SB, FP, INTBASE,

MOD, PSR, US (bottom 8 PSR bits).

condeAny condition code, encoded as a 4-bit field within

the Basic Instruction (see Appendix A for encodings).

TABLE 2-2. NS32CG16 Instruction Set Summary

MOVES

Format Operation Operands Description

4 MOVi gen,gen Move a value.

2 MOVQi short,gen Extend and move a signed 4-bit constant.

7 MOVMi gen,gen,disp Move multiple: disp bytes (1 to 16).

7 MOVZBW gen,gen Move with zero extension.

7 MOVZiD gen,gen Move with zero extension.

7 MOVXBW gen,gen Move with sign extension.

7 MOVXiD gen,gen Move with sign extension.

4 ADDR gen,gen Move effective address.

INTEGER ARITHMETIC

Format Operation Operands Description

4 ADDi gen,gen Add.

2 ADDQi short,gen Add signed 4-bit constant.

4 ADDCi gen,gen Add with carry.

4 SUBi gen,gen Subtract.

4 SUBCi gen,gen Subtract with carry (borrow).

6 NEGi gen,gen Negate (2’s complement).

6 ABSi gen,gen Take absolute value.

7 MULi gen,gen Multiply.

7 QUOi gen,gen Divide, rounding toward zero.

7 REMi gen,gen Remainder from QUO.

7 DIVi gen,gen Divide, rounding down.

7 MODi gen,gen Remainder from DIV (Modulus).

7 MEIi gen,gen Multiply to extended integer.

7 DEIi gen,gen Divide extended integer.

PACKED DECIMAL (BCD) ARITHMETIC

Format Operation Operands Description

6 ADDPi gen,gen Add packed.

6 SUBPi gen,gen Subtract packed.

13



2.0 Architectural Description (Continued)

TABLE 2-2. NS32CG16 Instruction Set Summary (Continued)

INTEGER COMPARISON

Format Operation Operands Description

4 CMPi gen,gen Compare.

2 CMPQi short,gen Compare to signed 4-bit constant.

7 CMPMi gen,gen,disp Compare multiple: disp bytes (1 to 16).

LOGICAL AND BOOLEAN

Format Operation Operands Description

4 ANDi gen,gen Logical AND.

4 ORi gen,gen Logical OR.

4 BICi gen,gen Clear selected bits.

4 XORi gen,gen Logical exclusive OR.

6 COMi gen,gen Complement all bits.

6 NOTi gen,gen Boolean complement: LSB only.

2 Scondi gen Save condition code (cond) as a Boolean variable of size i.

SHIFTS

Format Operation Operands Description

6 LSHi gen,gen Logical shift, left or right.

6 ASHi gen,gen Arithmetic shift, left or right.

6 ROTi gen,gen Rotate, left or right.

BIT FIELDS

Bit fields are values in memory that are not aligned to byte boundaries. Examples are PACKED arrays and records used in

Pascal. ‘‘Extract’’ instructions read and align a bit field. ‘‘Insert’’ instructions write a bit field from an aligned source.

Format Operation Operands Description

8 EXTi reg,gen,gen,disp Extract bit field (array oriented).

8 INSi reg,gen,gen,disp Insert bit field (array oriented).

7 EXTSi gen,gen,imm,imm Extract bit field (short form).

7 INSSi gen,gen,imm,imm Insert bit field (short form).

8 CVTP reg,gen,gen Convert to bit field pointer.

ARRAYS

Format Operation Operands Description

8 CHECKi reg,gen,gen Index bounds check.

8 INDEXi reg,gen,gen Recursive indexing step for multiple-dimensional arrays.
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2.0 Architectural Description (Continued)

TABLE 2-2. NS32CG16 Instruction Set Summary (Continued)

STRINGS

String instructions assign specific functions to the General

Purpose Registers:

R4 Ð Comparison Value

R3 Ð Translation Table Pointer

R2 Ð String 2 Pointer

R1 Ð String 1 Pointer

R0 Ð Limit Count

Options on all string instructions are:

B (Backward): Decrement string pointers after each

step rather than incrementing.

U (Until match): End instruction if String 1 entry matches

R4.

W (While match): End instruction if String 1 entry does not

match R4.

All string instructions end when R0 decrements to zero.

Format Operation Operands Description

5 MOVSi options Move string 1 to string 2.

MOVST options Move string, translating bytes.

5 CMPSi options Compare string 1 to string 2.

CMPST options Compare, translating string 1 bytes.

5 SKPSi options Skip over string 1 entries.

SKPST options Skip, translating bytes for until/while.

JUMPS AND LINKAGE

Format Operation Operands Description

3 JUMP gen Jump.

0 BR disp Branch (PC Relative).

0 Bcond disp Conditional branch.

3 CASEi gen Multiway branch.

2 ACBi short,gen,disp Add 4-bit constant and branch if non-zero.

3 JSR gen Jump to subroutine.

1 BSR disp Branch to subroutine.

1 CXP disp Call external procedure

3 CXPD gen Call external procedure using descriptor.

1 SVC Supervisor call.

1 FLAG Flag trap.

1 BPT Breakpoint trap.

1 ENTER [reg list], disp Save registers and allocate stack frame (Enter Procedure).

1 EXIT [reg list] Restore registers and reclaim stack frame (Exit Procedure).

1 RET disp Return from subroutine.

1 RXP disp Return from external procedure call.

1 RETT disp Return from trap. (Privileged)

1 RETI Return from interrupt. (Privileged)

CPU REGISTER MANIPULATION

Format Operation Operands Description

1 SAVE [reg list] Save general purpose registers.

1 RESTORE [reg list] Restore general purpose registers.

2 LPRi areg,gen Load dedicated register. (Privileged if PSR or INTBASE)

2 SPRi areg,gen Store dedicated register. (Privileged if PSR or INTBASE)

3 ADJSPi gen Adjust stack pointer.

3 BISPSRi gen Set selected bits in PSR. (Privileged if not Byte length)

3 BICPSRi gen Clear selected bits in PSR. (Privileged if not Byte length)

5 SETCFG [option list] Set configuration register. (Privileged)
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2.0 Architectural Description (Continued)

TABLE 2-2. NS32CG16 Instruction Set Summary (Continued)

FLOATING POINT

Format Operation Operands Description

11 MOVf gen,gen Move a floating point value.

9 MOVLF gen,gen Move and shorten a long value to standard.

9 MOVFL gen,gen Move and lengthen a standard value to long.

9 MOVif gen,gen Convert any integer to standard or long floating.

9 ROUNDfi gen,gen Convert to integer by rounding.

9 TRUNCfi gen,gen Convert to integer by truncating, toward zero.

9 FLOORfi gen,gen Convert to largest integer less than or equal to value.

11 ADDf gen,gen Add.

11 SUBf gen,gen Subtract.

11 MULf gen,gen Multiply.

11 DIVf gen,gen Divide.

11 CMPf gen,gen Compare.

11 NEGf gen,gen Negate.

11 ABSf gen,gen Take absolute value.

9 LFSR gen Load FSR.

9 SFSR gen Store FSR.

12 POLYf gen,gen Polynomial Step.

12 DOTf gen,gen Dot Product.

12 SCALBf gen,gen Binary Scale.

12 LOGBf gen,gen Binary Log.

MISCELLANEOUS

Format Operation Operands Description

1 NOP No operation.

1 WAIT Wait for interrupt.

1 DIA Diagnose. Single-byte ‘‘Branch to Self’’ for hardware

breakpointing. Not for use in programming.

GRAPHICS

Format Operation Operands Description

5 BBOR options* Bit-aligned block transfer ‘OR’.

5 BBAND options Bit-aligned block transfer ‘AND’.

5 BBFOR Bit-aligned block transfer fast ‘OR’.

5 BBXOR options Bit-aligned block transfer ‘XOR’.

5 BBSTOD options Bit-aligned block source to destination.

5 BITWT Bit-aligned word transfer.

5 EXTBLT options External bit-aligned block transfer.

5 MOVMPi Move multiple pattern.

5 TBITS options Test bit string.

5 SBITS Set bit string.

5 SBITPS Set bit perpendicular string.

BITS

Format Operation Operands Description

4 TBITi gen,gen Test bit.

6 SBITi gen,gen Test and set bit.

6 SBITIi gen,gen Test and set bit, interlocked.

6 CBITi gen,gen Test and clear bit.

6 CBITIi gen,gen Test and clear bit, interlocked.

6 IBITi gen,gen Test and invert bit.

8 FFSi gen,gen Find first set bit.

*Note: Options are controlled by fields of the instruction, PSR status bits, or dedicated register values.
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2.0 Architectural Description (Continued)

2.5 GRAPHICS SUPPORT

The following sections provide a brief description of the

NS32CG16 graphics support capabilities. Basic discussions

on frame buffer addressing and BITBLT operations are also

provided. More detailed information on the NS32CG16

graphics support instructions can be found in the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence.

2.5.1 Frame Buffer Addressing

There are two basic addressing schemes for referencing

pixels within the frame buffer: Linear and Cartesian (or x-y).

Linear addressing associates a single number to each pixel

representing the physical address of the corresponding bit

in memory. Cartesian addressing associates two numbers

to each pixel representing the x and y coordinates of the

pixel relative to a point in the Cartesian space taken as the

origin. The Cartesian space is generally defined as having

the origin in the upper left. A movement to the right increas-

es the x coordinate; a movement downward increases the y

coordinate.

The correspondence between the location of a pixel in the

Cartesian space and the physical (BIT) address in memory

is shown in Figure 2-8 . The origin of the Cartesian space

(xe0, ye0) corresponds to the bit address ‘ORG’. Incre-

menting the x coordinate increments the bit address by one.

Incrementing the y coordinate increments the bit address by

an amount representing the warp (or pitch) of the Cartesian

space. Thus, the linear address of a pixel at location (x, y) in

the Cartesian space can be found by the following expres-

sion.

ADDR e ORG a y * WARP a x

Warp is the distance (in bits) in the physical memory space

between two vertically adjacent bits in the Cartesian space.

Example 1 below shows two NS32CG16 instruction se-

quences to set a single pixel given the x and y coordinates.

Example 2 shows how to create a fat pixel by setting four

adjacent bits in the Cartesian space.

Example 1: Set pixel at location (x, y)

Setup: R0 x coordinate

R1 y coordinate

Instruction Sequence 1:

MULD WARP, R1 ; Y*WARP

ADDD R0, R1 ; 0 X 4 BIT OFFSET

SBITD R1, ORG ; SET PIXEL

Instruction Sequence 2:

INDEXD R1, (WARP-1), R0 ; Y*WARP 0 X

SBITD R1, ORG ; SET PIXEL

Example 2: Create fat pixel by setting bits at locations

(x, y), (xa1, y), (x, ya1) and (xa1, ya1).

Setup: R0 x coordinate

R1 y coordinate

Instruction Sequence:

INDEXD R1, (WARP-1), R0 ; BIT ADDRESS

SBITD 41, ORG ; SET FIRST PIXEL

ADDQD 1, R1 ; (X01, Y)

SBITD R1, ORG ; SECOND PIXEL

ADDD (WARP-1), R1 ; (X, Y01)

SBITD R1, ORG ; THIRD PIXEL

ADDQD 1, R1 ; (X01, Y01)

SBITD R1, ORG ; LAST PIXEL

TL/EE/9424–5

FIGURE 2-8. Correspondence between

Linear and Cartesian Addressing

2.5.2 BITBLT Fundamentals

BITBLT, BIT-aligned BLock Transfer, is a general operator

that provides a mechanism to move an arbitrary size rectan-

gle of an image from one part of the frame buffer to another.

During the data transfer process a bitwise logical operation

can be performed between the source and the destination

data. BITBLT is also called RasterOp: operations on rasters.

It defines two rectangular areas, source and destination,

and performs a logical operation (e.g., AND, OR, XOR) be-

tween these two areas and stores the result back to the

destination. It can be expressed in simple notation as:

Source op Destination x Destination

op: AND, OR, XOR, etc.
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2.0 Architectural Description (Continued)

2.5.2.1 Frame Buffer Architecture

There are two basic types of frame buffer architectures:

plane-oriented or pixel-oriented. BITBLT takes advantage of

the plane-oriented frame buffer architecture’s attribute of

multiple, adjacent pixels-per-word, facilitating the movement

of large blocks of data. The source and destination starting

addresses are expressed as pixel addresses. The width and

height of the block to be moved are expressed in terms of

pixels and scan lines. The source block may start and end

at any bit position of any word, and the same applies for the

destination block.

2.5.2.2 Bit Alignment

Before a logical operation can be performed between the

source and the destination data, the source data must first

be bit aligned to the destination data. In Figure 2-9 , the

source data needs to be shifted three bits to the right in

order to align the first pixel (i.e., the pixel at the top left

corner) in the source data block to the first pixel in the desti-

nation data block.

2.5.2.3 Block Boundaries and Destination Masks

Each BITBLT destination scan line may start and end at any

bit position in any data word. The neighboring bits (bits shar-

ing the same word address with any words in the destination

data block, but not a part of the BITBLT rectangle) of the

BITBLT destination scan line must remain unchanged after

the BITBLT operation.

Due to the plane-oriented frame buffer architecture, all

memory operations must be word-aligned. In order to pre-

serve the neighboring bits surrounding the BITBLT destina-

tion block, both a left mask and a right mask are needed for

all the leftmost and all the rightmost data words of the desti-

nation block. The left mask and the right mask both remain

the same during a BITBLT operation.

The following example illustrates the bit alignment require-

ments. In this example, the memory data path is 16 bits

wide. Figure 2-9 shows a 32 pixel by 32 scan line frame

buffer which is organized as a long bit stream which wraps

around every two words (32 bits). The origin (top left corner)

of the frame buffer starts from the lowest word in memory

(word address 00 (hex)).

Each word in the memory contains 16 bits, D0–D15. The

least significant bit of a memory word, D0, is defined as the

first displayed pixel in a word. In this example, BITBLT ad-

dresses are expressed as pixel addresses relative to the

origin of the frame buffer. The source block starting address

is 021 (hex) (the second pixel in the third word). The desti-

nation block starting address is 204 (hex) (the fifth pixel in

the 33rd word). The block width is 13 (hex), and the height is

06 (hex) (corresponding to 6 scan lines). The shift value is 3.

TL/EE/9424–6

FIGURE 2-9. 32-Pixel by 32-Scan Line Frame Buffer
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2.0 Architectural Description (Continued)

TL/EE/9424–68

(a)

TL/EE/9424–8

(b)

FIGURE 2-10. Overlapping BITBLT Blocks

The left mask and the right mask are 0000,1111,1111,1111 and 1111,1111,0000,0000 respectively.

Note 1: Zeros in either the left mask or the right mask indicate the destination bits which will not be modified.

Note 2: The BB(function) and EXTBLT instructions use different set up parameters, and techniques.

2.5.2.2 BITBLT Directions

A BITBLT operation moves a rectangular block of data in a

frame buffer. The operation itself can be considered as a

subroutine with two nested loops. The loops are preceded

by setup operations. In the outer loop the source and desti-

nation starting addresses are calculated, and the test for

completion is performed. In the inner loop the actual data

movement for a single scan line takes place. The length of

the inner loop is the number of (aligned) words spanned by

each scan line. The length of the outer loop is equal to the

height (number of scan lines) of the block to be moved. A

skeleton of the subroutine representing the BITBLT opera-

tion follows.

BITBLT: calculate BITBLT setup parameters;

(once per BITBLT operation).

such as

width, height

bit misalignment (shift number)

left, right masks

horizontal, vertical directions

etc

#
#

OUTERLOOP: calculate source, dest addresses;

(once per scanline).

INNERLOOP: move data, (logical operation) and incre-

ment addresses;

(once per word).

UNTIL done horizontally

UNTIL done vertically

RETURN (from BITBLT).

Note: In the NS32CG16 only the setup operations must be done by the

programmer. The inner and outer loops are automatically executed

by the BITBLT instructions.

Each loop can be executed in one of two directions: the

inner loop from left to right or right to left, the outer loop

from top to bottom (down) or bottom to top (up).

The ability to move data starting from any corner of the

BITBLT rectangle is necessary to avoid destroying the

BITBLT source data as a result of destination writes when

the source and destination are overlapped (i.e., when they

share pixels). This situation is routinely encountered while

panning or scrolling.

A determination of the correct execution directions of the

BITBLT must be performed whenever the source and desti-

nation rectangles overlap. Any overlap will result in the de-

struction of source data (from a destination write) if the cor-

rect vertical direction is not used. Horizontal BITBLT direc-

tion is of concern only in certain cases of overlap, as will be

explained below.

Figures 2-10(a) and (b) illustrate two cases of overlap. Here,

the BITBLT rectangles are three pixels wide by five scan

lines high; they overlap by a single pixel in (a) and a single

column of pixels in (b) . For purposes of illustration, the

BITBLT is assumed to be carried out pixel-by-pixel. This

convention does not affect the conclusions.

InFigure 2-10(a) , if the BITBLT is performed in the UP direc-

tion (bottom-to-top) one of the transfers of the bottom scan

line of the source will write to the circled pixel of the destina-

tion. Due to the overlap, this pixel is also part of the upper-

most scan line of the source rectangle. Thus, data needed

later is destroyed. Therefore, this BITBLT must be per-

formed in the DOWN direction. Another example of this oc-
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2.0 Architectural Description (Continued)

curs any time the screen is moved in a purely vertical direc-

tion, as in scrolling text. It should be noted that, in both of

these cases, the choice of horizontal BITBLT direction may

be made arbitrarily.

Figure 2-10(b) demonstrates a case in which the horizontal

BITBLT direction may not be chosen arbitrarily. This is an

instance of purely horizontal movement of data (panning).

Because the movement from source to destination involves

data within the same scan line, the incorrect direction of

movement will overwrite data which will be needed later. In

this example, the correct direction is from right to left.

2.5.2.5 BITBLT Variations

The ‘‘classical’’ definition of BITBLT, as described in

‘‘Smalltalk-80 The Language and its Implementation’’, by

Adele Goldberg and David Robson, provides for three oper-

ands: source, destination and mask/texture. This third oper-

and is commonly used in monochrome systems to incorpo-

rate a stipple pattern into an area. These stipple patterns

provide the appearance of multiple shades of gray in single-

bit-per-pixel systems, in a manner similar to the ‘‘halftone’’

process used in printing.

Texture op1 Source op2 Destination x Destination

While the NS32CG16 and the external BPU (if used) are

essentially two-operand devices, three-operand BITBLT op-

erations can be implemented quite flexibly and efficiently by

performing the two operations serially.

2.5.3 GRAPHICS SUPPORT INSTRUCTIONS

The NS32CG16 provides eleven instructions for supporting

graphics oriented applications. These instructions are divid-

ed into three groups according to the operations they per-

form. General descriptions for each of them and the related

formats are provided in the following sections.

2.5.3.1 BITBLT (BIT-aligned BLock Transfer)

This group includes seven instructions. They are used to

move characters and objects into the frame buffer which will

be printed or displayed. One of the instructions works in

conjunction with an external BITBLT Processing Unit (BPU)

to maximize performance. The other six are executed by the

NS32CG16.

BIT-aligned BLock Transfer

Syntax: BB(function) Options

Setup: R0 base address, source data

R1 base address, destination data

R2 shift value

R3 height (in lines)

R4 first mask

R5 second mask

R6 source warp (adjusted)

R7 destination warp (adjusted)

0(SP) width (in words)

Function: AND, OR, XOR, FOR, STOD

Options: IA Increasing Address (default option).

When IA is selected, scan lines are

transferred in the increasing BIT/BYTE

order.

DA Decreasing Address.

S True Source (default option).

bS Inverted Source.

