Features:

- CMOS technology
- 192 Precision outputs
- Programmable output current control
- Optimized adjacent channel and chip-to-chip output matching
- 3.3 V or 5 V logic supply voltage
- 55 MHz clock frequency
- Cascadable
- 30 V output driver supply voltage
- Bi-directional data transfer
- Supports Grayscale, Binary, and Standby modes
- Low power consumption
- Package type: TCP (MXED101TP) and Die (MXED101DI)

Ordering Information

Part \#	Description
MXED101	30V, 192-Channel OLED Display Driver

General Description

The MXED101 is a 6 -bit, 192-output column driver IC designed to drive passive matrix full-color (RGB) and monochrome Organic Light Emitting Diode (OLED) displays. Each of the 192 current outputs is designed to act as a precision high impedance current source. The MXED101 current source output supply range is from 15 to 30 V . The outputs are arranged in a row on one side of the die with a pitch of 92 microns, which facilitates easy interface with the display.
The MXED101 consists of an Input Register, Transfer Latch, Comparator, Bi-directional Shift Register, Counter, and 192 Programmable Current Outputs. The device has three 6 -bit input data buses, $\mathrm{DA}(5-0), \mathrm{DB}(5-0)$, and $\mathrm{DC}(5-0)$, to accept RGB or monochrome data. This data can be clocked through the device at a maximum speed of 55 MHz with a 5 V logic supply (40 MHz with a 3.3 V logic supply).
The outputs of the MXED101 are arranged in three programmable interdigitized banks (A, B, and C) of 64 outputs each, a bank for each color of the RGB data (programming the output current is described in the Functional Description section). Bank A controls outputs 1, 4, 7, \ldots, , 190; Bank B controls outputs 2, 5, $8, \ldots, 191$; and Bank C controls outputs $3,6,9, \ldots, 192$.
The MXED101 employs three methods to adjust display brightness: a global gain voltage, a 3-bit digital control for each color, and an external 10.8 KW resistor. In addition to these methods, the relative brightness of each output can be controlled by onchip pulse width modulation. A standby signal (STBY) is provided to place the display in low power standby mode whenever it is necessary.

Block Diagram

Absolute Maximum Ratings (Vss=OV)

Parameter	Symbol	Rating	Unit
Logic Supply Voltage	V_{CC}	-0.3 to 7.0	VdC
Analog Supply Voltage	V_{DD}	-.3 to 35.0	Vdc
Logic Input Voltage	$\mathrm{V}_{\text {LIN }}$	-.3 to $\mathrm{V}_{\text {CC }}+3$	Vdc
Storage Temperature	$\mathrm{T}_{\text {STG }}$	-55 to 125	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are stress ratings. Stresses in excess of these ratings can cause permanent damage to the device. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this data sheet is not implied. Exposure of the device to the absolute maximum ratings for an extended period may degrade the device and effect its reliability.

Electrical Characteristics

Parameter	Symbol	Test Conditions	Min	Max	Units
Logic Supply Voltage	$V_{\text {cc }}$		3.0	5.5	Vdc
Analog Supply Voltage	$V_{D D}$		15	30	Vdc
GG Voltage	$V_{G G}$	$V_{D D} \geq 15 \mathrm{~V}$	0	12	Vdc
External RGPin Resistor	$\mathrm{R}_{\text {RG }}$		-0.1\%	+0.1\%	$10.8 \mathrm{~K} \Omega$
High Logic Input Level	V_{IH}		Vcc - 0.6	$\mathrm{Vcc}+0.2$	Vdc
Low Logic Input Level	VIL		-0.2	. 6	Vdc
High Logic Level Input Current	I_{H}		-10	10	$\mu \mathrm{A}$
Low Logic Level Input Current	I_{1}		-10	10	$\mu \mathrm{A}$
High Logic Output Level	$\mathrm{V}_{\text {OH }}$	$\mathrm{IOH}^{>-10 \mu \mathrm{~A}}$	Vcc-0.2		V
Low Logic Output Level	V_{0}	$\mathrm{I}_{0 L}<10 \mu \mathrm{~A}$		0.2	V
Logic Supply Current	$\mathrm{I}_{\text {cc }}$			7	mA
Analog Supply Current**	I_{DD}			6.0 + lout	mA
Operating Temperature (Junction)	T_{J}		20	100	${ }^{\circ} \mathrm{C}$

