

NDS8963

Dual N-Channel Enhancement Mode Field Effect Transistor

General Description

SO-8 N-Channel enhancement mode power field effect transistors are produced using National's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance and provide superior switching performance. These devices are particularly suited for low voltage applications such as DC motor control and DC/DC conversion where fast switching, low in-line power loss, and resistance to transients are needed.

Features

- $\begin{array}{c} \bullet \quad 2.5 \text{A, 30V.} \ R_{\text{DS(ON)}} = 0.16 \Omega \ @ \ V_{\text{GS}} = 10 \text{V} \\ R_{\text{DS(ON)}} = 0.25 \Omega \ @ \ V_{\text{GS}} = 4.5 \text{V}. \end{array}$
- High density cell design for extremely low R_{DS(ON)}.
- High power and current handling capability in a widely used surface mount package.
- Dual MOSFET in surface mount package.

Absolute Maximum Ratings T_a = 25°C unless otherwise note

Symbol	Parameter	NDS8963	Units
V _{DSS}	Drain-Source Voltage	30	V
V_{GSS}	Gate-Source Voltage	±20	V
I _D	Drain Current - Continuous (Note 1a)	2.5	А
	- Pulsed	7.5	
P _D	Power Dissipation for Dual Operation	2	W
	Power Dissipation for Single Operation (Note 1a)	1.6	
	(Note 1b)	1	
	(Note 1c)	0.9	
T_J , T_{STG}	Operating and Storage Temperature Range	-55 to 150	°C
THERMA	AL CHARACTERISTICS		
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Note 1a)	78	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Case (Note 1)	40	°C/W

ELECTRICAL CHARACTERISTICS (T _A = 25°C unless otherwise noted)										
Symbol	Parameter	Conditions		Min	Тур	Max	Units			
OFF CHARACTERISTICS										
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$		30			V			
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}$				1	μΑ			
			$T_J = 55^{\circ}C$			10	μΑ			
I _{GSSF}	Gate - Body Leakage, Forward	$V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$				100	nA			
I _{GSSR}	Gate - Body Leakage, Reverse	$V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$				-100	nA			
ON CHAI	RACTERISTICS (Note 2)									
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS'} I_D = 250 \mu A$		1		3	V			
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = 10 \text{ V}, \ I_{D} = 2.5 \text{ A}$				0.16	Ω			
		$V_{GS} = 4.5 \text{ V}, I_{D} = 2 \text{ A}$				0.25				
I _{D(on)}	On-State Drain Current	$V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$		7.5			А			
		$V_{GS} = 4.5 \text{ V}, V_{DS} = 5 \text{ V}$		3						
DRAIN-S	OURCE DIODE CHARACTERIST	ICS AND MAXIMUM RAT	INGS							
I _s	Maximum Continuous Drain-Source Diode Forward Current				1.3	А				
V_{SD}	Drain-Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 1.3 \text{ A} \text{ (Note 2)}$	·			1.2	V			

Notes:

1. R_{BJA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{auc} is guaranteed by design while R_{acA} is determined by the user's board design. $P_D(t) = \frac{T_J - T_A}{R_{auA}(t)} = \frac{T_J - T_A}{R_{acC} + R_{acA}(t)} = I_D^2(t) \times R_{DS(ON)@T_J}$ Typical R_{auA} for single device operation using the board layouts shown below on 4.5"x5" FR-4 PCB in a still air environment:

$$P_{D}(t) = \frac{I_{J}^{-1}A}{R_{\theta JA}(t)} = \frac{I_{J}^{-1}A}{R_{\theta JC} + R_{\theta CA}(t)} = I_{D}^{2}(t) \times R_{DS(ON)@T}$$

- a. 78°C/W when mounted on a 0.5 in² pad of 2oz copper.
- b. 125°C/W when mounted on a 0.02 in² pad of 2oz copper.
- c. 135°C/W when mounted on a 0.003 in² pad of 2oz copper.

Scale 1:1 on letter size paper.

2. Pulse Test: Pulse Width \leq 300µs, Duty Cycle \leq 2.0%.