These five instructions perform standard BITBLT operations

between source and destination blocks. The operations

available include the following:

BBAND: src AND dst
bsrc AND dst

BBOR: src OR dst
bsrc OR dst

BBXOR: src XOR dst
bsrc XOR dst

BBFOR: src OR dst

BBSTOD: src TO dst
bsrc TO dst

‘src’ and ‘bsrc’ stand for ‘True Source’ and ‘Inverted

Source’ respectively; ‘dst’ stands for ‘Destination’.

Note 1: For speed reasons, the BB instructions require the masks to be

specified with respect to the source block. In Figure 2-9 masking

was defined relative to the destination block.

Note 2: The options bS and DA are not available for the BBFOR instruc-

tion.

Note 3: BBFOR performs the same operation as BBOR with IA and S op-

tions.

Note 4: IA and DA are mutually exclusive and so are S and bS.

Note 5: The width is defined as the number of words of source data to read.

Note 6: An odd number of bytes can be specified for the source warp.

However, word alignment of source scan lines will result in faster

execution.

The horizontal and vertical directions of the BITBLT opera-

tions performed by the above instructions, with the excep-

tion of BBFOR, are both programmable. The horizontal di-

rection is controlled by the IA and DA options. The vertical

direction is controlled by the sign of the source and destina-

tion warps. Figure 2-11 and Table 2-3 show the format of

the BB instructions and the encodings for the ‘op’ and ‘i’

fields.

23 16 15 8 7 0

0 0 0 0 0 0 D X S 0 op i 0 0 0 0 1 1 1 0

# D is set when the DA option is selected

# S is set when the bS option is selected

# X is set for BBAND, and it is clear for all other BB instructions

FIGURE 2-11. BB Instructions Format

TABLE 2-3. ‘op’ and ‘i’ Field Encodings

Instruction Options ‘op’ Field ‘i’ Field

BBAND Yes 1010 11

BBOR Yes 0110 01

BBXOR Yes 1110 01

BBFOR No 1100 01

BBSTOD Yes 0100 01

BIT-aligned Word Transfer

Syntax: BITWT

Setup: R0 Base address, source word

R1 Base address, destination double word

R2 Shift value

The BITWT instruction performs a fast logical OR operation

between a source word and a destination double word,

stores the result into the destination double word and incre-

ments registers R0 and R1 by two. Before performing the

OR operation, the source word is shifted left (i.e., in the

direction of increasing bit numbers) by the value in register

R2.
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2.0 Architectural Description (Continued)

This instruction can be used within the inner loop of a block

OR operation. Its use assumes that the source data is

‘clean’ and does not need masking. The BITWT format is

shown in Figure 2-12.

23 16 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 1 1 0

FIGURE 2-12. BITWT Instruction Format

External BITBLT

Syntax: EXTBLT

Setup: R0 base addresses, source data

R1 base address, destination data

R2 width (in bytes)

R3 height (in lines)

R4 horizontal increment/decrement

R5 temporary register (current width)

R6 source warp (adjusted)

R7 destination warp (adjusted)

Note 1: R0 and R1 are updated after execution to point to the last source

and destination addresses plus related warps. R2, R3 and R5 will

be modified. R4, R6, and R7 are returned unchanged.

Note 2: Source and destination pointers should point to word-aligned oper-

ands to maximize speed and minimize external interface logic.

This instruction performs an entire BITBLT operation in con-

junction with an external BITBLT Processing Unit (BPU).

The external BPU Control Register should be loaded by the

software before the instruction is executed (refer to the

DP8510 or DP8511 data sheets for more information on the

BPU). The NS32CG16 generates a series of source read,

destination read and destination write bus cycles until the

entire data block has been transferred. The BITBLT opera-

tion can be performed in either horizontal direction. As con-

trolled by the sign of the contents of register R4.

Depending on the relative alignment of the source and des-

tination blocks, an extra source read may be required at the

beginning of each scan line, to load the pipeline register in

the external BPU. The L bit in the PSR register determines

whether the extra source read is performed. If L is 1, no

extra read is performed. The instructions CMPQB 2,1 or

CMPQB 1,2 could be executed to provide the right setting

for the L bit just before executing EXTBLT. Figure 2-13
shows the EXTBLT format. The bus activity for a simple

BITBLT operation is shown in Figure 2-18.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-13. EXTBLT Instruction Format

2.5.3.2 Pattern Fill

Only one instruction is in this group. It is usually used for

clearing RAM and drawing patterns and lines.

Move Multiple Pattern

Syntax: MOVMPi

Setup: R0 base address of the destination

R1 pointer increment (in bytes)

R2 number of pattern moves

R3 source pattern

Note: R1 and R3 are not modified by the instruction. R2 will always be

returned as zero. R0 is modified to reflect the last address into which

a pattern was written.

This instruction stores the pattern in register R3 into the

destination area whose address is in register R0. The pat-

tern count is specified in register R2. After each store oper-

ation the destination address is changed by the contents of

register R1. This allows the pattern to be stored in rows, in

columns, and in any direction, depending on the value and

sign of R1. The MOVMPi instruction format is shown in Fig-
ure 2-14.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 0 1 1 1 i 0 0 0 0 1 1 1 0

FIGURE 2-14. MOVMPi Instruction Format

2.5.3.3 Data Compression, Expansion and Magnify

The three instructions in this group can be used to com-

press data and restore data from compression. A com-

pressed character set may require from 30% to 50% less

memory space for its storage.

The compression ratio possible can be 50:1 or higher de-

pending on the data and algorithm used. TBITS can also be

used to find boundaries of an object. As a character is need-

ed, the data is expanded and stored in a RAM buffer. The

expand instructions (SBITS, SBITPS) can also function as

line drawing instructions.

Test Bit String

Syntax: TBITS option

Setup: R0 base address, source (byte address)

R1 starting source bit offset

R2 destination run length limited code

R3 maximum value run length limit

R4 maximum source bit offset

Option: 1 count set bits until a clear bit is found

0 count clear bits until a set bit is found

Note: R0, R3 and R4 are not modified by the instruction execution. R1

reflects the new bit offset. R2 holds the result.

This instruction starts at the base address, adds a bit offset,

and tests the bit for clear if ‘‘option’’ e 0 (and for set if

‘‘option’’ e 1). If clear (or set), the instruction increments to

the next higher bit and tests for clear (or set). This testing

for clear proceeds through memory until a set bit is found or

until the maximum source bit offset or maximum run length

value is reached. The total number of clear bits is stored in

the destination as a run length value.

When TBITS finds a set bit and terminates, the bit offset is

adjusted to reflect the current bit address. Offset is then

ready for the next TBITS instruction with ‘‘option’’ e 0. After

the instruction is executed, the F flag is set to the value of

the bit previous to the bit currently being pointed to (i.e., the

value of the bit on which the instruction completed execu-

tion). In the case of a starting bit offset exceeding the maxi-

mum bit offset (R1 t R4), the F flag is set if the option was

1 and clear if the option was 0. The L flag is set when the

desired bit is found, or if the run length equalled the maxi-

mum run length value and the bit was not found. It is cleared

otherwise. Figure 2-15 shows the TBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 S 0 1 0 0 1 1 1 0 0 0 0 1 1 1 0

# S is set for ‘TBITS 1’ and clear for ‘TBITS 0’.

FIGURE 2-15. TBITS Instruction Format
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2.0 Architectural Description (Continued)

Set Bit String

Syntax: SBITS

Setup: R0 base address of the destination

R1 starting bit offset (signed)

R2 number of bits to set (unsigned)

R3 address of string look-up table

Note: When the instruction terminates, the registers are returned un-

changed.

SBITS sets a number of contiguous bits in memory to 1, and

is typically used for data expansion operations. The instruc-

tion draws the number of ones specified by the value in R2,

starting at the bit address provided by registers R0 and R1.

In order to maximize speed and allow drawing of patterned

lines, an external 1k byte lookup table is used. The lookup

table is specified in the NS32CG16 Printer/Display Proces-

sor Programmer’s Reference Supplement.

When SBITS begins executing, it compares the value in R2

with 25. If the value in R2 is less than or equal to 25, the F

flag is cleared and the appropriate number of bits are set in

memory. If R2 is greater than 25, the F flag is set and no

other action is performed. This allows the software to use a

faster algorithm to set longer strings of bits. Figure 2-16
shows the SBITS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-16. SBITS Instruction Format

Set BIT Perpendicular String

Syntax: SBITPS

Setup: R0 base address, destination (byte address)

R1 starting bit offset

R2 number of bits to set

R3 destination warp (signed value, in bits)

Note: When the instruction terminates, the R0 and R3 registers are re-

turned unchanged. R1 becomes the final bit offset. R2 is zero.

The SBITPS can be used to set a string of bits in any direc-

tion. This allows a font to be expanded with a 90 or 270

degree rotation, as may be required in a printer application.

SBITPS sets a string of bits starting at the bit address speci-

fied in registers R0 and R1. The number of bits in the string

is specified in R2. After the first bit is set, the destination

warp is added to the bit address and the next bit is set. The

process is repeated until all the bits have been set. A nega-

tive raster warp offset value leads to a 90 degree rotation. A

positive raster warp value leads to a 270 degree rotation. If

the R3 value is e (space warp a1 or b1), then the result is

a 45 degree line. If the R3 value is a1 or b1, a horizontal

line results.

SBITS and SBITPS allow expansion on any 90 degree an-

gle, giving portrait, landscape and mirror images from one

font. Figure 2-17 shows the SBITPS instruction format.

23 15 8 7 0

0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 0 1 1 1 0

FIGURE 2-17. SBITPS Instruction Format

TL/EE/9424–9

FIGURE 2-18. Bus Activity for a Simple BITBLT Operation

Note 1: This example is for a block 4 words wide and 1 line high.

Note 2: The sequence is common with all logical operations of the DP8510/DP8511 BPU.

Note 3: Mask values, shift values and number of bit planes do not affect the performance.

Note 4: Zero wait states are assumed throughout the BITBLT operation.

Note 5: The extra read is performed when the BPU pipeline register needs to be preloaded.
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2.0 Architectural Description (Continued)

2.5.3.3.1 Magnifying Compressed Data

Restoring data is just one application of the SBITS and

SBITPS instructions. Multiplying the ‘‘length’’ operand used

by the SBITS and SBITPS instructions causes the resulting

pattern to be wider, or a multiple of ‘‘length’’.

As the pattern of data is expanded, it can be magnified by

2x, 3x, 4x, . . . , 10x and so on. This creates several sizes of

the same style of character, or changes the size of a logo. A

magnify in both dimensions X and Y can be accomplished

by drawing a single line, then using the MOVS (Move String)

or the BB instructions to duplicate the line, maintaining an

equal aspect ratio.

More information on this subject is provided in the

NS32CG16 Printer/Display Processor Programmer’s Refer-

ence Supplement.

3.0 Functional Description
This chapter provides details on the functional characteris-

tics of the NS32CG16 microprocessor.

The chapter is divided into four main sections:

Instruction Execution, Exception Processing, Debugging

and System Interface.

3.1 INSTRUCTION EXECUTION

To execute an instruction, the NS32CG16 performs the fol-

lowing operations:

# Fetch the Instruction

# Read Source Operands, if Any (1)

# Calculate Results

# Write Result Operands, if Any

# Modify Flags, if Necessary

# Update the Program Counter

Under most circumstances, the CPU can be conceived to

execute instructions by completing the operations above in

strict sequence for one instruction and then beginning the

sequence of operations for the next instruction. However,

due to the internal instruction pipelining, as well as the oc-

currence of exceptions, the sequence of operations per-

formed during the execution of an instruction may be al-

tered. Furthermore, exceptions also break the sequentiality

of the instructions executed by the CPU.

Note 1: In this and following sections, memory locations read by the CPU to

calculate effective addresses for Memory-Relative and External ad-

dressing modes are considered like source operands, even if the

effective address is being calculated for an operand with access

class of write.

3.1.1 Operating States

The CPU has four operating states regarding the execution

of instructions and the processing of exceptions: Reset, Ex-

ecuting Instructions, Processing An Exception and Waiting-

For-An-Interrupt. The various states and transitions be-

tween them are shown in Figure 3-1 .

Whenever the RSTI signal is asserted, the CPU enters the

reset state. The CPU remains in the reset state until the

RSTI signal is driven inactive, at which time it enters the

Executing-Instructions state. In the Reset state the contents

of certain registers are initialized. Refer to Section 3.5.4 for

details.

TL/EE/9424–10

FIGURE 3-1. Operating States

In the Executing-Instructions state, the CPU executes in-

structions. It will exit this state when an exception is recog-

nized or a WAIT instruction is encountered. At which time it

enters the Processing-An-Exception state or the Waiting-

For-An-Interrupt state respectively.

While in the Processing-An-Exception state, the CPU saves

the PC, PSR and MOD register contents on the stack and

reads the new PC and module linkage information to begin

execution of the exception service procedure.

Following the completion of all data references required to

process an exception, the CPU enters the Executing-In-

structions state.

In the Waiting-For-An-Interrupt state, the CPU is idle. A spe-

cial status identifying this state is presented on the system

interface (Section 3.5). When an interrupt is detected, the

CPU enters the Processing-An-Exception State.

3.1.2 Instruction Endings

The NS32CG16 checks for exceptions at various points

while executing instructions. Certain exceptions, like inter-

rupts, are in most cases recognized between instructions.

Other exceptions, like Divide-By-Zero Trap, are recognized

during execution of an instruction. When an exception is

recognized during execution of an instruction, the instruction

ends in one of four possible ways: completed, suspended,

terminated, or partially completed. Each type of exception

causes a particular ending, as specified in Section 3.2.
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3.0 Functional Description (Continued)

3.1.2.1 Completed Instructions

When an exception is recognized after an instruction is

completed, the CPU has performed all of the operations for

that instruction and for all other instructions executed since

the last exception occurred. Result operands have been

written, flags have been modified, and the PC saved on the

Interrupt Stack contains the address of the next instruction

to execute. The exception service procedure can, at its con-

clusion, execute the RETT instruction (or the RETI instruc-

tion for maskable interrupts), and the CPU will begin execut-

ing the instruction following the completed instruction.

3.1.2.2 Suspended Instructions

An instruction is suspended when one of several trap condi-

tions is detected during execution of the instruction. A sus-

pended instruction has not been completed, but all other

instructions executed since the last exception occurred

have been completed. Result operands and flags due to be

affected by the instruction may have been modified, but only

modifications that allow the instruction to be executed again

and completed can occur. For certain exceptions (Trap

(UND) the CPU clears the P-flag in the PSR before saving

the copy that is pushed on the Interrupt Stack. The PC

saved on the Interrupt Stack contains the address of the

suspended instruction.

To complete a suspended instruction, the exception service

procedure takes either of two actions:

1. The service procedure can simulate the suspended in-

struction’s execution. After calculating and writing the in-

struction’s results, the flags in the PSR copy saved on the

Interrupt Stack should be modified, and the PC saved on

the Interrupt Stack should be updated to point to the next

instruction to execute. The service procedure can then

execute the RETT instruction, and the CPU begins exe-

cuting the instruction following the suspended instruction.

This is the action taken when floating-point instructions

are simulated by software in systems without a hardware

floating-point unit.

2. The suspended instruction can be executed again after

the service procedure has eliminated the trap condition

that caused the instruction to be suspended. The service

procedure should execute the RETT instruction at its con-

clusion; then the CPU begins executing the suspended

instruction again. This is the action taken by a debugger

when it encounters a BPT instruction that was temporarily

placed in another instruction’s location in order to set a

breakpoint.

Note 1: It may be necessary for the exception service procedure to alter the

P-flag in the PSR copy saved on the Interrupt Stack: If the exception

service procedure simulates the suspended instruction and the P-

flag was cleared by the CPU before saving the PSR copy, then the

saved T-flag must be copied to the saved P-flag (like the floating-

point instruction simulation described above). Or if the exception

service procedure executes the suspended instruction again and

the P-flag was not cleared by the CPU before saving the PSR copy,

then the saved P-flag must be cleared (like the breakpoint trap de-

scribed above). Otherwise, no alteration to the saved P-flag is nec-

essary.

3.1.2.3 Terminated Instructions

An instruction being executed is terminated when reset oc-

curs. Any result operands and flags due to be affected by

the instruction are undefined, as is the contents of the PC.

3.1.2.4 Partially Completed Instructions

When an interrupt condition is recognized during execution

of a string instruction, the instruction is said to be partially

completed. A partially completed instruction has not com-

pleted, but all other instructions executed since the last ex-

ception occurred have been completed. Result operands

and flags due to be affected by the instruction may have

been modified, but the values stored in the string pointers

and other general-purpose registers used during the instruc-

tion’s execution allow the instruction to be executed again

and completed.

The CPU clears the P-flag in the PSR before saving the

copy that is pushed on the Interrupt Stack. The PC saved on

the Interrupt Stack contains the address of the partially

completed instruction. The exception service procedure

can, at its conclusion, simply execute the RETT instruction

(or the RETI instruction for maskable interrupts), and the

CPU will resume executing the partially completed instruc-

tion.

3.1.3 Slave Processor Instructions

The NS32CG16 supports only one group of instructions, the

floating-point instruction set, as being executable by a slave

processor. The floating-point instruction set is validated by

the F-bit in the CFG register.

If a floating-point instruction is encountered and the F-bit in

the CFG register is not set, a Trap (UND) will result, without

any slave processor communication attempted by the CPU.

This allows software emulation in case an external floating-

point unit (FPU) is not used.

3.1.3.1 Slave Processor Protocol

Slave Processor instructions have a three-byte Basic In-

struction field, consisting of an ID Byte followed by an Oper-

ation Word. The ID Byte has three functions:

1. It identifies the instruction as being a Slave Processor

instruction.

2. It specifies which Slave Processor will execute it.

3. It determines the format of the following Operation Word

of the instruction.

Upon receiving a Slave Processor instruction, the CPU initi-

ates the sequence outlined in Figure 3-2 . While applying

Status Code 1111 (Broadcast ID, Section 3.5.5.1), the CPU

transfers the ID Byte on the least-significant half of the Data

Bus (AD0–AD7). All Slave Processors input this byte and

decode it. The Slave Processor selected by the ID Byte is

activated, and from this point the CPU is communicating

only with it. If any other slave protocol was in progress (e.g.,

an aborted Slave instruction), this transfer cancels it.
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3.0 Functional Description (Continued)

The CPU next sends the Operation Word while applying

Status Code 1101 (Transfer Slave Operand, Section

3.5.5.1). Upon receiving it, the Slave Processor decodes it,

and at this point both the CPU and the Slave Processor are

aware of the number of operands to be transferred and their

sizes. The Operation Word is swapped on the Data Bus;

that is, bits 0–7 appear on pins AD8–AD15 and bits 8–15

appear on pins AD0–AD7.

Using the Address Mode fields within the Operation Word,

the CPU starts fetching operands and issuing them to the

Slave Processor. To do so, it references any Addressing

Mode extensions which may be appended to the Slave

Processor instruction. Since the CPU is solely responsible

for memory accesses, these extensions are not sent to the

Slave Processor. The Status Code applied is 1101 (Transfer

Slave Processor Operand, Section 3.5.5.1).

After the CPU has issued the last operand, the Slave Proc-

essor starts the actual execution of the instruction. Upon

completion, it will signal the CPU by pulsing SPC low.

While the Slave Processor is executing the instruction, the

CPU is free to prefetch instructions into its queue. If it fills

the queue before the Slave Processor finishes, the CPU will

wait, applying Status Code 0011 (Waiting for Slave).