[^0]Digital Timing for Vcc in Range of 4.5 to 5.5 VDC

Parameter	Symbol	Min	Typ	Max	Units
Shift Clock Frequency ($\mathrm{V}_{\text {cc }}=4.5+5.5 \mathrm{~V}$)	$\mathrm{f}_{\text {CLK }}$			55	MHz
Shift Clock Frequency ($\mathrm{V}_{\text {cc }}=3.0$ to 4.4V)				40	MHz
Shift Clock Frequency Pulse Width $\left(\mathrm{V}_{c c}=4.5+5.5 \mathrm{~V}\right)$	$\mathrm{t}_{\text {SPW }}$	7	22		nS
Shift Clock Frequency Pulse Width $\left(\mathrm{V}_{C C}=3.0 \text { to } 4.4 \mathrm{~V}\right)$	$\mathrm{t}_{\text {SPW }}$	9.6	30		nS
Shift Clock Frequency Duty Cycle	DC SCK	40	50	60	\%
Shift Clock to Latch Delay	$\mathrm{t}_{\text {DSKL }}$	3 (clock Cycles)			nS
Exposure Clock Frequency	$\mathrm{f}_{\text {EKF }}$			10	MHz
Exposure Clock Pulse Width	$\mathrm{t}_{\text {EPW }}$		40	500	nS
Exposure Duty Cycle	$\mathrm{DC}_{\text {EX }}$	40	50	60	\%
Data Setup Time	$\mathrm{t}_{\text {DSU }}$	5	-	-	nS
Data Hold Time	$\mathrm{t}_{\text {DHD }}$	5	-	-	nS
Token Setup Time	$\mathrm{t}_{\text {TSU }}$	5	-	-	nS
Token Hold Time	t_{HD}	5	-	-	nS
Token Bit Output Delay	$\mathrm{t}_{\text {STD }}$	-	-	13	nS
Token Bit Pulse Width	$\mathrm{t}_{\text {TPW }}$	15	-	-	nS
Latch Pulse Width	$\mathrm{t}_{\text {LAPW }}$	50	-	-	nS
Last data to Latch Enable Time	$t_{\text {DLD }}$	200	-	-	nS
Latch Disable to Exposure Clock Time	$\mathrm{t}_{\text {LED }}$	50	-	-	nS
Exposure Clock to Latch Enable Time	$\mathrm{t}_{\text {DLE }}$	50	-	-	nS
Standby to Ready Time	$\mathrm{t}_{\text {STBY }}$			10	mS

Output Channel Parameters

Parameter	Symbol	Typ	Min	Max	Units
Driver Output Voltage Compliance	$\mathrm{V}_{\text {On }}$			$\mathrm{V}_{\mathrm{DD}}{ }^{-3}$	Vdc
Per bank max to min channel output current ratio	$\mathrm{I}_{\text {BANK }}$	$\begin{gathered} 0<V_{Q n}<V_{D D}-3, \\ V_{\text {On }} \text { match to } 2 \mathrm{~V} \end{gathered}$	1.0	1.04	A/A
High output die to low output die average output current ratio	$\mathrm{I}_{\text {DIE }}$	$\begin{gathered} 0<\mathrm{V}_{\mathrm{an}}<\mathrm{V}_{\mathrm{DD}}-3, \\ \mathrm{~V}_{\mathrm{Qn}} \text { match to } 2 \mathrm{~V} \\ \mathrm{R}_{\mathrm{RG}} \text { match to } 0.1 \% \end{gathered}$	1.0	1.02	A/A
Output Current Rise Time	$\mathrm{t}_{10 \mathrm{R}}$	_	-	200	nS
Output Current Fall Time	$\mathrm{t}_{10 \mathrm{~F}}$	-	-	200	nS
Output Current Settling Time	$\mathrm{t}_{10 \mathrm{~S}}$	-	-	350	nS
Exposure Clock to Output High Delay	$\mathrm{t}_{\text {OHD }}$	-	-	220	nS
Exposure Clock to Output Low Delay	$\mathrm{t}_{\text {OLD }}$	-	-	220	nS
Channel output current rise/fall time	$\mathrm{t}_{\text {IORF }}$	10\% to 90\%		250	nS
Shorting Switch Resistance		$\mathrm{V}(\mathrm{Qn})=\mathrm{IV}$		800	Ω

Signal Definition

Name	1/0/A	Description
V_{DD}		Power supply for the 192 current driver output channels - 6 pads
V_{c}		Low voltage logic power supply - 2 pads
GND		Ground - 4 pads
ISHRT		Ground used to short the 192 current driver output channels - 4 pads. Note: There can be high currents on this line. It should be seperated from the circuit ground pads (GND) to prevent ground bounce.
$\overline{\text { RSTB }}$	1	Reset: Active low signal used to reset digital logic for test purposes. This input is pulled high internally.
CLKSH	1	Token Shift Clock: Used to shift tokens down the length of the driver IC. The direction of token shift is determined by DIRTKN pin. It is possible to load only a portion of the 192 output channels prior to latching in applications not requiring the full 192 channels. The speed of the clock is from DC to 55 MHz at 5 V logic power supply (40 MHz at 3.3 V).
LTKNB	1/0	Left Token Bit: Used to pass the tokens into and out of the driver IC. The pin is used as input for shift right and as output for shift left. High state represents the presence of token. The shifting is performed from DC to 55 MHz (40 MHz at 3.3 V).
RTKNB	1/0	Right Token Bit: Used to pass the tokens into and out of the driver IC. The pin is used as input for shift left and as output for shift right. High state represents the presence of token. The shifting is performed from DC to 55 MHz (40 MHz at 3.3 V).
DIRTKN	I	Token Direction: Used to determine the shift direction of the token. When the signal is high, causes the token to shift left to right ($1->64$) and when the signal is low causes the token to shift to left ($64->1$). This input is pulled high internally. The token shifts 3 cells at a time to account for the 3 parallel data inputs.
LE	1	Latch Enable: Active high signal used to latch RGB data from the driver outputs into a set of transfer latches. Once a line of data is latched into the transfer latch, OLED exposure can begin. At the same time, a new line of exposure data can be loaded into the input register of the driver IC. On the rising edge of the of LE, all token registers are cleared, the exposure counter is asynchronously preset to a low state and exposure data is allowed to pass from the input register to the transfer latch. On the falling edge of LE, the exposure counter and output drivers are enabled within $\mathrm{t}_{\text {LED }}$ (50 ns).
DA(5-0)	1	6 -bit Data input A. Signal bus used for the exposure data input word for outputs $1,4,7, \ldots, 190$. The driver performs at clock speed from DC to $55 \mathrm{MHz}(40 \mathrm{MHz}$ at 3.3 V).
DB(5-0)	1	6 -bit Data input B. Signal bus used for the exposure data input word for outputs $2,5,8, \ldots, 191$. The driver performs at clock speed from DC to $55 \mathrm{MHz}(40 \mathrm{MHz}$ at 3.3 V).
DC(5-0)	1	6 -bit Data input C. Signal bus used for the exposure data input word for channels $3,6,9, \ldots, 192$. The driver performs at clock speed from DC to $55 \mathrm{MHz}(40 \mathrm{MHz}$ at 3.3 V).
CLKEX	1	Exposure Clock: Signal (DC to 10 MHz signal) used to clock the input of the driver ICs exposure counter (6-bits). The signal is used to cycle the driver IC internal counter from 0 up to 63 . The signal must be cycled at least 64 times between LE pulses to completely cycle the counter. The first rising edge of CLKEX will enable all non zero outputs without changing the counter. Additional rising edges of CLKEX will increment the counter. When the counter and data of values for an output match, the output is disabled until LE re-enables the exposure counter. Cycles of CLKEX beyond 64 will have no effect until the next cycle of $L E$ re-enables the counter.
TGR	1	Binary/Grayscale: Signal used to determine if the driver IC is either 6 bit grayscale or binary. Low \rightarrow grayscale. High \rightarrow Binary. This input is internally pulled to a logic low.
GG	A	Global Gain: Used to set the global current gain. The voltage range on this pin is 0 V to 12 V when V_{DD} is $\geq 15 \mathrm{~V}$. The base current level is $G G / R G$, with a peak base current level of 1.455 mA . This input is internally pulled to a logic low.