Upon receiving the pulse on SPC, the CPU uses SPC to

read a Status Word from the Slave Processor, applying

Status Code 1110 (Read Slave Status). This word has the

format shown in Figure 3-3 . If the Q-bit (‘‘Quit’’, Bit 0) is set,

this indicates that an error was detected by the Slave Proc-

essor. The CPU will not continue the protocol, but will imme-

diately trap through the Slave vector in the Interrupt Table.

Certain Slave Processor instructions cause CPU PSR bits to

be loaded from the Status Word.

Status Combinations:

Send ID (ID): Code 1111

Xfer Operand (OP): Code 1101

Read Status (ST): Code 1110

Step Status Action

1 ID CPU Sends ID Byte

2 OP CPU Sends Operation Word

3 OP CPU Sends Required Operands

4 Ð Slave Starts Execution.

CPU Pre-Fetches.

5 Ð Slave Pulses SPC Low

6 ST CPU Reads Status Word.

(Trap? Alter Flags?)

7 OP CPU Reads Results (If Any).

FIGURE 3-2. Slave Processor Protocol

The last step in the protocol is for the CPU to read a result,

if any, and transfer it to the destination. The Read cycles

from the Slave Processor are performed by the CPU while

applying Status Code 1101 (Transfer Slave Operand).

3.1.3.2 Floating-Point Instructions

Table 3-1 gives the protocols followed for each Floating-

Point instruction. The instructions are referenced by their

mnemonics. For the bit encodings of each instruction, see

Appendix A.

TABLE 3-1. Floating-Point Instruction Protocols

Mnemonic
Operand 1 Operand 2 Operand 1 Operand 2 Returned Value PSR Bits

Class Class Issued Issued Type and Dest. Affected

ADDf read.f rmw.f f f f to Op.2 none

SUBf read.f rmw.f f f f to Op.2 none

MULf read.f rmw.f f f f to Op.2 none

DIVf read.f rmw.f f f f to Op.2 none

MOVf read.f write.f f N/A f to Op.2 none

ABSf read.f write.f f N/A f to Op.2 none

NEGf read.f write.f f N/A f to Op.2 none

CMPf read.f read.f f f N/A N,Z,L

FLOORfi read.f write.i f N/A i to Op.2 none

TRUNCfi read.f write.i f N/A i to Op.2 none

ROUNDfi read.f write.i f N/A i to Op.2 none

MOVFL read.F write.L F N/A L to Op.2 none

MOVLF read.L write.F L N/A F to Op.2 none

MOVif read.i write.f i N/A f to Op.2 none

LFSR read.D N/A D N/A N/A none

SFSR N/A write.D N/A N/A D to Op. 2 none

POLYf read.f read.f f f f to F0 none

DOTf read.f read.f f f f to F0 none

SCALBf read.f rmw.f f f f to Op. 2 none

LOGBf read.f write.f f N/A f to Op. 2 none

Notes:

D e Double Word

i e Integer size (B, W, D) specified in mnemonic.

f e Floating-Point type (F, L) specified in mnemonic.

N/A e Not Applicable to this instruction.
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3.0 Functional Description (Continued)

The Operand class columns give the Access Class for each

general operand, defining how the addressing modes are

interpreted (see Series 32000 Instruction Set Reference

Manual).

The Operand Issued columns show the sizes of the oper-

ands issued to the Floating-Point Unit by the CPU. ‘‘D’’ indi-

cates a 32-bit Double Word. ‘‘i’’ indicates that the instruction

specifies an integer size for the operand (B e Byte,

W e Word, D e Double Word). ‘‘f’’ indicates that the in-

struction specifies a Floating-Point size for the operand

(F e 32-bit Standard Floating, L e 64-bit Long Floating).

The Returned Value Type and Destination column gives the

size of any returned value and where the CPU places it. The

PSR Bits Affected column indicates which PSR bits, if any,

are updated from the Slave Processor Status Word (Figure
3-3) .

TL/EE/9424–69

FIGURE 3-3. Slave Processor Status Word

Any operand indicated as being of type ‘‘f’’ will not cause a

transfer if the Register addressing mode is specified. This is

because the Floating-Point Registers are physically on the

Floating-Point Unit and are therefore available without CPU

assistance.

3.2 EXCEPTION PROCESSING

Exceptions are special events that alter the sequence of

instruction execution. The CPU recognizes two basic types

of exceptions: interrupts and traps.

An interrupt occurs in response to an event signalled by

activating the NMI or INT input signals. Interrupts are typi-

cally requested by peripheral devices that require the CPU’s

attention.

Traps occur as a result either of exceptional conditions

(e.g., attempted division by zero) or of specific instructions

whose purpose is to cause a trap to occur (e.g., supervisor

call instruction).

When an exception is recognized, the CPU saves the PC,

PSR and the MOD register contents on the interrupt stack

and then it transfers control to an exception service proce-

dure.

Details on the operations performed in the various cases by

the CPU to enter and exit the exception service procedure

are given in the following sections.

It is to be noted that the reset operation is not treated here

as an exception. Even though, like any exception, it alters

the instruction execution sequence.

The reason being that the CPU handles reset in a signifi-

cantly different way than it does for exceptions.

Refer to Section 3.4.4 for details on the reset operation.

3.2.1 Exception Acknowledge Sequence

When an exception is recognized, the CPU goes through

three major steps:

1) Adjustment of Registers.

Depending on the source of the exception, the CPU may

restore and/or adjust the contents of the Program Coun-

ter (PC), the Processor Status Register (PSR) and the

currently-selected Stack Pointer (SP). A copy of the PSR

is made, and the PSR is then set to reflect Supervisor

Mode and selection of the Interrupt Stack.

2) Vector Acquisition.

A Vector is either obtained from the Data Bus or is sup-

plied by default.

3) Service Call.

The Vector is used as an index into the Interrupt Dis-

patch Table, whose base address is taken from the CPU

Interrupt Base (INTBASE) Register. See Figure 3-4 . A

32-bit External Procedure Descriptor is read from the ta-

ble entry, and an External Procedure Call is performed

using it. The MOD Register (16 bits) and Program Coun-

ter (32 bits) are pushed on the Interrupt Stack.

TL/EE/9424–70

FIGURE 3-4. Interrupt Dispatch and Cascade Tables
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3.0 Functional Description (Continued)

This process is illustrated in Figure 3-13a, from the view-

point of the programmer.

Details on the sequences of events in processing interrupts

and traps are given in the following sections.

TL/EE/9424–71

TL/EE/9424–72

FIGURE 3-5. Exception Acknowledge Sequence
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3.0 Functional Description (Continued)

3.2.2 Returning from an Exception Service Procedure

To return control to an interrupted program, one of two in-

structions can be used: RETT (Return from Trap) and RETI

(Return from Interrupt).

RETT is used to return from any trap or a non-maskable

interrupt service procedure. Since some traps are often

used deliberately as a call mechanism for supervisor mode

procedures, RETT can also adjust the Stack Pointer (SP) to

discard a specified number of bytes from the original stack

as surplus parameter space.

RETI is used to return from a maskable interrupt service

procedure. A difference of RETT, RETI also informs any

external interrupt control units that interrupt service has

completed. Since interrupts are generally asynchronous ex-

ternal events, RETI does not discard parameters from the

stack.

Both of the above instructions always restore the PSR,

MOD, PC and SB registers to their previous contents.

3.2.3 Maskable Interrupts

The INT pin is a level-sensitive input. A continuous low level

is allowed for generating multiple interrupt requests. The in-

put is maskable, and is therefore enabled to generate inter-

rupt requests only while the Processor Status Register I bit

is set. The I bit is automatically cleared during service of an

INT or NMI request, and is restored to its original setting

upon return from the interrupt service routine via the RETT

or RETI instruction.

The INT pin may be configured via the SETCFG instruction

as either Non-Vectored (CFG Register bit Ie0) or Vectored

(bit Ie1).

3.2.3.1 Non-Vectored Mode

In the Non-Vectored mode, an interrupt request on the INT

pin will cause an Interrupt Acknowledge bus cycle, but the

CPU will ignore any value read from the bus and use instead

a default vector of zero. This mode is useful for small sys-

tems in which hardware interrupt prioritization is unneces-

sary.

TL/EE/9424–15

FIGURE 3-6. Return from Trap (RETT n) Instruction Flow
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3.0 Functional Description (Continued)

TL/EE/9424–16

FIGURE 3-7. Return from Interrupt (RETI) Instruction Flow

3.2.3.2 Vectored Mode: Non-Cascaded Case

In the Vectored mode, the CPU uses an Interrupt Control

Unit (ICU) to prioritize up to 16 interrupt requests. Upon re-

ceipt of an interrupt request on the INT pin, the CPU per-

forms an ‘‘Interrupt Acknowledge, Master’’ bus cycle read-

ing a vector value from the low-order byte of the Data Bus.

This vector is then used as an index into the Dispatch Table

in order to find the External Procedure Descriptor for the

proper interrupt service procedure. The service procedure

eventually returns via the Return from Interrupt (RETI) in-

struction, which performs an End of Interrupt bus cycle, in-

forming the ICU that it may re-prioritize any interrupt re-

quests still pending. The ICU provides the vector number

again, which the CPU uses to determine whether it needs

also to inform a Cascaded ICU.

In a system with only one ICU (16 levels of interrupt), the

vectors provided must be in the range of 0 through 127; that

is, they must be positive numbers in eight bits. By providing

a negative vector number, an ICU flags the interrupt source

as being a Cascaded ICU (see below).

Note: During a return from interrupt, the CPU looks at Bit 7 of the vector

number from the master ICU. If Bit 7 is 0, bits 0 through 6 are ignored.

3.2.3.3 Vectored Mode: Cascaded Case

In order to allow up to 256 levels of interrupt, provision is

made both in the CPU and in the NS32202 Interrupt Control
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3.0 Functional Description (Continued)

Unit (ICU) to transparently support cascading. Figure 3-9
shows a typical cascaded configuration. Note that the Inter-

rupt output from a Cascaded ICU goes to an Interrupt Re-

quest input of the Master ICU, which is the only ICU which

drives the CPU INT pin.

In a system which uses cascading, two tasks must be per-

formed upon initialization:

1) For each Cascaded ICU in the system, the Master ICU

must be informed of the line number (0 to 15) on which it

receives the cascaded requests.

2) A Cascade Table must be established in memory. The

Cascade Table is located in a NEGATIVE direction from

the location indicated by the CPU Interrupt Base (INT-

BASE) Register. Its entries are 32-bit addresses, pointing

to the Vector Registers of each of up to 16 Cascaded

ICUs.

Figure 3-4 illustrates the position of the Cascade Table. To

find the Cascade Table entry for a Cascaded ICU, take its

Master ICU line number (0 to 15) and subtract 16 from it,

giving an index in the range b16 to b1. Multiply this value

by 4, and add the resulting negative number to the contents

of the INTBASE Register. The 32-bit entry at this address

must be set to the address of the Hardware Vector Register

of the Cascaded ICU. This is referred to as the ‘‘Cascade

Address.’’

Upon receipt of an interrupt request from a Cascaded ICU,

the Master ICU interrupts the CPU and provides the nega-

tive Cascade Table index instead of a (positive) vector num-

ber. The CPU, seeing the negative value, uses it as an index

into the Cascade Table and reads the Cascade Address

from the referenced entry. Applying this address, the CPU

performs an ‘‘Interrupt Acknowledge, Cascaded’’ bus cycle,

reading the final vector value. This vector is interpreted by

the CPU as an unsigned byte, and can therefore be in the

range of 0 through 255.

In returning from a Cascaded interrupt, the service proce-

dure executes the Return from Interrupt (RETI) instruction,

as it would for any Maskable Interrupt. The CPU performs

an ‘‘End of Interrupt, Master’’ bus cycle, whereupon the

Master ICU again provides the negative Cascaded Table

index. The CPU, seeing a negative value, uses it to find the

corresponding Cascade Address from the Cascade Table.

Applying this address, it performs an ‘‘End of Interrupt, Cas-

caded’’ bus cycle, informing the Cascaded ICU of the com-

pletion of the service routine. The byte read from the Cas-

caded ICU is discarded.

Note: If an interrupt must be masked off, the CPU can do so by setting the

corresponding bit in the Interrupt Mask Register of the Interrupt Con-

troller. However, if an interrupt is set pending during the CPU instruc-

tion that masks off that interrupt, the CPU may still perform an inter-

rupt acknowledge cycle following that instruction since it might have

sampled the INT line before the ICU deasserted it. This could cause

the ICU to provide an invalid vector. To avoid this problem the above

operation should be performed with the CPU interrupt disabled.

TL/EE/9424–17

FIGURE 3-8. Interrupt Control Unit Connections (16 Levels)
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3.0 Functional Description (Continued)

TL/EE/9424–18

FIGURE 3-9. Cascaded Interrupt Control Unit Connections

31



3.0 Functional Description (Continued)

3.2.4 Non-Maskable Interrupt

The Non-Maskable Interrupt is triggered whenever a falling

edge is detected on the NMI pin. The CPU performs an

‘‘Interrupt Acknowledge’’ bus cycle from Address FFFF0016
when processing of this interrupt actually begins. The vector

value used for the Non-Maskable Interrupt is taken as 1,

regardless of the value read from the bus.

The service procedure returns from the Non-Maskable-In-

terrupt using the Return from Trap (RETT) instruction. No

special bus cycles occur on return.

3.2.5 Traps

Traps are processing exceptions that are generated as di-

rect results of the execution of an instruction.

The return address saved on the stack by any trap except

Trap (TRC) is the address of the first byte of the instruction

during which the trap occurred.

When a trap is recognized, maskable interrupts are not dis-

abled.

There are 8 trap conditions recognized by the NS32FX16 as

described below.

Trap (SLAVE): An exceptional condition was detected by

the Floating-Point Unit during the execution of a Slave In-

struction. This trap is requested via the Status Word re-

turned as part of the Slave Processor Protocol (Section

3.1.3.1).

Trap (ILL): Illegal operation. A privileged operation was at-

tempted while the CPU was in User Mode (PSR bit U e 1).

Trap (SVC): The Supervisor Call (SVC) instruction was exe-

cuted.

Trap (DVZ): An attempt was made to divide an integer by

zero. (The FPU trap is used for Floating-Point division by

zero.)

Trap (FLG): The FLAG instruction detected a ‘‘1’’ in the

PSR F-bit.

Trap (BPT): The Breakpoint (BPT) instruction was execut-

ed.

Trap (TRC): The instruction just completed is being traced.

Refer to Section 3.3.1 for details.

Trap (UND): An undefined opcode was encountered by the

CPU.

3.2.6 Priority among Exceptions

The CPU checks for specific exceptions at various points

while executing an instruction. It is possible that several ex-

ceptions occur simultaneously. In that event, the CPU re-

sponds to the exception with highest priority.

Figure 3-10 shows an exception processing flowchart.

Before executing an instruction, the CPU checks for pend-

ing interrupts, or Trap (TRC). The CPU responds to any

pending interrupt requests; nonmaskable interrupts are rec-

ognized with higher priority than maskable interrupts. If no

interrupts are pending, then the CPU checks the P-flag in

the PSR to determine whether a Trap (TRC) is pending. If

the P-flag is 1, a Trap (TRC) is processed. If no interrupt or

Trap (TRC) is pending, the CPU begins executing the in-

struction.

While executing an instruction, the CPU may recognize up

to two exceptions:

1. Interrupt, if the instruction is interruptible.

2. One of 7 mutually exclusive traps: SLAVE, ILL, SVC,

DVZ, FLG, BPT, UND

If no exception is detected while the instruction is executing,

then the instruction is completed and the PC is updated to

point to the next instruction.
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3.0 Functional Description (Continued)

TL/EE/9424–19

FIGURE 3-10. Exception Processing Flowchart
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3.0 Functional Description (Continued)

3.2.7 Exception Acknowledge Sequences:

Detailed Flow

For purposes of the following detailed discussion of excep-

tion acknowledge sequences, a single sequence called

‘‘service’’ is defined in Figure 3-11.

Upon detecting any interrupt request or trap condition, the

CPU first performs a sequence dependent upon the type of

exception. This sequence will include saving a copy of the

Processor Status Register and establishing a vector and a

return address. The CPU then performs the service se-

quence.

3.2.7.1 Maskable/Non-Maskable Interrupt Sequence

This sequence is performed by the CPU when the NMI pin

receives a falling edge, or the INT pin becomes active with

the PSR I bit set. The interrupt sequence begins either at

the next instruction boundary or, in the case of the String

instructions, or Graphics instructions which have interior

loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT, MOVMP,

SBITPS, TBITS), at the next interruptible point during its ex-

ecution. The graphics instructions are interruptible.

1. If a String instruction was interrupted and not yet com-

pleted:

a. Clear the Processor Status Register P bit.

b. Set ‘‘Return Address’’ to the address of the first byte

of the interrupted instruction.

Otherwise, set ‘‘Return Address’’ to the address of the

next instruction.

2. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits S, U, T, P and I.

3. If the interrupt is Non-Maskable:

a. Read a byte from address FFFF0016, applying Status

Code 0100 (Interrupt Acknowledge, Master: Section

3.4.1). Discard the byte read.

b. Set ‘‘Vector’’ to 1.

c. Go to Step 8.

4. If the interrupt is Non-Vectored:

a. Read a byte from address FFFE0016, applying Status

Code 0100 (Interrupt Acknowledge, Master: Section

3.4.1). Discard the byte read.

b. Set ‘‘Vector’’ to 0.

c. Go to Step 8.

5. Here the interrupt is Vectored. Read ‘‘Byte’’ from ad-

dress FFFE0016, applying Status Code 0100 (Interrupt

Acknowledge, Master: Section 3.4.1).

6. If ‘‘Byte’’ t 0, then set ‘‘Vector’’ to ‘‘Byte’’ and go to

Step 8.

7. If ‘‘Byte’’ is in the range b16 through b1, then the inter-

rupt source is Cascaded. (More negative values are re-

served for future use.) Perform the following:

a. Read the 32-bit Cascade Address from memory. The

address is calculated as INTBASE a 4* Byte.

b. Read ‘‘Vector’’, applying the Cascade Address just

read and Status Code 0101 (Interrupt Acknowledge,

Cascaded: Section 3.4.1).

8. Perform Service (Vector, Return Address), Figure 3-11.

3.2.7.2 SLAVE/ILL/SVC/DVZ/FLG/BPT/UND

Trap Sequence

1. Restore the currently selected Stack Pointer and the

Processor Status Register to their original values at the

start of the trapped instruction.

2. Set ‘‘Vector’’ to the value corresponding to the trap type.

SLAVE: Vector e 3.

ILL: Vector e 4.

SVC: Vector e 5.

DVZ: Vector e 6.

FLG: Vector e 7.

BPT: Vector e 8.

UND: Vector e 10.

3. If Trap (UND)

a. Clear the Processor Status Register P bit.

4. Copy the Processor Status Register (PSR) into a tempo-

rary register, then clear PSR bits T, U, S and P.

5. Set ‘‘Return Address’’ to the address of the first byte of

the trapped instruction.

6. Perform Service (Vector, Return Address), Figure 3-11.

3.2.7.3. Trace Trap Sequence

1. In the Processor Status Register (PSR), clear the P bit.

2. Copy the PSR into a temporary register, then clear PSR

bits S, U and T.

3. Set ‘‘Vector’’ to 9.

4. Set ‘‘Return Address’’ to the address of the next instruc-

tion.

5. Perform Service (Vector, Return Address), Figure 3-11.

Service (Vector, Return Address):

1. Push the PSR copy onto the Interrupt Stack as a 16-

bit value.

2. Read the 32-bit External Procedure Descriptor from

the Interrupt Dispatch Table: address is Vec-

tor*4aINTBASE Register contents.

3. Move the Module field of the Descriptor into the tem-

porary MOD Register.