Signal Definition (continued)

Name	I/0/A	Description
RG	A	Resistor Gain: Used to set the global current gain. A precision resistor shall be connected from this node to analog ground which, in conjunction with the GG input voltage, sets up the base current level of the chip.
GA(2-0)	1	A Gain: Used to set the current on driver output channels $1,4,7, \ldots, 190$. This input is internally pulled to a logic low.
$\mathrm{GB}(2-0)$	1	B Gain: Used to set the current on driver output channels $2,5,8, \ldots, 191$. This input is internally pulled to a logic low.
GC(2-0)	1	C Gain: Used to set the current on driver output channels $3,6,9, \ldots, 192$. This input is internally pulled to a logic low.
STBY	1	Standby Reset: Active high signal used to place the IC in a low power standby mode. When in the high state the IC is non-functional and power dissipation is minimized. This input is internally pulled to a logic low.
SDM(1-0)	1	Stripe/Diagonal/Mosaic: These input signals are used to modify the output channel current levels depending on which row of the display is active. The falling edge of LE is used to modify the A, B, C channels. When the STBY is set to a logic high, the A, B, C channel outputs are reset to their initial mapping. These inputs are internally pulled to a logic high. (See the SDM function below).
$\overline{\text { SWC }}$	I	Switch Channels: This input signal is used to control when the individual output channels are in the tri-state condition (current is not sourced and the switch to ground is off). When the SWC input is in the high state, each output channel turns the switch to ground on as soon as the data count is matched and current source disabled. When SWC is in the low state, each channel remains in the tri-state condition from when the current source is disabled until the counter equals 63 . This input is internally pulled to a logic low.
TST(9-0)	I	These pins should be left open circuited.
TEST(2-0)	A	These pins should be left open circuited.
Q1-Q192	A	OLED current source driver outputs.

[^1]
Functional Description

Output Current Hold-On-Time Control

There are two modes for controlling the 192 outputs current hold-on-times:
1- Grayscale: The grayscale is obtained when the TGR pin is low or open. Each of the three banks has a 6-bit control word, $\operatorname{DA}(5-0), \mathrm{DB}(5-0)$, and $\mathrm{DC}(5-0)$, that is updated at the CLKSH signal clock which allows each output to turn on for a period of 0 to 63 counts of the CLKEX signal clock.
2- Binary Mode: Binary mode is obtained when the TGR input signal is high. Data is loaded in a similar way that is described in the grayscale mode. After the data is latched the DA5, DB5, or DC5 data bit is gated with CLKEX to determine the on or off status of the output drivers.

Output Current Magnitude Control

$\mathrm{GG}, \mathrm{RG}, \mathrm{GA}(2-0), \mathrm{GB}(2-0)$, and $\mathrm{GC}(2-0)$ controls the output current of the output drivers in the three banks. A precision $10.8 \mathrm{~K} \Omega(+/-0.1 \%)$ resistor is tied from RG to ground. A voltage between 0.5 and 12 V is applied to GG to adjust the overall brightness of the display. $\mathrm{GA}(2-0), \mathrm{GB}(2-0)$, and $\mathrm{GC}(2-0)$ are 3 -bit logic inputs that control the relative brightness of the A, B, and C banks output drivers respectively. The total output driver current is limited to a maximum of 0.6 mA for each output. Below this limit, the individual output current for banks A, B, and C is programmed as follows:

$$
I(\text { out })=\frac{V(G G)}{10.8 \text { Kohms }} \times \frac{F(\text { gain })}{16}=5.79 E-6 * V(G G) * F(\text { gain })
$$

Where:

GA/GB/GC $(\mathbf{2 - 0})$	F(gain)	GA/GB/GC $(\mathbf{2 - 0})$	F(gain)
0×7	31	0×3	16
0×6	26	0×2	14
0×5	22	0×1	12
0×4	19	0×0	10

Functional Description (continued)

Output Current Turn-Off Control

The $\overline{\text { SWC }}$ input signal controls turn-off of the driver outputs. When the $\overline{\text { SWC }}$ signal is high, each output is switched to ground when the data count is matched and simultaneously disables the current source. When $\overline{\text { SWC }}$ is low, each output remains in a tri-state condition from when the current source is disabled until the counter equals 63.

SDM Function

The SDM1 and SDM0 inputs determine how the A, B, and C display output banks are configured. They may also be used to generate special effects in the display. When the SDM signals are open or high, the MXED101 is in its normal operating mode (stripe mode). The SDM mapping to screen configuration is updated each time LE goes high and is as follows:

SDM1	SDMO	Mode	Line 1	Line 2	Line 3	Line 4	Line 5	Line $\mathbf{6}$
1	1	Stripe	ABC	ABC	ABC	ABC	ABC	ABC
1	0	Diagonal	ABC	CAB	BCA	ABC	CAB	BCA
0	1	Mosaic Intv	BCA	BCA	BCA	BCA	BCA	BCA
0	0	Mosaic	ABC	BCA	ABC	BCA	ABC	BCA

Note: there is no effect on the DA, DB, DC data buses and which banks they load. Under all SDM1, 0 conditions, DA loads banks $1,4,7, \ldots, 190$, DB loads banks $2,5,8, \ldots, 191$, and $D C$ loads banks $3,6,9, \ldots, 192$.

Die Size and Pad Locations:

Die size is $18,7856 \times 2,684$ microns

MXED101 Product Description

Pad	Name	Pad Location (in microns)	Pad	Name	Pad Location (in microns)
1	ISHRT	18392,338	36	DC(3)	11272,2352
2	ISHRT	18392,511	37	DC(2)	11042,2352
3	TEST(2)	18392,693	38	DC(1)	10814,2352
4	$V_{\text {DD }}$	18392,854	39	DC(0)	10584,2352
5	$V_{D D}$	18392,1027	40	DB(5)	7781,2352
6	$V_{D D}$	18392,1201	41	DB(4)	7552,2352
7	TST(0)	18392,1383	42	DB(3)	7322,2352
8	GND	18392,1543	43	DB(2)	7093,2352
9	RTKNB	18392,1805	44	DB(1)	6864,2352
10	TST(1)	17997,2352	45	DB(0)	6635,2352
11	TST(2)	17823,2352	46	DA(5)	6406,2352
12	TST(3)	17650,2352	47	DA(4)	6232,2352
13	TST(4)	17476,2352	48	DA(3)	6058,2352
14	TST(5)	17302,2352	49	DA(2)	5885,2352
15	TST(6)	15086,2352	50	DA(1)	5711,2352
16	TST(7)	14910,2352	51	DA(0)	5538,2352
17	GND	14736,2352	52	STBY	1920,2352
18	DIRTKN	14542,2352	53	TST(8)	1747,2352
19	GA(1)	14368,2352	54	TST(9)	1573,2352
20	$\mathrm{GB}(1)$	14195,2352	55	LE	1400,2352
21	GC(1)	14021,2352	56	CLKEX	1226,2352
22	SDM(1)	13848,2352	57	CLKSH	1052,2352
23	SDM(0)	13674,2352	58	GND	209,2352
24	RSTB	13500,2352	59	$\mathrm{V}_{\text {cc }}$	35,2352
25	$\mathrm{V}_{\text {c }}$	13327,2352	60	LTKNB	0,1739
26	$\overline{\text { SWC }}$	13153,2352	61	GND	0,1543
27	TGR	12980,2352	62	GG	0,1383
28	GA(2)	12806,2352	63	RG	0,1214
29	GA(0)	12632,2352	64	$V_{D D}$	0,1032
30	GB(2)	12459,2352	65	$V_{D D}$	0,858
31	GB(0)	12285,2352	66	$V_{D D}$	0,685
32	GC(2)	12112,2352	67	TEST(0)	0,524
33	GC(0)	11938,2352	68	TEST(1)	0,356
34	DC(5)	11730,2352	69	ISHRT	0,182
35	DC(4)	11501,2352	70	ISHRT	0,0
71-262	Q(1-192)	$427+92 *(N-1), 129$ where $\mathrm{N}=1$ to 192			

Note: Pad location reference is to bottom left-hand corner.