4. Read the Program Base pointer from memory ad-

dress MOD a 8, and add to it the Offset field from

the Descriptor, placing the result in the Program

Counter.

5. Read the new Static Base pointer from the memory

address contained in MOD, placing it into the SB

Register.

6. Flush Queue: Non-sequentially fetch first instruction

of Interrupt Routine.

7. Push MOD Register onto the Interrupt Stack as a 16-

bit value. (The PSR has already been pushed as a 16-

bit value.)

8. Push the Return Address onto the Interrupt Stack as

a 32-bit quantity.

9. Copy temporary MOD Register to MOD Register.

FIGURE 3-11. Service Sequence

Invoked during All Interrupt/Trap Sequences
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3.0 Functional Description (Continued)

TABLE 3-2. Summary of Exception Processing

Exception
Instruction Cleared before Cleared after

Ending Saving PSR Saving PSR

Interrupt Before Instruction None /P* TUSPI

UND Suspended P TUS

SLAVE, SVC, DVZ, FLG, BPT, ILL Suspended None TUSP

TRC Before Instruction P TUS

3.3 DEBUGGING SUPPORT

The NS32CG16 provides features to assist in program de-

bugging.

Besides the Breakpoint (BPT) instruction that can be used

to generate soft breaks, the CPU also provides the instruc-

tion tracing capability.

3.3.1 Instruction Tracing

Instruction tracing is a very useful feature that can be used

during debugging to single-step through selected portions of

a program. Tracing is enabled by setting the T-bit in the PSR

Register. When enabled, the CPU generates a Trace Trap

(TRC) after the execution of each instruction.

At the beginning of each instruction, the T-bit is copied into

the PSR P (Trace ‘‘Pending’’) bit. If the P-bit is set at the end

of an instruction, then the Trace Trap is activated. If any

other trap or interrupt request is made during a traced in-

struction, its entire service procedure is allowed to complete

before the Trace Trap occurs. Each interrupt and trap se-

quence handles the P-bit for proper tracing, guaranteeing

only one Trace Trap per instruction, and guaranteeing that

the Return Address pushed during a Trace Trap is always

the address of the next instruction to be traced.

The beginning of the execution of a TRAP(UND) is not con-

sidered to be a beginning of an instruction, and hence the

T-bit is not copied into the P-bit.

Due to the fact that some instructions can clear the T- and

P-bits in the PSR, in some cases a Trace Trap may not

occur at the end of the instruction. This happens when one

of the privileged instructions BICPSRW or LPRW PSR is

executed.

In other cases, it is still possible to guarantee that a Trace

Trap occurs at the end of the instruction, provided that spe-

cial care is taken before returning from the Trace Trap Serv-

ice Procedure. In case a BICPSRB instruction has been ex-

ecuted, the service procedure should make sure that the

T-bit in the PSR copy saved on the Interrupt Stack is set

before executing the RETT instruction to return to the pro-

gram being traced. If the RETT or RETI instructions have to

be traced, the Trace Trap Service Procedure should set the

P- and T-bits in the PSR copy on the Interrupt Stack that is

going to be restored in the execution of such instructions.

While debugging the NS32CG16 instructions which have in-

terior loops (BBOR, BBXOR, BBAND, BBFOR, EXTBLT,

MOVMP, SBITPS, TBITS), special care must be taken with

the single-step trap. If an interrupt occurs during a single-

step of one of the graphics instructions, the interrupt will be

serviced. Upon return from the interrupt service routine, the

new NS32CG16 instruction will not be re-entered, due to a

single-step trap. Both the NMI and INT interrupts will cause

this behavior. Another single-step operation (S command in

DBG16/MONCG) will resume from where the instruction

was interrupted. There are no side effects from this early

termination, and the instruction will complete normally.

For all other Series 32000 instructions, a single-step opera-

tion will complete the entire instruction before traping back

to the debugger. On the instructions mentioned above, serv-

eral single-step commands may be required to complete the

instruction, ONLY when interrupts are occurring.

There are some methods to give the appearance of single-

stepping for these NS32CG16 instructions.

1. MON16/MONCG monitors the return from single-step

trap vector, PC value. If the PC has not changed since

the last single-step command was issued, the single-step

operation is repeated. It is also advisable to ensure that

one of the NS32CG16 instructions is being single-

stepped, by inspecting the first byte of the address point-

ed to by the PC register. If it is 0x0E, then the instruction

is an NS32CG16-specific instruction.

2. A breakpoint following the instruction would also trap af-

ter the instruction had completed.

Note: If instruction tracing is enabled while the WAIT instructioin is execut-

ed, the Trap (TRC) occurs after the next interrupt, when the interrupt

service procedure has returned.

3.4 SYSTEM INTERFACE

This section provides general information on the

NS32CG16 interface to the external world. Descriptions of

the CPU requirements as well as the various bus character-

istics are provided here. Details on other device characteris-

tics including timing are given in Chapter 4.

3.4.1 Power and Grounding

The NS32CG16 requires a single 5V power supply, applied

on 5 pins. The logic voltage pin (VCCL) supplies the power

to the on-chip logic. The buffer voltage pins VCCCTTL,

VCCFCLK, VCCAD, and VCCIO supply the power to the on-

chip output drivers.

Grounding connections are made on 6 pins. The Logic

Ground Pin (VSSL) provides the ground connection to the

on-chip logic. The buffer ground pins VSSFCLK, VSSNTSO,

VSSHAD, VSSLAD, VSSIO are the ground pins for the on-

chip output drivers.

For optimal noise immunity, the power and ground pins

should be connected to VCC and ground planes respective-

ly. If VCC and ground planes are not used, single conductors

should be run directly from each VCC pin to a power point,

and from each GND pin to a ground point. Daisy-chained

connections should be avoided.

Decoupling capacitors should also be used to keep the

noise level to a minimum. Standard 0.1 mF ceramic capaci-

tors can be used for this purpose. In addition, a 1.0 mF

tantalum capacitor should be connected between VCCL and

ground. They should attach to VCC, VSS pairs as close as

possible to the NS32CG16.
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3.0 Functional Description (Continued)

During prototype using wire-wrap or similar methods, the

capacitors should be soldered directly to the power pins of

the NS32CG16 socket, or as close as possible, with very

short leads.

Recommended bypass for production in printed circuit

boards:

a5 Ground Capacitors

VCCL VSSL 0.1 mF Disk Ceramic

1.0 mF Tantalum

VCCIO VSSIO 0.1 mF

VCCCTTL VSSNTSO 0.1 mF

VCCAD VSSLAD 0.1 mF

VCCAD VSSHAD None

VCCFCLK VSSFCLK 0.1 mF

VCCL–VSSL bypass requires a very short lead length and

low inductance on the 0.1 mF capacitor.

Design Notes

When constructing a board using high frequency clocks with

multiple lines switching, special care should be taken to

avoid resonances on signal lines. A separate power and

ground layer is recommended. This is true when designing

boards for the NS32CG16. Switching times of under 5 ns on

some lines are possible. Resonant frequencies should be

maintained well above the 200 MHz frequency range on

signal paths by keeping traces short and inductance low.

Loading capacitance at the end of a transmission line con-

tributes to the resonant frequency and should be minimized

if possible. Capacitors should be located as close as possi-

ble across each power and ground pair near the

NS32CG16.

Power and ground connections are shown in Figure 3-12.

3.4.2 Clocking

The NS32CG16 provides an internal oscillator that interacts

with an external clock source through two signals;

OSCIN and OSCOUT.

TL/EE/9424–7

FIGURE 3-12. Power and Ground Connections

Either an external single-phase clock signal or a crystal can

be used as the clock source. If a single-phase clock source

is used, only the connection on OSCIN is required; OSC-

OUT should be left unconnected or loaded with no more

than 5 pF of stray capacitance. The voltage level require-

ments specified in Section 4.3 must also be met for proper

operation.

When operation with a crystal is desired, special care

should be taken to minimize stray capacitances and induc-

tances. The crystal, as well as the external components,

should be placed in close proximity to the OSCIN and

OSCOUT pins to keep the printed circuit trace lengths to an

absolute minimum. Figure 3-13a and 3-13b show the exter-

nal crystal interconnections. Table 3-3 provides the crystal

characteristics and the values of the R, C, and L compo-

nents, including stray capacitance, required for various fre-

quencies.

TL/EE/9424–21

FIGURE 3-13a. Crystal Interconnections

20 MHz, 30 MHz

TL/EE/9424–22

FIGURE 3-13b. Crystal InterconnectionsÐ30 MHz
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3.0 Functional Description (Continued)

TL/EE/9424–23

FIGURE 3-14. Recommended Reset Connections

TABLE 3-3. External Oscillator

Specifications Crystal Characteristics

Type AT-Cut

Tolerance 0.005% at a25§C
Stability 0.01% from 0§C to a70§C
Resonance

20 MHz or 30 MHz: Fundamental (Parallel)

30 MHz: Third Overtone (Parallel)

Maximum Series Resistance 50X

Maximum Shunt Capacitance 7 pF

R, C and L Values

Frequency R1 R2 C1 C2 C3 L

(MHz) (kX) (X) (pF) (pF) (pF) (mH)

20 270 75 20 20

30 180 51 20 20

30 180 51 20 20 800–1300 3.3

3.4.3 Power Save Mode

The NS32CG16 provides a power save feature that can be

used to significantly reduce the power consumption at times

when the computational demand decreases. The device

uses the clock signal at the OSCIN pin to derive the internal

clock as well as the external signals PHI1, PHI2, CTTL and

FCLK. The frequency of these clock signals is affected by

the clock scaling factor. Scaling factors of 1, 2, 4, or 8 can

be selected by properly setting the C- and M-bits in the CFG

register. The power save mode should not be used to re-

duce the clock frequency below the minimum frequency re-

quired by the CPU.

Upon reset, both C and M are set to zero, thus maximum

clock rate is selected.

Due to the fact that the C- and M-bits are programmed by

the SETCFG instruction, the power save feature can only be

controlled by programs running in supervisor mode.

The following table shows the C- and M-bit settings for the

various scaling factors, and the resulting supply current for a

crystal frequency of 30 MHz.

Clock Scaling Factor vs Supply Current

C M
Scaling CPU Clock Typical ICC

Factor Frequency at a5V

0 0 1 15 MHz 140 mA

0 1 2 7.5 MHz 76 mA

1 0 4 37.5 MHz 42 mA

1 1 8 1.88 MHz 25 mA

3.4.4 Resetting

The RSTI input pin is used to reset the NS32CG16. The

CPU samples RSTI on the falling edge of CTTL.

Whenever a low level is detected, the CPU responds imme-

diately. Any instruction being executed is terminated; any

results that have not yet been written to memory are dis-

carded; and any pending interrupts and traps are eliminated.

The internal latch for the edge-sensitive NMI signal is

cleared.

On application of power, RSTI must be held low for at least

50 ms after VCC is stable. This is to ensure that all on-chip

voltages are completely stable before operation. Whenever

a Reset is applied, it must also remain active for not less

than 64 CTTL cycles. See Figures 3-15 and 3-16.

TL/EE/9424–24

FIGURE 3-15. Power-On Reset Requirements

TL/EE/9424–25

FIGURE 3-16. General Reset Timing

While in the Reset state, the CPU drives the signals ADS,

RD, WR, DBE, TSO, BPU, and DDIN inactive. AD0–AD15,

A16–A23 and SPC are floated, and the state of all other

output signals is undefined.

The internal CPU clock PHI1, PHI2 and CTTL run at half the

frequency of the signal on the OSCIN pin.

The HOLD signal must be kept inactive. After the RSTI sig-

nal is driven high, the CPU will stay in the reset condition for

approximately 8 clock cycles and then it will begin execution

at address 0.

The PSR is reset to 0. The CFG C- and M-bits are reset to 0.

FCLK runs at the same frequency as OSCIN. NMI is en-

abled to allow Non-Maskable Interrupts. The following con-

ditions are present after reset due to the PSR being reset

to 0:
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3.0 Functional Description (Continued)

Tracing is disabled.

Supervisor mode is enabled.

Supervisor stack space is used when the TOS addressing

mode is indicated.

No trace traps are pending.

Only NMI is enabled. Maskable interrupts are disabled.

BPU is inactive high.

The Clock Scaling Factor is set to 1, refer to Section 3.4.3.

Note that vector/non-vectored interrupts have not been se-

lected. While interrupts are disabled, a SETCFG [I] instruc-

tion must be executed to enable vectored interrupts. If non-

vectored interrupts are required, a SETCFG without the [I]
must be executed.

The presence/absence of the NS32081, NS32181, or

NS32381 has also not been declared. If there is a Floating-

Point Unit, a SETCFG [F] instruction must be executed. If

there is no floating-point unit, a SETCFG without the [F]
must be executed.

In general, a SETCFG instruction must be executed in the

reset routine, in order to properly configure the CPU. The

options should be combined, and executed in a single in-

struction. For example, to declare vectored interrupts, a

Floating-Point unit installed, and full CPU clock rate, exe-

cute a SETCFG [F, I] instruction. To declare non-vectored

interrupts, no FPU, and full CPU clock rate, execute a

SETCFG [ ] instruction.

3.4.5 Bus Cycles

The NS32CG16 will perform bus cycles for one of the fol-

lowing reasons:

1. To fetch instructions from memory.

2. To write or read data to or from memory or external pe-

ripheral devices.

3. To acknowledge an interrupt, or to acknowledge comple-

tion of an interrupt service routine.

4. To transfer information to or from a Slave Processor.

3.4.5.1 Bus Status

The NS32CG16 CPU presents four bits of Bus Status infor-

mation on pins ST0–ST3. The various combinations on

these pins indicate why the CPU is performing a bus cycle,

or, if it is idle on the bus, they why it is idle.

The Bus Status pins are interpreted as a 4-bit value, with

ST0 the least significant bit. Their values decode as follows:

0000 Ð The bus is idle because the CPU does not need to

perform a bus access.

0001 Ð The bus is idle because the CPU is executing the

WAIT instruction.

0010 Ð (Reserved for future use.)

0011 Ð The bus is idle because the CPU is waiting for a

Slave Processor to complete an instruction.

0100 Ð Interrupt Acknowledge, Master

The CPU is performing a Read cycle to acknowl-

edge an interrupt request. See Section 3.2.3.

0101 Ð Interrupt Acknowledge, Cascaded.

The CPU is reading an interrupt vector to acknowl-

edge a maskable interrupt request from a Cascad-

ed Interrupt Control Unit.

0110 Ð End of Interrupt, Master.

The CPU is performing a Read cycle to indicate

that it is executing a Return from Interrupt (RETI)

instruction at the completion of an interrupt’s serv-

ice procedure.

0111 Ð End of Interrupt, Cascaded.

The CPU is performing a read cycle from a Cas-

caded Interrupt Control Unit to indicate that it is

executing a Return from Interrupt (RETI) instruc-

tion at the completion of an interrupt’s service pro-

cedure.

1000 Ð Sequential Instruction Fetch.

The CPU is reading the next sequential word from

the instruction stream into the Instruction Queue. It

will do so whenever the bus would otherwise be

idle and the queue is not already full.

1001 Ð Non-Sequential Instruction Fetch

The CPU is performing the first fetch of instruction

code after the Instruction Queue is purged. This

will occur as a result of any jump or branch, any

interrupt or trap, or execution of certain instruc-

tions.

1010 Ð Data Transfer.

The CPU is reading or writing an operand of an

instruction.

1011 Ð Read RMW Operand.

The CPU is reading an operand which will subse-

quently be modified and rewritten. The write cycle

of RMW will have a ‘‘write’’ status.

1100 Ð Read for Effective Address Calculation.

The CPU is reading information from memory in

order to determine the Effective Address of an op-

erand. This will occur whenever an instruction uses

the Memory Relative or External addressing mode.

1101 Ð Transfer Slave Processor Operand.

The CPU is either transferring an instruction oper-

and to or from a Slave Processor, or it is issuing

the Operation Word of a Slave Processor instruc-

tion.

1110 Ð Read Slave Processor Status.

The CPU is reading a Status Word from a Slave

Processor after the Slave Processor has signalled

completion of an instruction.

1111 Ð Broadcast Slave ID.

The CPU is initiating the execution of a Slave Proc-

essor instruction by transferring the first byte of the

instruction, which represents the slave processor

indentification.

3.4.5.2 Basic Read and Write Cycles

The sequence of events occurring during a CPU access to

either memory or peripheral device is shown in Figure 3-18
for a read cycle, and Figure 3-19 for a write cycle.

The cases shown assume that the selected memory or pe-

ripheral device is capable of communicating with the CPU at

full speed. If not, then cycle extension may be requested

through CWAIT and/or WAIT1–2.
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3.0 Functional Description (Continued)

A full-speed bus cycle is performed in four cycles of the

CTTL clock signal, labeled T1 through T4. Clock cycles not

associated with a bus cycle are designated Ti (for ‘‘idle’’).

During T1, the CPU applies an address on pins AD0–AD15

and A16–A23 and provides a low-going pulse on the ADS

pin, which serves the dual purpose of informing external

circuitry that a bus cycle is starting and of providing control

to an external latch for demultiplexing Address bits 0–15

from the AD0–AD15 pins. See Figure 3-17. During this time

also the status signals DDIN, indicating the direction of the

transfer, and HBE, indicating whether the high byte (AD8–

AD15) is to be referenced, become valid.

During T2 the CPU switches the Data Bus, AD0–AD15, to

either accept or present data. Note that the signals A16–

A23 remain valid, and need not be latched.

TL/EE/9424–11

FIGURE 3-17. Bus Connections
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3.0 Functional Description (Continued)

TL/EE/9424–12

FIGURE 3-18. Read Cycle Timing
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TL/EE/9424–13

FIGURE 3-19. Write Cycle Timing
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3.0 Functional Description (Continued)

At this time the signals TSO (Timing State Output), DBE

(Data Buffer Enable) and either RD (Read Strobe) or WR

(Write Strobe) will also be activated.

The T3 state provides for access time requirements, and it

occurs at least once in a bus cycle. At the end of T2, on the

rising edge of CTTL, the CWAIT and WAIT1–2 signals are

sampled to determine whether the bus cycle will be extend-

ed. See Section 3.4.5.3.

If the CPU is performing a read cycle, the data bus (AD0–

AD15) is sampled at the beginning of T4 on the rising edge

of CTTL. Data must, however, be held a little longer to meet

the data hold time requirements. The RD signal is guaran-

teed not to go inactive before this time, so its rising edge

can be safely used to disable the device providing the input

data.

The T4 state finishes the bus cycle. At the beginning of T4,

the RD or WR, and TSO signals go inactive, and on the

falling edge of CTTL, DBE goes inactive, having provided for

necessary data hold times. Data during Write cycles re-

mains valid from the CPU throughout T4. Note that the Bus

Status lines (ST0–ST3) change at the beginning of T4, an-

ticipating the following bus cycle (if any).

3.4.5.3 Cycle Extension

To allow sufficient access time for any speed of memory or

peripheral device, the NS32CG16 provides for extension of

a bus cycle. Any type of bus cycle except a Slave Processor

cycle and a special bus cycle can be extended.

In Figures 3-18 and 3-19, note that during T3 all bus control

signals from the CPU are flat. Therefore, a bus cycle can be

cleanly extended by causing the T3 state to be repeated.

This is the purpose of the WAIT1–2 and CWAIT input sig-

nals.

At the end of state T2, on the rising edge of CTTL, WAIT1–

2 and CWAIT are sampled.

If any of these signals are active, the bus cycle will be ex-

tended by at least one clock cycle. Thus, one or more addi-

tional T3 state (also called wait state) will be inserted after

the next T-State. Any combination of the above signals can

be activated at one time. However, the WAIT1–2 inputs are

only sampled by the CPU at the end of state T2. They are

ignored at all other times.

The WAIT1–2 inputs are binary weighted, and can be used

to insert up to 3 wait states, according to the following table.

WAIT2 WAIT1
Number of

Wait States

HIGH HIGH 0

HIGH LOW 1

LOW HIGH 2

LOW LOW 3

CWAIT causes wait states to be inserted continuously as

long as it is sampled active. It is normally used when the

number of wait states to be inserted in the CPU bus cycle is

not known in advance.

The following sequence shows the CPU response to the

WAIT1–2 and CWAIT inputs.

1. Start bus cycle.

2. Sample WAIT1–2 and CWAIT at the end of state T2.

3. If the WAIT1–2 inputs are both inactive, then go to step

6.

4. Insert the number of wait states selected by

WAIT1–2.

5. Sample CWAIT again.

6. If CWAIT is not active, then go to step 8.

7. Insert one wait state and then go to step 5.

8. Complete bus cycle.

Figure 3-20 shows a bus cycle extended by three wait

states, two of which are due to WAIT2, and one is due to

CWAIT.
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3.0 Functional Description (Continued)

TL/EE/9424–14

FIGURE 3-20. Cycle Extension of a Read Cycle
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3.4.5.4 Instruction Fetch Cycles

Instructions for the NS32CG16 CPU are ‘‘prefetched’’; that

is, they are input before being needed into the next available

entry of the eight-byte instruction Queue. The CPU performs

two types of instruction Fetch cycles: Sequential and Non-

Sequential. These can be distinguished from each other by

their differing status combinations on pins ST0–ST3 (Sec-

tion 3.4.5.1).

A Sequential Fetch will be performed by the CPU whenever

the Data Bus would otherwise be idle and the Instruction

Queue is not currently full. Sequential Fetches are always

Even Word Read cycles (Table 3-5).

A Non-Sequential Fetch occurs as a result of any break in

the normally sequential flow of a program. Any jump or

branch instruction, a trap or an interrupt will cause the next

Instruction Fetch cycle to be Non-Sequential. In addition,

certain instructions flush the instruction queue, causing the

next instruction fetch to display Non-Sequential status. Only

the first bus cycle after a break displays Non-Sequential

status, and that cycle is either an Even Word Read or an

Odd Byte Read, depending on whether the distination ad-

dress is even or odd.

3.4.5.5 Interrupt Control Cycles

Activating the INT or NMI pin on the CPU will initiate one or

more bus cycles whose purpose in interrupt control rather

than the tranfer of instructions or data. Execution of the

Return from Interrupt Instruction (RETI) will also cause In-

terrupt Control bus cycles. These differ from instruction or

data transfers only in the status presented on pins ST0–

ST3. All Interrupt Control cycles are single-byte Read cy-

cles.

Table 3-4 shows the Interrupt Control sequences associat-

ed with each interrupt and with the return from its service

routine. For full details of the NS32CG16 interrupt structure,

see Section 3.2.
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3.0 Functional Description (Continued)

TABLE 3-4. Interrupt Sequences

Cycle Status Address DDIN HBE A0 High Bus Low Bus

A. Non-Maskable Interrupt Control Sequence

Interrupt Acknowledge

1 0100 FFFF0016 0 1 0 Don’t Care Don’t Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

B. Non-Vectored Interrupt Control Sequence

Interrupt Acknowledge

1 0100 FFFE0016 0 1 0 Don’t Care Don’t Care

Interrupt Return

None: Performed through Return from Trap (RETT) instruction.

C. Vectored Interrupt Sequence: Non-Cascaded

Interrupt Acknowledge

1 0100 FFFE0016 0 1 0 Don’t Care Vector:

Range: 0–127

Interrupt Return

1 0110 FFFE0016 0 1 0 Don’t Care Vector: Same as

in Previous Int.

Ack. Cycle

D. Vectored Interrupt Sequence: Cascaded

Interrupt Acknowledge

1 0100 FFFE0016 0 1 0 Don’t Care Cascade Index:

range b16 to b1

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0101 Cascade 0 1 or 0 or Vector, range 0–255; on appropriate

Address 0* 1* half or Data Bus for even/odd

address

Interrupt Return

1 0110 FFFE0016 0 1 0 Don’t Care Cascade Index:

same as in

previous Int.

Ack. Cycle

(The CPU here uses the Cascade Index to find the Cascade Address.)

2 0111 Cascade 0 1 or 0 or Don’t Care Don’t Care

Address 0* 1*
* If the Cascaded ICU Address is Even (A0 is low), then the CPU applies HBE high and reads the vector number from bits 0–7 of the Data Bus.

If the address is Odd (A0 is high), then the CPU applies HBE low and reads the vector number from bits 8–15 of the Data Bus. The vector number may be in the

range 0–225.
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3.0 Functional Description (Continued)

3.4.5.6 Slave Processor Bus Cycles

A Slave Processor bus cycle always takes exactly two clock

cycles, labeled T1 and T4 (seeFigures 3-21 and3-22 ). Dur-

ing a Read cycle SPC is active from the beginning of T1 to

the beginning of T4, and the data is sampled at the end of

T1. The Cycle Status pins lead the cycle by one clock peri-

od, and are sampled on the leading edge of SPC. During a

Write cycle, the CPU applies data and activates SPC at T1,

removing SPC at T4. The Slave Processor latches the

status on the leading edge of SPC and latches data on the

trailing edge.

The CPU does not pulse the Address Strobe (ADS), and no

bus signals are generated. The direction of a transfer is de-

termined by the sequence (‘‘protocol’’) established by the

instruction under execution; but the CPU indicates the direc-

tion on the DDIN pin for hardware debugging purposes.

A Slave Processor operand is transferred in one or more

Slave bus cycles. A Byte operand is transferred on the

least-significant byte of the Data Bus (AD0–AD7), and a

Word operand is transferred on the entire bus. A Double

Word is transferred in a consecutive pair of bus cycles,

least-significant word first. A Quad Word is transferred in

two pairs of Slave cycles, with other bus cycles possibly

occurring between them. The word order is from least-signif-

icant word to most-significant.

Figure 3-23 shows the NS32CG16 and FPU connection dia-

gram.

Note: CPU samples Data Bus here. TL/EE/9424–30

FIGURE 3-21. Slave Processor Read Cycle

TL/EE/9424–31

*Note: Slave Processor samples Data Bus here.

FIGURE 3-22. Slave Processor Write Cycle

3.4.5.7 Data Access Sequences

The 24-bit address provided by the NS32CG16 is a byte

address; that is, it uniquely identifies one of up to

16,777,216 8-bit memory locations. An important feature of

the NS32CG16 is that the presence of a 16-bit data bus

imposes no restrictions on data alignment; any data item,

regardless of size, may be placed starting at any memory

address. The NS32CG16 provides a special control signal,

High Byte Enable (HBE), which facilitates individual byte ad-

dressing on a 16-bit bus.

Memory is organized as two 8-bit banks, each bank receiv-

ing the word address (A1–A23) in parallel. One bank, con-

nected to Data Bus pins AD0–AD7, is enabled to respond

to even byte addresses; i.e., when the least significant ad-

dress bit (A0) is low. The other bank, connected to Data Bus

pins AD8–AD15, is enabled when HBE is low. See Figure
3-24.

Any bus cycle falls into one of three categories: Even Byte

Access, Odd Byte Access, and Even Word Access. All ac-

cesses to any data type are made up of sequences of these

cycles. Table 3-5 gives the state of A0 and HBE for each

category.
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3.0 Functional Description (Continued)

TL/EE/9424–73

FIGURE 3-23. NS32CG16 and FPU Interconnections

TL/EE/9424–74

FIGURE 3-24. Memory Interface

TABLE 3-5. Bus Cycle Categories

Category HBE A0

Even Byte 1 0

Odd Byte 0 1

Even Word 0 0

Accesses of operands requiring more than one bus cycle

are performed sequentially, with no idle T-states separating

them. The number of bus cycles required to transfer an op-

erand depends on its size and its alignment (i.e., whether it

starts on an even byte address or an odd byte address).

Table 3-6 lists the bus cycles performed for each situation.

For the timing of A0 and HBE, see Section 3.4.5.2.
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3.0 Functional Description (Continued)

TABLE 3-6. Data Access Sequences

Cycle Type Address HBE A0 High Bus Low Bus

A. Odd Word Access Sequence

Byte 1 Byte 0 wA

1 Odd Byte A 0 1 Byte 0 Don’t Care

2 Even Byte A a 1 1 0 Don’t Care Byte 1

B. Even Double-Word Access Sequence

Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Even Word A 0 0 Byte 1 Byte 0

1 Even Word A a 2 0 0 Byte 3 Byte 2

C. Odd Double-Word Access Sequence

Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Odd Byte A 0 1 Byte 0 Don’t Care

2 Even Word A a 1 0 0 Byte 2 Byte 1

3 Even Byte A a 3 1 0 Don’t Care Byte 3

D. Even Quad-Word Access Sequence

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Even Word A 0 0 Byte 1 Byte 0

2 Even Word A a 2 0 0 Byte 3 Byte 2

Other Bus Cycles (Instruction Prefetch or Slave) can occur here.

3 Even Word A a 4 0 0 Byte 5 Byte 4

4 Even Word A a 6 0 0 Byte 7 Byte 6

E. Odd Quad-Word Access Sequence

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 wA

1 Odd Byte A 0 1 Byte 0 Don’t Care

2 Even Word A a 1 0 0 Byte 2 Byte 1

3 Even Byte A a 3 1 0 Don’t Care Byte 3

Other Bus Cycles (Instruction Prefetch or Slave) can occur here.

4 Odd Byte A a 4 0 1 Byte 4 Don’t Care

5 Even Word A a 5 0 0 Byte 6 Byte 5

6 Even Byte A a 7 1 0 Don’t Care Byte 7
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3.0 Functional Description (Continued)

3.4.5.8 Bus Access Control

The NS32CG16 CPU has the capability of relinquishing its

control of the bus upon request from a DMA controller or

another CPU. This capability is implemented by means of

the HOLD (Hold Request) and HLDA (Hold Acknowledge)

pins. By asserting HOLD low, an external device requests

access to the bus. On receipt of HLDA from the CPU, the

device may perform bus cycles, as the CPU at this point has

set AD0–AD15, A16–A23 and HBE to the TRI-STATEÉ
condition and has switched ADS and DDIN to the input

mode. The CPU now monitors ADS and DDIN from the ex-

ternal device to generate the relevant strobe signals (i.e.,

TSO, DBE, RD or WR). To return control of the bus to the

CPU, the device sets HOLD inactive, and the CPU acknowl-

edges it by setting HLDA inactive.

How quickly the CPU releases the bus depends on whether

it is idle on the bus at the time the HOLD request is made,

as the CPU must always complete the current bus cycle.

Figure 3-25 shows the timing sequence when the CPU is

idle. In this case, the CPU grants the bus during the immedi-

ately following clock cycle. Figure 3-26 shows the sequence

when the CPU is using the bus at the time the HOLD re-

quest is made. If the request is made during or before the

clock cycle shown (two clock cycles before T4), the CPU

will release the bus during the clock cycle following T4. If

the request occurs closer to T4, the CPU may already have

decided to initiate another bus cycle. In that case it will not

grant the bus until after the next T4 state. Note that this

situation will also occur if the CPU is idle on the bus but has

initiated a bus cycle internally.

Note 1: During DMA cycles the WAIT1–2 signals should be kept inactive,

unless they are also monitored by the DMA controller. If wait states

are required, CWAIT should be used.

Note 2: The logic value of the status pins, ST0–3, is undefined during DMA

activity.

TL/EE/9424–75

FIGURE 3-25. HOLD Timing, Bus Initially Idle
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3.0 Functional Description (Continued)

TL/EE/9424–76

FIGURE 3-26. HOLD Timing, Bus Initially Not Idle
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3.0 Functional Description (Continued)

3.4.5.9 Instruction Status

In addition to the four bits of Bus Cycle status (ST0–3), the

NS32CG16 CPU also presents Instruction Status informa-

tion on three separate pins. These pins differ from ST0–3 in

that they are synchronous to the CPU’s internal instruction

execution section rather than to its bus interface section.

PFS (Program Flow Status) is pulsed low as each instruction

begins execution. It is intended for debugging purposes.

U/S originates from the U-bit of the Processor Status Regis-

ter, and indicates whether the CPU is currently running in

User or Supervisor mode. Although it is not synchronous to

bus cycles, there are guarantees on its validity during any

given bus cycle. See the Timing Specifications in Section 4.

ILO (Interlocked Operation) is activated during an SBITI (Set

Bit, Interlocked) or CBITI (Clear Bit, Interlocked) instruction.

It is made available to external bus arbitration circuitry in

order to allow these instructions to implement the sema-

phore primitive operations for multi-processor communica-

tion and resource sharing. ILO is guaranteed to be active

during the operand accesses performed by the interlocked

instructions.

Note: The acknowledge of HOLD is on a cycle by cycle basis. Therefore, it

is possible to have HLDA active when an interlock operation is in

progress. In this case, ILO remains low and the interlocked instruction

continues only after HOLD is de-asserted.

4.0 Device Specifications
4.1 NS32CG16 PIN DESCRIPTIONS

The following is a brief description of all NS32CG16 pins.

The descriptions reference portions of the Functional De-

scription, Section 3.

Unless otherwise indicated, reserved pins should be left

open.

Note: An asterisk next to the signal name indicates a TRI-STATE condition

for that signal during HOLD acknowledge.

4.1.1 Supplies

VCCL Logic Power.
a5V positive supply for on-chip logic.

VCCCTTL, Buffers Power.

VCCFCLK, a5V positive supplies for on-chip output

VCCAD, buffers.

VCCIO

VSSL Logic Ground.

Ground reference for on-chip logic.

VSSFCLK, Buffers Ground.

VSSNTSC, Ground reference for on-chip output buffers.

VSSHAD,

VSSLAD,

VSSIO

4.1.2 Input Signals

RSTI Reset Input.

Schmitt triggered, asynchronous signal used to

generate a CPU reset. See Section 3.4.4.

Note:

The reset signal is a true asynchronous input. Therefore, no

external synchronizing circuit is needed.

When RSTI changes right before the falling edge of CTTL,

and meets the specified set-up time, it will be recognized on

that falling edge. Otherwise it will be recognized on the fall-

ing edge of CTTL in the following clock cycle.

HOLD Hold Request.

When active, causes the CPU to release the

bus for DMA or multiprocessing purposes. See

Section 3.4.5.8.

Note:

If the HOLD signal is generated asynchronously, its set up

and hold times may be violated. In this case, it is recom-

mended to synchronize it with CTTL to minimize the possibili-

ty of metastable states.

The CPU provides only one synchronization stage to mini-

mize the HLDA latency. This is to avoid speed degradations

in cases of heavy HOLD activity (i.e., DMA controller cycles

interleaved with CPU cycles).

INT Interrupt.

A low level on this pin requests a maskable in-

terrupt. INT must be kept asserted until the in-

terrupt is acknowledged.

NMI Non-Maskable Interrupt.

A High-to-Low transition on this signal requests

a non-maskable interrupt

Note: INT and NMI are true asynchronous inputs. There-

fore, no synchronization with CTTL is required.

CWAIT Continuous Wait.

Causes the CPU to insert continuous wait

states if sampled low at the end of T2 and each

following T-State. See Section 3.4.5.3.

WAIT1–2 Two-Bit Wait State Inputs.

These inputs, collectively called WAIT1–2, al-

low from zero to three wait states to be speci-

fied. They are binary weighted. See Section

3.4.5.3.

Note: During a DMA cycle, WAIT1–2 should be kept inactive

unless they are also monitored by the DMA Controller.

Wait states, in this case, should be generated through

CWAIT.

OSCIN Crystal/External Clock Input.

Input from a crystal or an external clock source.

See Section 3.4.2.

4.1.3 Output Signals

A16–A23 *High-Order Address Bits.

These are the most significant 8 bits of the

memory address bus.

HBE *High Byte Enable.

Status signal used to enable data transfers on

the most significant byte of the data bus.

ST0–3 Status.

Bus cycle status code; ST0 is the least signifi-

cant. Encodings are:

0000ÐIdle: CPU Inactive on Bus.

0001ÐIdle: WAIT Instruction.

0010Ð(Reserved)

0011ÐIdle: Waiting for Slave.

0100ÐInterrupt Acknowledge, Master.

0101ÐInterrupt Acknowledge, Cascaded.

0110ÐEnd of Interrupt, Master.

0111ÐEnd of Interrupt, Cascaded.

1000ÐSequential Instruction Fetch.

1001ÐNon-Sequential Instruction Fetch.

1010ÐData Transfer.

1011ÐRead Read-Modify-Write Operand.
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4.0 Device Specifications (Continued)

1100ÐRead for Effective Address.

1101ÐTransfer Slave Operand.

1110ÐRead Slave Status Word.

1111ÐBroadcast Slave ID.

U/S User/Supervisor.

User or Supervisor Mode status. High indicates

User Mode; low indicates Supervisor Mode.

ILO Interlocked Operation.

When active, indicates that an interlocked oper-

ation is being executed.

HLDA Hold Acknowledge.

Activated by the CPU in response to the HOLD

input to indicate that the CPU has released the

bus.

PFS Program Flow Status.

A pulse on this signal indicates the beginning of

execution of an instruction.

BPU BPU Cycle.

This signal is activated during a bus cycle to

enable an external BITBLT processing unit. The

EXTBLT instruction activates this signal.*
RSTO Reset Output.

This signal becomes active when RSTI is low,

initiating a system reset.

RD Read Strobe.

Activated during CPU or DMAC read cycles to

enable reading of data from memory or periph-

erals. See Section 3.4.5.2.

WR Write Strobe.

Activated during CPU or DMAC write cycles to

enable writing of data to memory or peripherals.

*Note: BPU is low (Active) only during bus cycles involving

pre-fetching instructions and execution of EXTBLT

operands. It is recommended that BPU, ADS and

status lines (ST0–ST3) be used to qualify BPU bus

cycles. If a DMA circuit exists in the system, the

HLDA signal should be used to further qualify BPU

cycles. BPU may become active during T4 of a non-

BPU bus cycle, and may become inactive during T4

of a BPU bus cycle. BPU must be qualified by ADS

and status lines (ST0–ST3) to be used as an exter-

nal gating signal.

TSO Timing State Output.

The falling edge of TSO identifies the beginning

of state T2 of a bus cycle. The rising edge iden-

tifies the beginning of state T4.

DBE Data Buffers Enable.

Used to control external data buffers. It is active

when the data buffers are to be enabled.

OSCOUT Crystal Output.

This line is used as the return path for the crys-

tal (if used). When an external clock source is

used, OSCOUT should be left unconnected or

loaded with no more than 5 pF of stray capaci-

tance.

FCLK Fast Clock.

This clock is derived from the clock waveform

on OSCIN. Its frequency is either the same as

OSCIN or is lower, depending upon the scale

factor programmed into the CFG register.

PHI1, PHI2 Two-Phase Clock.

These outputs provide a two-phase clock with

frequency half that of FCLK. They can be used

to clock the DP8510/DP8511 BPU. The trace

lengths of PHI1 and PHI2 should be shorter

than 4 inches (10 centimeters) when connected

to the BPU.

CTTL System Clock.

This clock is similar to PHI1 but has a much

higher driving capability. The skew between its

rising edge and PHI1 rising edge is kept to a

minimum.

4.1.4 Input-Output Signals

AD0–15 *Address/Data Bus.

Multiplexed Address/Data information. Bit 0 is

the least significant bit of each.

SPC Slave Processor Control.

Used by the CPU as the data strobe output for

slave processor transfers; used by a slave proc-

essor to acknowledge completion of a slave in-

struction. See Section 3.4.5.6.