Timing Diagrams - Load Data Pattern Timing

Application note:

Notes:

Notes:

CLARE LOCATIONS

Clare Headquarters
78 Cherry Hill Drive
Beverly, MA 01915
Tel: 1-978-524-6700
Fax: 1-978-524-4900
Toll Free: 1-800-27-CLARE
Clare Micronix Division
145 Columbia
Aliso Viejo, CA 92656-1490
Tel: 1-949-831-4622
Fax: 1-949-831-4628
SALES OFFICES

AMERICAS

Americas Headquarters

Clare

78 Cherry Hill Drive
Beverly, MA 01915
Tel: 1-978-524-6700
Fax: 1-978-524-4900
Toll Free: 1-800-27-CLARE

Eastern Region
 Clare

P.O. Box 856

Mahwah, NJ 07430
Tel: 1-201-236-0101
Fax: 1-201-236-8685
Toll Free: 1-800-27-CLARE

Central Region

Clare Canada Ltd.
3425 Harvester Road, Suite 202
Burlington, Ontario L7N 3N1
Tel: 1-905-333-9066
Fax: 1-905-333-1824

Western Region
 Clare

1852 West 11th Street, \#348
Tracy, CA 95376
Tel: 1-209-832-4367
Fax: 1-209-832-4732
Toll Free: 1-800-27-CLARE

Canada

Clare Canada Ltd.
3425 Harvester Road, Suite 202
Burlington, Ontario L7N 3N1
Tel: 1-905-333-9066
Fax: 1-905-333-1824

EUROPE

European Headquarters
CP Clare nv
Bampslaan 17
B-3500 Hasselt (Belgium)
Tel: 32-11-300868
Fax: 32-11-300890

France

Clare France Sales
Lead Rep
99 route de Versailles
91160 Champlan
France
Tel: 33169799350
Fax: 33169799359

Germany

Clare Germany Sales
ActiveComp Electronic GmbH
Mitterstrasse 12
85077 Manching
Germany
Tel: 498459321410
Fax: 498459321429

Italy

C.L.A.R.E.s.a.s.

Via C. Colombo 10/A
I-20066 Melzo (Milano)
Tel: 39-02-95737160
Fax: 39-02-95738829

Sweden

Clare Sales
Comptronic AB
Box 167
S-16329 Spånga
Tel: 46-862-10370
Fax: 46-862-10371

United Kingdom

Clare UK Sales
Marco Polo House
Cook Way
Bindon Road
Taunton
UK-Somerset TA2 6BG
Tel: 44-1-823 352541
Fax: 44-1-823 352797

ASIA PACIFIC

Asian Headquarters

Clare
Room N1016, Chia-Hsin, Bldg II, 10F, No. 96, Sec. 2
Chung Shan North Road
Taipei, Taiwan R.O.C.
Tel: 886-2-2523-6368
Fax: 886-2-2523-6369

http://www.clare.com

Clare cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in this Clare product. No circuit patent licenses nor indemnity are expressed or implied. Clare reserves the right to change the specification and circuitry, without notice at any time. The products described in this document are not intended for use in medical implantation or other direct life support applications where malfunction may result in direct physical harm, injury or death to a person.

[^2]
[^0]: **Analog supply current is highly dependable on the output current of the 192 output channels (lout), which is determined by the application.
 Note: $V_{\text {dout }} I_{\text {bank }}$, and $I_{\text {die }}$ are transferred to the output parameters channels table.

[^1]: Note: $\mathrm{A}=>$ analog, $\mathrm{l}=>$ digital input, $\mathrm{O}=>$ digital output

[^2]: Specification: DS-MXED101-R9
 ©Copyright 2000, Clare, Inc.
 All rights reserved. Printed in USA.