DDIN *Data Direction.

Status signal indicating the direction of the data

transfer during a bus cycle. During HOLD ac-

knowledge this signal becomes an input and

determines the activation of RD or WR.

ADS *Address Strobe

Controls address latches; signals the beginning

of a bus cycle. During HOLD acknowledge this

signal becomes an input and the CPU monitors

it to detect the beginning of a DMA cycle and

generate the relevant strobe signals. When a

DMA is used, ADS should be pulled up to VCC
through a 10 kX resistor.
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4.0 Device Specifications (Continued)

68-Pin PCC Package

TL/EE/9424–29

Bottom View

Order Number NS32CG16V-10 or NS32CG16V-15

NS Package Number V68A

FIGURE 4-1. Connection Diagram
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4.0 Device Specifications (Continued)

4.2 ABSOLUTE MAXIMUM RATINGS

If Military/Aerospace specified devices are required,

please contact the National Semiconductor Sales

Office/Distributors for availability and specifications.

Temperature Under Bias 0§C to a70§C
Storage Temperature b65§C to a150§C

All Input or Output Voltages with

Respect to GND b0.5V to a7V

Note: Absolute maximum ratings indicate limits beyond
which permanent damage may occur. Continuous operation
at these limits is not intended; operation should be limited to
those conditions specified under Electrical Characteristics.

4.3 ELECTRICAL CHARACTERISTICS: TA e 0§C to a70§C, VCC e 5V g5%, GND e 0V

Symbol Parameter Conditions Min Typ Max Units

VIH High Level Input Voltage (Note 4) 2.0 VCC a 0.5 V

VIL Low Level Input Voltage (Note 3) b0.5 0.8 V

VTa RSTI Rising Threshold Voltage VCC e 5.0V (Note 5) 2.5 3.5 V

VHYS RSTI Hysteresis Voltage VCC e 5.0V (Note 5) 0.8 1.8 V

VXL OSCIN Input Low Voltage 0.5 V

VXH OSCIN Input High Voltage 4.5 V

VOH High Level Output Voltage IOH e b400 mA (Note 6) 2.4 V

VOL Low Level Output Voltage IOL e 4 mA (Note 6) 0.45 V

IILS SPC Input Current (low) VIN e 0.4V, SPC in Input Mode 0.05 1.0 mA

II Input Load Current 0 s VIN s VCC, All Inputs except SPC b20 20 mA

IL Leakage Current 0.4 s VOUT s VCC

Output and I/O Pins in b20 20 mA

TRI-STATE Input Mode

ICC Active Supply Current IOUT e 0, TA e 25§C (Note 2) 140 200 mA

VPH PHI1, 2 High Level Output Voltage IOH e b400 mA 0.9 VCC V

VPL PHI1, 2 Low Level Output Voltage IOL e 4 mA 0.1 VCC V

Note 1: Care should be taken by designers to provide a minimum inductance path between the VSS pins and system ground in order to minimize noise.

Note 2: ICC is affected by the clock scaling factor selected by the C and M bits in the CFG register, see Section 3.2.1.

Note 3: VIL minÐin the range of b0.5V to b1.5V, the pulse must be s 20 ns, and the period between pulses t 120 ns.

Note 4: VIH maxÐin the range of VCC a 0.5V to VCC a 2.0V, the pulse must be s 25 ns, and the period between pulses t 120 ns.

Note 5: Not 100% tested.

Note 6: All outputs except PHI1 and PHI2.
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4.0 Device Specifications (Continued)

4.4 TEST LOADING CHARACTERISTICS

Capacitive
High Level Low Level Input Load

High Level Low Level
Signal Name

Loading
Output Voltage Output Voltage Current

Input Voltage Input Voltage
(IOH e b400 mA) (IOL e 4 mA) (0 s VIN s VCC)

HBE, ST0–3, U/S, 50 pF

ILO, HLDA, PFS,

BPU, RST0, RD, 2.0VsVOHsVCCa0.5V b0.5VsVOLs0.8V b20 mAsIIs20 mA 2.0VsVIHsVCCa0.5V b0.5VsVILs0.45V

WR, TSO, DBE,

FCLK, DDIN, ADS

RSTI, HOLD, INT, 50 pF b20 mAsIIs20 mA 2.0VsVIHsVCCa0.5V b0.5VsVILs0.8V

NMI, CWAIT, WAIT1–2

OSCIN 50 pF b20 mAsIIs20 mA 4.5VsVIHsVCCa0.5V b0.5VsVILs0.5V

AD0–15, A16–23, 100 pF 2.0VsVOHsVCCa0.5V b0.5VsVOLs0.8V b20 mAsIIs20 mA 2.4VsVIHsVCCa0.5V b0.5VsVILs0.45V

CTTL

PHI1, PHI2 30 pF (Note 2) (Note 2)

SPC 30 pF 2.0VsVOHsVCCa0.5V b0.5VsVOLs0.8V 50 mAsIIs1.0 mA 2.0VsVIHsVCCa0.5V b0.5VsVILs0.4V

OSCOUT see Table 2.0VsVOHsVCCa0.5V b0.5VsVOLs0.8V

(Note 1) 3-1

Note 1: The maximum capacitive loading of OSCOUT is given in Table 3-1 when the NS32CG16’s oscillator is driven with a crystal. If a single phase clock source is

used, OSCOUT should be left unconnected or loaded with no more than 5 pF of stray capacitance.

Note 2: As stated in Table 4.5.2.

TL/EE/9424–65

FIGURE 4.2. Test Loading Configuration

4.5 SWITCHING CHARACTERISTICS

4.5.1 Definitions

All the timing specifications given in this section refer to

0.8V or 2.0V on the rising or falling edges of all the signals

as illustrated in Figures 4-3 and 4-4 unless specifically stat-

ed otherwise. The capacitive load is assumed to be 100 pF

on CTTL and 50 pF on all the other output signals.

TL/EE/9424–77

FIGURE 4.3. Output Signals Specification Standard

Abbreviations:

L.E.ÐLeading Edge R.E.ÐRising Edge

T.E.Ð Trailing Edge F.E.ÐFalling Edge

TL/EE/9424–78

FIGURE 4.4. Input Signals Specification Standard
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4.0 Device Specifications (Continued)

4.5.2 Timing Tables

4.5.2.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15

NS32CG16-10
NS32CG16-15

Name Figure Description Reference/Conditions (Note 3) Units

Min Max Min Max

tCTp 4-15 CTTL Clock Period R.E., CTTL to Next R.E., CTTL 100 1000 66 1000 ns

tCTh 4-15 CTTL High Time 25 pF–100 pF Capacitive Load

At 1.5V (Both Edges) 0.42 0.57 0.41 0.58 tCTp

(see Note 1)

tCTl 4-15 CTTL Low Time At 0.8V
0.42 0.56 0.41 0.53 tCTp25 pF–100 pF Capacitive Load

tCTr 4-15 CTTL Rise Time 0.8V to 2.0V VCC on R.E., CTTL 0 8 0 6 ns

tCTf 4-15 CTTL Fall Time 2.0V to 0.8V VCC on F.E., CTTL 0 8 0 6 ns

tCLw(1,2) 4-15 PHI1, PHI2 Pulse Width At 2.0V on PHI1, PHI2
0.35 0.55 0.32 0.53 tCTp(Both Edges)

tCLh 4-15 Clock High Time At 90% VCC on PHI1, PHI2
0.22 0.50 0.28 0.50 tCTp(Both Edges)

tnOVL(1,2) 4-15 PHI1, PHI2, Non-Overlap At 50% VCC on PHI1, PHI2
2 2 ns

Time

tXFr 4-15 OSCIN to FCLK 80% VCC on R.E., OSCIN
2 29 2 25 ns

R.E. Delay to R.E., FCLK

tFCr 4-15 FCLK to CTTL R.E., FCLK to R.E., CTTL
b2 10 b2 10 ns

R.E. Delay

tFCf 4-15 FCLK to CTTL R.E., FCLK to F.E., CTTL
b2 10 b2 10 ns

F.E. Delay

tPCr 4-15 CTTL and PHI1 Skew R.E., CTTL to R.E., PHI1 b4 4 b4 4 ns

tALv 4-5 Address Bits 0–15 Valid after R.E., CTTL T1 40 4 30 ns

tALh 4-5 Address Bits 0–15 Hold after R.E., CTTL T2 5 5 ns

tAHv 4-5 Address Bits 16–23 Valid after R.E., CTTL T1 40 0 30 ns

tAHh 4-5 Address Bits 16–23 Hold after R.E., CTTL Next T1 or Ti 0 0 ns

tALfr 4-5 Address Bits 0–15 after R.E., CTTL T2
5 38 5 28 ns

floating (during read)

tALnfr 4-5 AD0–AD15
4 36 4 26 ns

Floating (Note 2)

Note 1: Device testing is performed using the Test Loading Characteristics in Table 4.1. Additional timing data for CTTL with various capacitive loads is not 100%

tested.

Note 2: tALnfr is address bits 0–15 floating or not active after R.E. CTTL T1. This is only valid if the previous CPU cycle was a read (Figure 4.5) . A previous write

may have ‘‘data’’ active into T1 of the next cycle which then becomes ‘‘address’’ during T1.

Note 3: 15 MHz specifications are only guaranteed when tCTp e 66 ns.
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4.0 Device Specifications (Continued)

4.5.2.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15 (Continued)

Name Figure Description Reference/Conditions
NS32CG16-10 NS32CG16-15

Units
Min Max Min Max

tALf 4-7 AD0–AD15 Floating after R.E., CTTL Ti
25 18 ns

(Caused by HOLD)

tAHf 4-7 A16–A23 Floating after R.E., CTTL Ti 25 18 ns

tALnf 4-5, 4-8 Address Bits 0–15 after R.E., CTTL T1
4 36 4 26 ns

Not Floating

tAHnf 4-8 Address Bits 16–23 after R.E., CTTL T4
4 36 4 26 ns

Not Floating

tDv 4-6, 4-10 Data Valid (Write Cycle) after R.E., CTTL T2 or T1 50 38 ns

tDh 4-6, 4-10 Data Hold after R.E., CTTL Next T1 or Ti 0 0 ns

tADSa 4-5 ADS Signal Active after R.E., CTTL T1 5 35 5 26 ns

tADSia 4-5 ADS Signal Inactive after F.E., CTTL T1 5 35 5 25 ns

tADSw 4-6 ADS Pulse Width at 15% VCC (Both Edges) 30 25 ns

tADSf 4-7 ADS Floating after R.E., CTTL Ti 55 40 ns

tADSr 4-8 ADS Return from Floating after R.E., CTTL Ti 55 40 ns

tALADSs 4-6 Address Bits 0–15 Setup before ADS T.E. 25 18 ns

tAHADSs 4-6 Address Bits 16–23 Setup before ADS T.E. 25 18 ns

tALADSh 4-5 Address Bits 0–15 Hold after ADS T.E. 12 12 ns

tHBEv 4-5 HBE Signal Valid after R.E., CTTL T1 60 38 ns

tHBEh 4-5 HBE Signal Hold after R.E., CTTL Next T1 or Ti 0 0 ns

tHBEf 4-7 HBE Signal Floating after R.E., CTTL Ti 55 40 ns

tHBEr 4-8 HBE Return from Floating after R.E., CTTL Ti 55 40 ns

tDDINv 4-5 DDIN Signal Valid after R.E., CTTL T1 65 38 ns

tDDINh 4-5 DDIN Signal Hold after R.E., CTTL Next T1 or Ti 0 0 ns

tDDINf 4-7 DDIN Floating after R.E., CTTL Ti 55 40 ns

tDDINr 4-8 DDIN Return from Floating after R.E., CTTL Ti 55 40 ns

tSPCa 4-10 SPC Output Active after R.E., CTTL T1 30 5 21 ns

tSPCia 4-10 SPC Output Inactive after R.E., CTTL T4 5 35 5 26 ns

tSPCnf 4-12 SPC Output Non-Forcing after F.E., CTTL T4 tCTp a 10 tCTp a 8 ns

(Note 2)

tHLDAa 4-7 HLDA Signal Active after R.E., CTTL Ti 50 28 ns

tHLDAia 4-8 HLDA Signal Inactive after R.E., CTTL Ti 50 28 ns

tSTv 4-5 Status ST0–ST3 Valid after R.E., CTTL T4
45 38 ns

(before T1, see Note 1)

tSTh 4-5 Status ST0–ST3 Hold after R.E., CTTL T4 0 0 ns

tBPUv 4-5 BPU Signal Valid after R.E., CTTL T4 45 30 ns

tBPUh 4-5 BPU Signal Hold after R.E., CTTL T4 5 5 ns

Note 1: Every memory cycle starts with T4, during which Cycle Status is applied. If the CPU was idling, the sequence will be: ‘‘ . . . Ti, T4, T1 . . . ’’. If the CPU was

not idling, the sequence will be: ‘‘ . . . T4, T1 . . . ’’.

Note 2: If the CPU is connected directly to the FPU and the CTTL loading is not violated, the CPU and FPU will function correctly together. The CPU and FPU

connect directly without buffers. They should be located less than 4 inches (10 centimeters) apart. tSPCa and tSPCia will track each other on all CPU’s and therefore

it is not possible to have a minimum tSPCia and a maximum tSPCa value. The pulse width minimum, tSPCw, of the FPU will not be violated by the NS32CG16 when

connected directly to the FPU.
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4.0 Device Specifications (Continued)

4.5.2.1 Output Signals: Internal Propagation Delays, NS32CG16-10 and NS32CG16-15 (Continued)

Name Figure Description Reference/Conditions
NS32CG16-10 NS32CG16-15

Units
Min Max Min Max

tTSOa 4-5 TSO Signal Active after R.E., CTTL T2 2 15 2 14 ns

tTSOia 4-5 TSO Signal Inactive after R.E., CTTL T4 0 15 0 10 ns

tRDa 4-5 RD Signal Active after R.E., CTTL T2 20 15 ns

tRDia 4-5 RD Signal Inactive after R.E., CTTL T4 20 0 15 ns

tWRa 4-6 WR Signal Active after R.E., CTTL T2 20 15 ns

tWRia 4-6 WR Signal Inactive after R.E., CTTL T4 20 0 15 ns

tDBEa(R) 4-5 DBE Active (Read Cycle) after F.E., CTTL T2 21 15 ns

tDBEa(W) 4-6 DBE Active (Write Cycle) after R.E., CTTL T2 28 15 ns

tDBEia 4-5, 4-6 DBE Inactive after F.E., CTTL T4 23 15 ns

tUSv 4-5 U/S Signal Valid after R.E., CTTL T4 40 30 ns

tUSh 4-5 U/S Signal Hold after R.E., CTTL T4 5 5 ns

tPFSa 4-13 PFS Signal Active after F.E., CTTL 50 38 ns

tPFSia 4-13 PFS Signal Inactive after F.E., CTTL 50 38 ns

tPFSw 4-13 PFS Pulse Width at 15% VCC (Both Edges) 70 45 ns

tILOa 4-14 ILO Signal Active after R.E., CTTL 55 35 ns

tILOia 4-14 ILO Signal Inactive after R.E., CTTL 55 35 ns

tRSTOa 4-19 RSTO Signal Active after R.E., CTTL 21 15 ns

tRSTOia 4-19 RSTO Signal Inactive after R.E., CTTL 21 15 ns

tRTOI 4-19 Reset to Idle after F.E. of RSTO 10 10 tCTp
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4.0 Device Specifications (Continued)

4.4.2.2 Input Signal Requirements: NS32CG16-10 and NS32CG16-15

Name Figure Description Reference/Conditions
NS32CG16-10 NS32CG16-15

Units
Min Max Min Max

tXp 4-15 OSCIN Clock Period R.E., OSCIN to Next R.E., OSCIN 50 500 33 500 ns

tXh 4-15 OSCIN High Time at 4.2V (Both Edges)
16 11 ns

(External Clock)

tXl 4-15 OSCIN Low Time at 1.0V (Both Edges) 16 11 ns

tDIs 4-5, 4-11 Data In Setup before R.E., CTTL T4 18 15 ns

tDIh 4-5, 4-11 Data In Hold after R.E., CTTL T4
7 7 ns

(see Note 1)

tCWs 4-5, 4-6 CWAIT Signal Setup before R.E., CTTL T3 or T3(w) 20 20 ns

tCWh 4-5, 4-6 CWAIT Signal Hold after R.E., CTTL T3 or T3(w) 5 5 ns

tWs 4-5, 4-6 WAITn Signals Setup before R.E., CTTL T3 or T3(w) 20 20 ns

tWh 4-5, 4-6 WAITn Signals Hold after R.E., CTTL T3 or T3(w) 5 5 ns

tHLDs 4-7, 4-8 HOLD Setup Time before R.E., CTTL TX2 or Ti 30 22 ns

tHLDh 4-7, 4-8 HOLD Hold Time after R.E., CTTL Ti 0 0 ns

tPWR 4-18 Power Stable to RSTI R.E. after VCC Reaches 4.5V 50 33 ms

tRSTw 4-19 RSTI Pulse Width at 0.8V (Both Edges) 64 64 tCTp

tSPCh 4-12 SPC Hold Time after R.E., CTTL
0 0 ns

(see Note 3)

tINTh 4-16 INT Signal Hold After R.E., CTTL T2 of Interrupt 8 8 tCTp
Acknowledge Cycle

tNMIw 4-17 NMI Pulse Width at 0.8V (Both Edges) 70 50 ns

tSPCd 4-12 SPC Pulse Delay after F.E., CTTL T4
2 2 tCTpfrom Slave

tSPCs 4-12 SPC Input Setup before R.E., CTTL 25 25 ns

tADSs 4-9 ADS Input Setup before F.E., CTTL 15 10 ns

tADSh 4-9 ADS Input Hold after F.E., CTTL T1
10 10 ns

(see Note 2)

tDDINs 4-9 DDIN Input Setup before F.E., CTTL 15 10 ns

tDDINh 4-9 DDIN Input Hold after R.E., CTTL T4 7 5 ns

Note 1: tDIh is always less than or equal to tRDia.

Note 2: ADS must be deasserted before state T4 of the DMA controller cycle.

Note 3: Not tested, guaranteed by design.
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4.0 Device Specifications (Continued)

4.5.4 TIMING DIAGRAMS

TL/EE/9424–32

FIGURE 4-5. Read Cycle

60



4.0 Device Specifications (Continued)

TL/EE/9424–33

FIGURE 4-6. Write Cycle
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4.0 Device Specifications (Continued)

TL/EE/9424–34

FIGURE 4-7. HOLD Acknowledge Timing (Bus Initially Not Idle)

Note: When the bus is not idle, HOLD must be asserted before the rising edge of CTTL of the timing state that precedes state T4 in order for the request to be

acknowledged.
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4.0 Device Specifications (Continued)

TL/EE/9424–35

FIGURE 4-8. HOLD Timing (Bus Initially Idle)
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4.0 Device Specifications (Continued)

TL/EE/9424–36

FIGURE 4-9. DMAC Initiated Bus Cycle

Note 1: ADS must be deactivated before state T4 of the DMA controller cycle.

Note 2: During a DMA cycle WAIT1–2 must be kept inactive unless they are monitored by the DMA Controller. A DMA cycle is similar to a CPU cycle. The

NS32CG16 generates TSO, RD, WR and DBE. The DMAC drives the address/data lines HBE, ADS and DDIN.

Note 3: During a DMA cycle, if the ADS signal is pulsed in order to initiate a bus cycle, the HOLD signal must remain asserted until state T4 of the DMAC cycle.
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4.0 Device Specifications (Continued)

TL/EE/9424–37

FIGURE 4-10. Slave Processor Write Timing
TL/EE/9424–38

FIGURE 4-11. Slave Processor Read Timing

TL/EE/9424–39

FIGURE 4-12. SPC Timing

After transferring the last operand to the FPU, the CPU turns OFF the

output driver and holds SPC high with an internal 5 kX pullup.

TL/EE/9424–40

FIGURE 4-13. PFS Signal Timing
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4.0 Device Specifications (Continued)

TL/EE/9424–49

Note: ILO may be asserted more than one clock cycle before the beginning of an interlocked access.

FIGURE 4-14. ILO Signal Timing

TL/EE/9424–47

FIGURE 4-15. Clock Waveforms
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4.0 Device Specifications (Continued)

TL/EE/9424–79

FIGURE 4-16. INT Signal Timing

Note 1: Once INT is asserted, it must remain asserted until it is acknowledged.

Note 2: INTA is the Interrupt Acknowledge bus cycle (not a CPU signal). Refer to Section 3.4.5 and Table 3.4.

TL/EE/9424–51

FIGURE 4-17. NMI Signal Timing

TL/EE/9424–53

FIGURE 4-18. Power-On Reset
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4.0 Device Specifications (Continued)

TL/EE/9424–54

Note 1: During Reset the HOLD signal must be kept high.

Note 2: After RSTI is deasserted the first bus cycle will be an instruction fetch at address zero.

FIGURE 4-19. Non-Power-On Reset
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Appendix A: Instruction Formats
NOTATIONS

i e Integer Type Field

B e 00 (Byte)

W e 01 (Word)

D e 11 (Double Word)

f e Floating-Point Type Field

F e 1 (Std. Floating: 32 bits)

L e 0 (Long Floating: 64 bits)

op e Operation Code

Valid encodings shown with each format.

gen, gen 1, gen 2 e General Addressing Mode Field

See Section 2.4.2 for encodings.

reg e General Purpose Register Number

cond e Condition Code Field

0000 e EQual: Z e 1

0001 e Not Equal: Z e 0

0010 e Carry Set: C e 1

0011 e Carry Clear: C e 0

0100 e Higher: L e 1

0101 e Lower or Same: L e 0

0110 e Greater Than: N e 1

0111 e Less or Equal: N e 0

1000 e Flag Set: F e 1

1001 e Flag Clear: F e 0

1010 e LOwer: L e 0 and Z e 0

1011 e Higher or Same: L e 1 or Z e 1

1100 e Less Than: N e 0 and Z e 0

1101 e Greater or Equal: N e 1 or Z e 1

1110 e (Unconditionally True)

1111 e (Unconditionally False)

short e Short Immediate Value. May contain

quick: Signed 4-bit value, in MOVQ, ADDQ,

CMPQ, ACB

cond: Condition Code (above), in Scond.

areg: CPU Dedicated Register, in LPR, SPR

0000 e UPSR

0001–0111 e (Reserved)

1000 e FP

1001 e SP

1010 e SB

1011 e (Reserved)

1100 e (Reserved)

1101 e PSR

1110 e INTBASE

1111 e MOD

Options: in String Instructions

U/W B T

T e Translated

B e Backward

U/W e 00: None

01: While Match

11: Until Match

Configuration bits in SETCFG instruction:

C M F I

7 0

cond 1 0 1 0

Format 0

Bcond (BR)

7 0

op 0 0 1 0

Format 1

BSR Ð0000 ENTER Ð1000

RET Ð0001 EXIT Ð1001

CXP Ð0010 NOP Ð1010

RXP Ð0011 WAIT Ð1011

RETT Ð0100 DIA Ð1100

RETI Ð0101 FLAG Ð1101

SAVE Ð0110 SVC Ð1110

RESTORE Ð0111 BPT Ð1111

15 87 0

gen short op 1 1 i

Format 2

ADDQ Ð000 ACB Ð100

CMPQ Ð001 MOVQ Ð101

SPR Ð010 LPR Ð110

Scond Ð011

15 87 0

gen op 1 1 1 1 1 i

Format 3

CXPD Ð0000 ADJSP Ð1010

BICPSR Ð0010 JSR Ð1100

JUMP Ð0100 CASE Ð1110

BISPSR Ð0110

Trap (UND) on XXX1, 1000

15 87 0

gen 1 gen 2 op i

Format 4

ADD Ð0000 SUB Ð1000

CMP Ð0001 ADDR Ð1001

BIC Ð0010 AND Ð1010

ADDC Ð0100 SUBC Ð1100

MOV Ð0101 TBIT Ð1101

OR Ð0110 XOR Ð1110
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Appendix A: Instruction Formats (Continued)

23 16 15 8 7 0

0 0 0 0 0 short 0 op i 0 0 0 0 1 1 1 0

Format 5

MOVS b0000 BITWT b1000

CMPS b0001 TBITS b1001

SETCFG b0010 BBAND b1010

SKPS b0011 SBITPS b1011

BBSTOD b0100 BBFOR b1100

EXTBLT b0101 SBITS b1101

BBOR b0110 BBXOR b1110

MOVMP b0111

No Operation on 1111

23 16 15 8 7 0

gen 1 gen 2 op i 0 1 0 0 1 1 1 0

Format 6

ROT b0000 NEG b1000

ASH b0001 NOT b1001

CBIT b0010 Trap (UND) b1010

CBITI b0011 SUBP b1011

Trap (UND) b0100 ABS b1100

LSH b0101 COM b1101

SBIT b0110 IBIT b1110

SBITI b0111 ADDP b1111

23 16 15 8 7 0

gen 1 gen 2 op i 1 1 0 0 1 1 1 0

Format 7

MOVM b0000 MUL b1000

CMPM b0001 MEI b1001

INSS b0010 Trap (UND) b1010

EXTS b0011 DEI b1011

MOVXBW b0100 QUO b1100

MOVZBW b0101 REM b1101

MOVZiD b0110 MOD b1110

MOVXiD b0111 DIV b1111

TL/EE/9424–55

Format 8

EXT b0 00 INDEX b1 00

CVTP b0 01 FFS b1 01

INS b0 10

CHECK b0 11

Trap (UND) on b1 10 and b1 11

23 16 15 8 7 0

gen 1 gen 2 op f i 0 0 1 1 1 1 1 0

Format 9

MOVif b000 ROUND b100

LFSR b001 TRUNC b101

MOVLF b010 SFSR b110

MOVFL b011 FLOOR b111

TL/EE/9424–56

Format 10

Trap (UND) Always

23 16 15 8 7 0

gen 1 gen 2 op 0 f 1 0 1 1 1 1 1 0

Format 11

ADDf b0000 DIVf b1000

MOVf b0001 (Note 1) b1001

CMPf b0010 Trap (UND) b1010

(Note 3) b0011 Trap (UND) b1011

SUBf b0100 MULf b1100

NEGf b0101 ABSf b1101

Trap (UND) b0110 Trap (UND) b1110

Trap (UND) b0111 Trap (UND) b1111

23 16 15 8 7 0

gen 1 gen 2 op 0 f 1 1 1 1 1 1 1 0

Format 12

(Note 2) b0000 (Note 2) b1000

(Note 1) b0001 (Note 1) b1001

POLYf b0010 Trap (UND) b1010

DOTf b0011 Trap (UND) b1011

SCALBf b0100 (Note 2) b1100

LOGBf b0101 (Note 1) b1101

Trap (UND) b0110 Trap (UND) b1110

Trap (UND) b0111 Trap (UND) b1111

*Instructions with Format 12 are available only when the NS32381 is used.

TL/EE/9424–57

Format 13

Trap (UND) Always

TL/EE/9424–58
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Appendix A: Instruction Formats (Continued)

Format 14

Trap (UND) Always

TL/EE/9424–59

Format 15

Trap (UND) Always

TL/EE/9424–60

Format 16

Trap (UND) Always

TL/EE/9424–61

Format 17

Trap (UND) Always

TL/EE/9424–62

Format 18

Trap (UND) Always

TL/EE/9424–63

Format 19

Trap (UND) Always

Implied Immediate Encodings:

7 0

r7 r6 r5 r4 r3 r2 r1 r0

Register Mask, appended to SAVE, ENTER

7 0

ro r1 r2 r3 r4 r5 r6 r7

Register Mask, appended to RESTORE, EXIT

7 0

offset lengthb1

Offset/Length Modifier appended to INSS, EXTS

Note 1: Opcode not defined; CPU treats like MOVf. First operand has access class of read; second operand has access class of write; f-field selects 32-bit or

64-bit data.

Note 2: Opcode not defined; CPU treats like ADDf. First operand has access class of read; second operand has access class of read-modify-write. f-field selects

32-bit or 64-bit data.

Note 3: Reserved opcode; execution of this opcode will generate an undefined result.
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Appendix B: Instruction Execution Times
This section provides the necessary information to calculate

the instruction execution times for the NS32CG16.

The following assumptions are made:
Y The entire instruction, with all displacements and imme-

diate operands, is assumed to be present in the instruc-

tion queue when needed.
Y Interference from instruction prefetches, which is very

dependent upon the preceding instruction(s), is ignored.

This assumption will tend to affect the timing estimate

in an optimistic direction.
Y It is assumed that all memory operand transfers are

completed before the next instruction begins execution.

In the case of an operand of access class rmw in

memory, this is pessimistic, as the Write transfer occurs

in parallel with the execution of the next instruction.
Y It is assumed that there is no overlap between the

fetch of an operand and the following sequences of mi-

crocode. This is pessimistic, as the fetch of Operand 1

will generally occur in parallel with the effective address

calculation of Operand 2, and the fetch of Operand 2

will occur in parallel with the execution phase of the in-

struction.
Y Where possible, the values of operands are taken into

consideration when they affect instruction timing, and a

range of times is given. Where this is not done, the

worst case is assumed.

B.1 BASIC AND FLOATING-POINT INSTRUCTIONS

Execution times for basic and floating-point instructions are

given in Tables B-1 and B-2. The parameters needed for the

various calculations are defined below.

TEAÐ The time required to calculate an operand’s Effec-

tive Address. For a Register or Immediate oper-

and, this includes the fetch of that operand.

TEA1Ð TEA value for the GEN or GEN1 operand.

TEA2Ð TEA value for the GEN2 operand.

TOPBÐ The time needed to read or write a memory byte.

TOPWÐ The time needed to read or write a memory word.

TOPDÐ The time needed to read or write a memory dou-

ble-word.

TOPiÐ The time needed to read or write a memory oper-

and, where the operand size is given by the opera-

tion length of the instruction. It is always equiva-

lent to either TOPB, TOPW or TOPD.

TCYÐ Internal processing overhead, in clock cycles.

LÐ Internal processing whose duration depends on

the operation length. The number of clock cycles

is derived by multiplying this value by the number

of bytes in the operation length.

NCYCÐ Number of bus cycles performed by the CPU to

fetch or store an operand. NCYC depends on the

operand size and alignment.

TPRÐ CPU processing (in clock cycles) performed in par-

allel with the FPU.

TFPUÐ Processing time required by the FPU to execute

the instruction. This is the time from the last data

sent to the FPU, until done is issued. TFPU can be

found in the FPU data sheets.

fÐ This parameter is related to the floating-point op-

erand size.

TfÐ The time required to transfer 32 bits of floating

point value to or from the FPU.

TiÐ The time required to transfer an integer value to or

from the FPU.

B.1.1 Equations

The following equations assume that:

# Memory accesses occur at full speed.

# Any wait states should be reflected in the calculations of

TOPB, TOPW and TOPD.

Note: When multiple writes are performed during the execution of an in-

struction, wait states occurring during intermediate write transactions

may be partially hidden by the internal execution. Therefore, a certain

number of wait states can be inserted with no effect on the execution

time. For example, in the case of the MOVSi instructions each wait

state on write operations subtracts 1 clock cycle per write bus access,

from the TCY of the instruction, since updating the pointers occurs in

parallel with the write operation. This means that wait states can be

added to write cycles without changing the execution time of the in-

struction, up to a maximum of 13 wait states on writes for MOVSB and

MOVSW, and 4 wait states on writes for MOVSD.

TEAÐ TEA values for the various addressing modes are

provided in the following table.

TEA TABLE

Addressing TEA
Notes

Mode Value

IMMEDIATE,
4

ABSOLUTE

EXTERNAL 11 a 2 * TOPD

MEMORY RELATIVE 7 a TOPD

REGISTER 2

REGISTER RELATIVE,
5

MEMORY SPACE

TOP OF STACK 4 Access Class Write

2 Access Class Read

3 Access Class RMW

SCALED INDEXED TI1 a TI2

TI1 e TEA of the basemode except:

if basemode is REGISTER then TI1 e 5

if basemode is TOP OF STACK then TI1 e 4

TI2 depends on the scale factor:

if byte indexing TI1 e 5

if word indexing TI2 e 7

if double-word indexing TI2 e 8

if quad-word indexing TI2 e 10

TOPBÐ If operand is in a register or is immediate then

TOPB e 0

else TOPB e 3

TOPWÐ If operand is in a register or is immediate then

TOPW e 0

else TOPW e 4 # NCYC b 1

TOPDÐ If operand is in a register or is immediate then

TOPD e 0

else TOPD e 4 # NCYC b 1
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Appendix B: Instruction Execution Times (Continued)

TOPiÐ If operand is in a register or is immediate then

TOPi e 0

else if i e byte then TOPi e TOPB

else if i e word then TOPi e TOPW

else (i e double-word) then TOPi e TOPD

LÐ If i (operation length) e byte then L e 1

else if i e word then L e 2

else (i e double-word) L e 4

fÐ If standard floating (32 bits): f e 1

If long floating (64 bits): f e 2

TfÐ Tf e 4

TiÐ If integer e byte or word, then Ti e 2

If integer e double-word, then Ti e 4

B.1.2 Notes on Table Use

Values in the ÝTEA1 and ÝTEA2 columns indicate whether

effective addresses need to be calculated.

A value of 1 indicates that address calculation time is re-

quired for the corresponding operand. A 0 indicates that the

operand is either missing, or it is in a register and the in-

struction has an optimized form which eliminates the TEA

calculation for it.

In the L column, multiply the entry by the operation length in

bytes (1, 2 or 4).

In the TCY column, special notations sometimes appear:

n1 x n2 means n1 minimum, n2 maximum

n1%n2 means that the instruction flushes the instruction

queue after n1 clock cycles and nonsequentially fetches the

next instruction. The value n2 indicates the number of clock

cycles for the internal execution of the instruction (including

n1).

The effective number of cycles (TCY) must take into ac-

count the time (Tfetch) required to fetch the portion of the

next instruction including the basic encoding and the index

bytes. This time depends on the size and the alignment of

this portion.

If only one memory cycle is required, then:

TCY e n1 a 6 a Tfetch

If more than one memory cycle is required, then:

TCY e n1 a 5 a Tfetch

In the notes column, notations held within angle brackets
k l indicate alternatives in the operand addressing modes

which affect the execution time. A table entry which is af-

fected by the operand addressing may have multiple values,

corresponding to the alternatives. These addressing nota-

tions are:

kIl Immediate

kRl CPU Register

kMl Memory

kFl FPU Register, either 32 or 64 Bits

kxl Any Addressing Mode

kabl a and b represent the addressing modes of operand

1 and 2 respectively. Both a and b can be any ad-

dressing mode (e.g., kMRl means memory to

CPU register).

Note: Unless otherwise specified the TCY value for immediate addressing is

the same as for CPU register addressing.

B.1.3. Calculation of the Execution Time TEX for Basic

Instructions

The execution time for a basic instruction is obtained by

performing the following steps:

1. Find the desired instruction in Table B-1.

2. Calculate the values of TEA, TOPB, etc. using the num-

bers in the table and the equations given in the previous

sections.

3. The result derived by adding together these values is the

execution time TEX in clock cycles.

EXAMPLE

Calculate TEX for the instruction CMPW R0, TOS.

Operand 1 is in a register; Operand 2 is in memory. This

means that we must use the table values corresponding to

the kxMl case as given in the Notes column.

Only the ÝTEA1, ÝTEA2, ÝTOPi and TCY columns have

values assigned for the CMPi instruction. Therefore, they

are they only ones that need to be calculated to find TEX.

The blank columns are irrelevant to this instruction.

Both ÝTEA1 and ÝTEA2 columns contain 1 for the kxMl

case. This means that effective address times have to be

calculated for both operands. (For the kMRl case, the

Register operand would have required no TEA time, there-

fore only the Memory operand TEA would have been neces-

sary.) From the equations:

TEA1 (Register mode) e 2.

TEA2 (Top of Stack mode, access class read) e 2.

The ÝTOPi column represents potential operand transfers

to or from memory. For a Compare instruction, each oper-

and is read once, for a total of two operand transfers.

TOPi (Word, Register) e 0,

TOPi (Word, TOS) e 3 (assuming the operand aligned)

Total TOPi e 3

TCY is the time required for internal operation within the

CPU. The TCY value for this case is 3.

TEX e TEA1 a TEA2 a TOPi a TCY e 2 a 2 a 3 a 3
e 10 machine cycles.

If the CPU is running at 20 MHz then a machine cycle (clock

cycle) is 50 ns. Therefore, this instruction would take 10 c

50 ns, or 0.5 ms, to execute.

B.1.4 Calculation of the Execution Time TEX for Float-

ing-Point Instructions

The execution time for a floating-point instruction is ob-

tained by performing the following steps:

1. Find the desired instruction in Table B-2.

2. Calculate the values of TEA1, TEA2, TOPB, etc., using

the numbers in the table, and the equations given in the

previous sections.

3. Get the floating-point instruction execution time TFPU

from the appropriate FPU data sheet.

4. Choose the higher value between TPR and TFPU a 3.

5. The result derived by adding together these values is the

execution time TEX in clock cycles.

EXAMPLE 1

Calculate TEX for the instruction MOVLF F0,@hÊ3000.

Assumptions:

# The FPU being used is the NS32181.

# Write cycles are performed with no wait states.
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Appendix B: Instruction Execution Times (Continued)

TEX Calculation:

Operand 1 is in a register, operand 2 is in memory. This

means that we have to use the table values for the kFMl

case.

The following parameter values are obtained from Table B-2

and the equations in the previous sections.

TEA2 (Absolute Mode) e 4

TOPD (Memory Write) e 7 (Operand aligned, no waits)

Tf e 4

TCY e 32

TPR e TEA2 a 6 e 4 a 6 e 10

From the FPU Execution Timing table in the NS32181 data

sheet we get a TFPU for MOVLF of 19 clock cycles.

The higher value between TPR and TFPU a 3 is 22. The

total execution time in clock cycles is:

TEX e TEA2 a TOPD a TF a TCY a 22 e 65

EXAMPLE 2

Calculate TEX for the instruction MULF 20(R0), 4(10(FP))

Assumptions:

# The FPU being used is the NS32181.

# 20(R0) is an aligned read with one wait state.

# 10(FP) is an aligned read with no wait states.

# 4(10 (FP)) is an unaligned rmw with two wait states.

TEX Calculation:

Operand 1 and operand 2 are both in memory. Therefore,

the table values for the kMMl case must be used.

The parameter values obtained from Table B-2 and the

equations in the previous sections are as follows:

TEA1 (Register Relative Mode) e 5

TEA2 (Memory Relative Mode) e 8 a TOPD e 15

(TOPD e 7 (Operand Aligned, No Wait))

TOPD1 (Read from GEN1) e 7 a 2 e 9 (Operand

Aligned, One Wait)

TOPD2 (rmw from GEN2) e 11 a 6 e 17 (Operand Una-

ligned, Two Waits)

Tf e 4

TCY e 22x28

TPR e 0

From the FPU Execution Timing Table in the NS32181 data

sheet we get a TFPU for MULF of 33 clock cycles.

The higher value between TPR and TFPU a 3 is 36. The

total execution time in clock cycles is:

TEX e TEA1aTEA2aTOPD1aTOPD2a3#TfaTCYa

36e5a15a9a17a(22x28)a36e133x140

TABLE B-1. Basic Instructions

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

ABSi 1 1 Ð Ð Ð 2 Ð 9 SCR k 0

1 1 Ð Ð Ð 2 Ð 8 SCR l 0

ACBi 1 Ð Ð Ð Ð 2 Ð 16 kMl no branch

1 Ð Ð Ð Ð 2 Ð 15%20 kMl branch

Ð Ð Ð Ð Ð Ð Ð 18 kRl no branch

Ð Ð Ð Ð Ð Ð Ð 17%22 kRl branch

ADDi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ADDCi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ADDPi 1 1 Ð Ð Ð 3 Ð 16 No Carry

1 1 Ð Ð Ð 3 Ð 18 Carry

ADDQi Ð 1 Ð Ð Ð 2 Ð 6 kMl

Ð Ð Ð Ð Ð Ð Ð 4 kRl

ADDR 1 1 Ð Ð 1 Ð Ð 2 kxMl

1 Ð Ð Ð Ð Ð Ð 3 kxRl

ADJSPi 1 Ð Ð Ð Ð 1 Ð 6

ANDi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

ASHi 1 1 1 Ð Ð 2 Ð 14 x 45

Bcond Ð Ð Ð Ð Ð Ð Ð 7 no branch

Ð Ð Ð Ð Ð Ð Ð 6%10 branch

BICi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl
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Appendix B: Instruction Execution Times (Continued)

TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

BICPSRB 1 Ð 1 Ð Ð Ð Ð 18%22

BICPSRW 1 Ð Ð 1 Ð Ð Ð 30%34

BISPSRB 1 Ð 1 Ð Ð Ð Ð 18%22

BISPSRW 1 Ð Ð 1 Ð Ð Ð 30%34

BPT Ð Ð Ð 2 4 Ð Ð 40

BR Ð Ð Ð Ð Ð Ð Ð 4%10

BSR Ð Ð Ð Ð 1 Ð Ð 6%16

CASEi 1 Ð Ð Ð Ð 1 Ð 4%9

CBITi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

CBITIi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

CHECKi 1 1 Ð Ð Ð 3 Ð 7 high

1 1 Ð Ð Ð 3 Ð 10 low

1 1 Ð Ð Ð 3 Ð 11 ok

CMPi 1 1 Ð Ð Ð 2 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 3 kMRl

Ð Ð Ð Ð Ð Ð Ð 3 kRRl

CMPMi
1 1 Ð Ð Ð 2 * n Ð 9 * n a 24

n e Ý of elements

in block

CMPQi 1 Ð Ð Ð Ð 1 Ð 3 kMl

Ð Ð Ð Ð Ð Ð Ð 3 kRl

CMPSi
Ð Ð Ð Ð Ð 2 * n Ð 35 * n a 53

n e Ý of elements,

not Translated

CMPST Ð Ð n Ð Ð 2 * n Ð 38 * n a 53 Translated

COMi 1 1 Ð Ð Ð 2 Ð 7

CVTP 1 1 Ð Ð 1 Ð Ð 7

CXP Ð Ð Ð 3 4 Ð Ð 16%21

CXPD 1 Ð Ð 3 3 Ð Ð 13%18

DEIi 1 1 Ð Ð Ð 5 16 38 kxMl

1 Ð Ð Ð Ð 1 16 31 kxRl

DIA Ð Ð Ð Ð Ð Ð Ð 3%7

DIVi 1 1 Ð Ð Ð 3 16 58 x 68

ENTER
Ð Ð Ð Ð n a 1 Ð Ð 4 * n a 18

n e Ý of general

registers saved

EXIT
Ð Ð Ð Ð n a 1 Ð Ð 5 * n a 17

n e Ý of general

registers restored

EXTi 1 1 Ð Ð 1 1 Ð 19 x 29 field in memory

1 1 Ð Ð Ð 1 Ð 17 x 51 field in register

EXTSi 1 1 Ð Ð 1 1 Ð 26 x 36

FFSi 1 1 2 Ð Ð 1 24 24 x 28

FLAG Ð Ð Ð Ð Ð Ð Ð 6 no trap

Ð Ð Ð 4 3 Ð Ð 44 trap

IBITi 1 1 2 Ð Ð 1 Ð 17 kxMl

1 Ð Ð Ð Ð Ð Ð 9 kxRl
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Appendix B: Instruction Execution Times (Continued)

TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

INDEXi 1 1 Ð Ð Ð 2 16 25

INSi 1 1 Ð Ð 2 1 Ð 29 x 39 field in memory

1 Ð Ð Ð Ð 1 Ð 28 x 96 field in register

INSSi 1 1 Ð Ð 2 1 Ð 39 x 49

JSR 1 Ð Ð Ð 1 1 Ð 5%15

JUMP 1 Ð Ð Ð Ð Ð Ð 2%6

LPRi 1 Ð Ð Ð Ð 1 Ð 19 x 33

LSHi 1 1 1 Ð Ð 2 Ð 14 x 45

MEIi 1 1 Ð Ð Ð 4 16 23

MODi 1 1 Ð Ð Ð 3 16 54 x 73

MOVi 1 1 Ð Ð Ð 2 Ð 1 kxMl

1 Ð Ð Ð Ð 1 Ð 3 kMRl

Ð Ð Ð Ð Ð Ð Ð 3 kRRl

MOVMi
1 1 Ð Ð Ð 2 * n Ð 3 * n a 20

n e Ý of elements

in block

MOVQi 1 Ð Ð Ð Ð 1 Ð 2 kMl

Ð Ð Ð Ð Ð Ð Ð 3 kRl

MOVSB, W n e Ý elements

Ð Ð Ð Ð Ð 2 * n Ð 14 * n a 59 no options

Ð Ð Ð Ð Ð 2 * n Ð 24 * n a 54 B, W and/or U

option in effect

MOVSD n e Ý of elements

Ð Ð Ð Ð Ð 2 * n Ð 10 * n a 59 no options

Ð Ð Ð Ð Ð 2 * n Ð 24 * n a 54 B, W and/or U

option in effect

MOVST Ð Ð n Ð Ð 2 * n Ð 27 * n a 54 Translated

MOVXBD 1 1 1 Ð 1 Ð Ð 6

MOVXBW 1 1 1 1 Ð Ð Ð 6

MOVXWD 1 1 Ð 1 1 Ð Ð 6

MOVZBD 1 1 1 Ð 1 Ð Ð 5

MOVZBW 1 1 1 1 Ð Ð Ð 5

MOVZWD 1 1 Ð 1 1 Ð Ð 5

MULi 1 1 Ð Ð Ð 3 16 15

NEGi 1 1 Ð Ð Ð 2 Ð 5

NOP Ð Ð Ð Ð Ð Ð Ð 3

NOTi 1 1 Ð Ð Ð 2 Ð 5

ORi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

QUOi 1 1 Ð Ð Ð 3 16 49 x 55
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Appendix B: Instruction Execution Times (Continued)

TABLE B-1. Basic Instructions (Continued)

Mnemonic ÝTEA1 ÝTEA2 ÝTOPB ÝTOPW ÝTOPD ÝTOPi ÝL TCY Notes

REMi 1 1 Ð Ð Ð 3 16 57 x 62

RESTORE
Ð Ð Ð Ð n Ð Ð 5 * n a 12

n e Ý of general

registers restored

RET Ð Ð Ð Ð 1 Ð Ð 2%8

RETI Ð Ð 1 2 2 Ð Ð 60 Non-Cascaded

Ð Ð 2 2 3 Ð Ð 60 Cascaded

RETT Ð Ð Ð 2 2 Ð Ð 45

ROTi 1 1 1 Ð Ð 2 Ð 14 x 45

RXP Ð Ð Ð 1 2 Ð Ð 2%6

Scondi 1 Ð Ð Ð Ð 1 Ð 9 False

1 Ð Ð Ð Ð 1 Ð 10 True

SAVE
Ð Ð Ð Ð n Ð Ð 4 * n a 13

n e Ý of general

registers saved

SBITi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

SBITIi 1 1 2 Ð Ð 1 Ð 15 kxMl

1 Ð Ð Ð Ð 1 Ð 7 kxRl

SETCFG Ð Ð Ð Ð Ð Ð Ð 15

SKPSi
Ð Ð Ð Ð Ð n Ð 27 * n a 51

n e Ý of elements,

not Translated

SKPST Ð Ð n Ð Ð n Ð 30 * n a 51 Translated

SPRi 1 Ð Ð Ð Ð 1 Ð 21 x 27

SUBi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

SUBCi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

SUBPi 1 1 Ð Ð Ð 3 Ð 16 no carry

1 1 Ð Ð Ð 3 Ð 18 carry

SVC Ð Ð Ð 2 4 Ð Ð 40

TBITi 1 1 1 Ð Ð 1 Ð 14 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kxRl

WAIT
Ð Ð Ð Ð Ð Ð Ð 6 x ?

? e until an

interrupt/reset

XORi 1 1 Ð Ð Ð 3 Ð 3 kxMl

1 Ð Ð Ð Ð 1 Ð 4 kMRl

Ð Ð Ð Ð Ð Ð Ð 4 kRRl

77



Appendix B: Instruction Execution Times (Continued)

TABLE B-2. Floating-Point Instructions: CPU Portion

Mnemonic ÝTEA1 ÝTEA2 ÝTOPD ÝTOPi ÝTi ÝTf TCY TPR Notes

ADDf, Ð Ð Ð Ð Ð Ð 17 8 kFFl

SUBf, 1 Ð f Ð Ð f (14 x 17) a3f 0 kMFl

MULf, Ð Ð Ð Ð Ð f 24 a f 0 kIFl

DIVf Ð 1 2f Ð Ð 2f (25 x 29) a6f 0 kFMl

Ð 1 2f Ð Ð 3f (27 x 30) a3f 0 kIMl

1 1 3f Ð Ð 3f (13 x 19) a9f 0 kMMl

MOVf, Ð Ð Ð Ð Ð Ð 17 6 kFFl

ABSf, 1 Ð f Ð Ð f (14 x 17) a 3f 0 kMFl

NEGf Ð Ð Ð Ð Ð f 24 a f 0 kIFl

Ð Ð f Ð Ð f 23 a 3f 6 a TEA2 kFMl

Ð Ð f Ð Ð 2f 33 a f TEA2 b 2 b f kIMl

1 Ð 2f Ð Ð 2f (20 x 23) a6f TEA2b3 kMMl

MOVFL Ð Ð Ð Ð Ð Ð 17 8 kFFl

1 Ð 1 Ð Ð 1 17 x 20 0 kMFl

Ð Ð Ð Ð Ð 1 25 0 kIFl

Ð Ð 2 Ð Ð 2 35 6 a TEA2 kFMl

Ð Ð 2 Ð Ð 3 43 TEA2 b 3 kIMl

1 Ð 3 Ð Ð 3 35 x 38 TEA2 b 3 kMMl

MOVLF Ð Ð Ð Ð Ð Ð 16 8 kFFl

1 Ð 2 Ð Ð 2 20 x 23 0 kMFl

Ð Ð Ð Ð Ð 2 26 0 kIFl

Ð Ð 1 Ð Ð 1 32 TEA2 a 6 kFMl

Ð Ð 1 Ð Ð 3 42 TEA2 b 4 kIMl

1 Ð 3 Ð Ð 3 35 x 38 TEA2 b 3 kMMl

TRUNCfi, Ð Ð Ð Ð 1 Ð 20 9 kFRl

FLOORfi, 1 Ð f Ð 1 f (17 x 20) a 3f 0 kMRl

ROUNDfi Ð Ð Ð Ð 1 f 25 a f 0 kIRl

Ð Ð Ð 1 1 Ð 20 TEA2 a 6 kFMl

Ð Ð Ð 1 1 f 26 a f TEA2 b 2 kIMl

1 Ð f 1 1 f (16 x 19) a4f TEA2 b 2 b f kMMl

MOVif Ð Ð Ð Ð 1 Ð 25 b f 0 kRFl

1 Ð Ð 1 1 Ð 18 0 kMFl

Ð Ð Ð Ð 1 Ð 26 0 kIFl

Ð 1 f Ð 1 f 20 a 4f 0 kRMl

Ð 1 f Ð 1 f 22 a 5f 0 kIMl

1 1 f 1 1 f (10 x 13) a 5f 0 kMMl

CMPf Ð Ð Ð Ð Ð Ð 23 13 kFFl

1 Ð f Ð Ð f (20 x 23) a 3f 7 kMFl

Ð Ð Ð Ð Ð f 31 a f 7 kIFl

Ð 1 f Ð Ð f (27 x 30) a 3f 0 kFMl

Ð 1 f Ð Ð 2f 29 0 kIMl

1 1 2f Ð Ð 2f (15 x 21) a 6f 0 kMMl

Ð Ð Ð Ð Ð f 37 a f 0 kFIl

1 Ð f Ð Ð 2f (21 x 29) a 8f 0 kMIl

Ð Ð Ð Ð Ð 2f 35 a 2f 0 kIIl

SFSR Ð Ð Ð Ð Ð 1 19 7 kRl

1 Ð 1 Ð Ð 1 20 TEA1 a 4 kMl

LFSR Ð Ð Ð Ð Ð 1 23 0 kRl

1 Ð 1 Ð Ð 1 18 x 21 0 kMl
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Appendix B: Instruction Execution Times (Continued)

B.2 SPECIAL GRAPHICS INSTRUCTIONS

This section provides the execution times for the special

graphics instructions. Table B-3 lists the average instruction

execution times for different shift values and for a no-wait-

state system design. The ‘‘No Option’’ of each instruction is

used. The effect of wait states on the execution time is rath-

er difficult to evaluate due to the pipelined nature of the read

and write operations.

Instructions that have shift amounts, such as BBOR,

BBXOR, BBAND, BBFOR and BITWT, make use of the par-

allel nature of the Series 32000É/EP processors by doing

the actual shift during the reading of the double-word desti-

nation data. This means that if there are wait states on read

operations, these instructions are able to shift further, with-

out impacting the overall execution time. For example, the

total execution time for a BBFOR operation, shifting 8 bits,

with 2 wait states on read operations, is the same as for a

BBFOR operation shifting by 12 bits. This is because a des-

tination read takes 4 clock cycles longer than a no-wait-

state double-word read does. Note that this effect is not

valid for more than 4 wait states because at 4 wait states, all

possible shift values (0–15) are ‘‘hidden’’ during the desti-

nation read.

Table B-4 shows the average execution times with wait

states, assuming a shift value of eight unless stated other-

wise. The parameters used in the execution time equations

are defined below.

Twaitrd The number of wait states applied for a Read

operation.

Twaitr The number of wait states applied for a Write op-

eration.

Twaitrds The number of wait states applied for a Read

operation on source data. This also refers to the

number of wait states applied for a table memory

access (in the SBITS instruction, for example).

Twaitrdd The number of wait states applied for a Read

operation on destination data.

Twaitwrd The number of wait states applied for a Write op-

eration on destination data.

Twaitbt Twaitrds a Twaitrdd * 2 a Twaitwrd * 2, the

value used for BITBLT timing.

width The width of a BITBLT operation, in words.

height The height of a BITBLT operation, in scan lines.

shift The number of bits of shift applied.

B.2.1 Execution Time Calculation for Special Graphics

Instructions

The execution time for a special graphics instruction is ob-

tained by inserting the appropriate parameters to the equa-

tion for that instruction and evaluating it.

For example, to calculate the execution time of the BBOR

instruction applied to a 10-word wide and 5-line high data

block, assuming a shift count of 15 and a no-wait-state sys-

tem, the following equation from Table B-3 is used.

42 a (107 a 44 * (width b 2)) * height a ((shift b 8) *
width * height)

Substituting the appropriate values to the shift, width and

height parameters yields:

45 a (107 a 44 * (10 b 2)) * 50 a ((15 b 8) * 10 * 50)

or

42 a (107 a 352) * 50 a (7 * 500) e 26,492 clocks or

1.77 ms @ 15 MHz

This represents the ‘‘worst case’’ time for this instruction,

since a shift of greater than 15 bits can be handled by mov-

ing the source and destination pointers by 2 bytes and ad-

justing the shift amount.

The ‘‘best case’’ and ‘‘average case’’ times for most in-

structions are the same, due to reading the destination data

during the shifting of the source data.

TABLE B-3. Average Instruction Execution Times with No Wait-States

Instruction Number of Clock Cycles Notes

BBOR 42 a (107 a 44 * (width b 2)) *height Shift e 0 x 8

42 a (107 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )

BBXOR 44 a (107 a 44 * (width b 2)) *height Shift e 0 x 8

44 a (107 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )

BBAND 45 a (111 a 44 * (width b 2)) *height Shift e 0 x 8

45 a (111 a 44 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )

BBFOR 48 a (61 a 25 * (width b 2)) *height Shift e 0

48 a (74 a 32 * (width b 2)) *height Shift e 1 x 8

48 a (74 a 32 * (width b 2))*height a Shift l 8

((shift b 8) *width *height )

BBSTOD 66 a (170 a 60 * (width b 2)) *height Shift e 0 x 8

66 a (170 a 60 * (width b 2)) *height Shift l 8

a ((shift b 8) *width *height )
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Appendix B: Instruction Execution Times (Continued)

TABLE B-3. Average Instruction Execution Times with No Wait-States (Continued)

Instruction Number of Clock Cycles Notes

BITWT 16 Shift e 0

28 Shift e 1 x 8

28 a (shift b 8) Shift l 8

EXTBLT 35 a (19 a 12 *width ) *height Shift e 0 x 8, Pre-Read

35 a (13 a 12 *width ) *height Shift e 0 x 8, No Pre-Read

35 a (17 a 13 *width ) *height Shift l 8, Pre-Read

35 a (11 a 13 *width ) *height Shift l 8, No Pre-Read

MOVMPB,W 16 a 7 * R2

MOVMPD,W 16 a 8 * R2

SBITS 39 R2 s 25

42 R2 l 25

SBITP 8 a (34 * R2)

TABLE B-4. Average Instruction Execution Times with Wait-States

Instruction Number of Clock Cycles Notes

BBOR 42 a ((107 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBXOR 44 a ((107 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBAND 45 a ((111 a 2 * Twaitblt) a (44 a Twaitblt) * (width b 2)) *height

BBFOR 48 a ((74 a 2 * Twaitblt) a (32 a Twaitblt) * (width b 2)) *height

BBSTOD 66 a ((170 a 2 * Twaitblt) a (60 a Twaitblt) * (width b 2)) *height

BITWIT 16 a Twaitrds a Twaitrdd a Twaitwrd Shift e 0

28 a Twaitblt Shift e 1 x 8

EXTBLT 35 a (19 a (12 a (Twaitrds a Twaitrdd a Twaitwrd) )*width ) *height Pre-Read

35 a (13 a (12 a (Twaitrds a Twaitrdd a Twaitwrd)) *width ) *height No Pre-Read

MOVMPB,W 16 a 7 * R2 a (Twaitwr b 1) * R2 Twaitwr l 1

16 a 7 * R2 Twaitwr s 1

MOVMPD 16 a 8 * R2 a Twaitwr * R2

SBITS 39 a (2 * Twaitrdd a 2 * Twaitwrd a 2 * Twaitrds) R2 s 25

42 a (2 * Twaitrdd a 2 * Twaitrds) R2 l 25

SBITP 8 a (34 * R2) a ((Twaitrdd a Twaitwrd) * R2)
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Physical Dimensions inches (millimeters)

Plastic Chip Carrier (V)

Order Number NS32CG16V-10 or NS32CG16V-15

NS Package Number V68A
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