

140 COMMERCE DRIVE MONTGOMERYVILLE, PA 18936-1013

PHONE: (215) 631-9840 FAX: (215) 631-9855

MS1454

RF AND MICROWAVE TRANSISTORS 806-960 MHZ CELLULAR BASE STATIONS

Features

- Gold Metallization
- Diffused Emitter Ballasting
- Internal Input Matching
- Designed for Linear Operation
- High Saturated Power Capability
- Common Emitter Configuration
- P_{OUT} 30 W MIN
 Gain 7.5 dB
 Efficiency 55% (Typ)
- 20:1 VSWR
- Overdrive Survivability 5 dB

.230 6LFL (M142)

epoxy sealed

DESCRIPTION:

The MS1454 gold/metallized epitaxial silicon NPN planar transistor uses diffused emitter ballast resistors for high linearity class AB operation in cellular base station applications.

ABSOLUTE MAXIMUM RATINGS (Tcase = 25°C)

Symbol	Parameter	Value	Unit
V _{CBO}	Collector-Base Voltage	48	V
V _{CEO}	Collector-Emitter Voltage	25	V
V _{EBO}	Emitter-Base Voltage	3.5	V
P _{DISS}	Total Power Dissipation	88	W
Ic	Collector Current	7.5	Α
Tj	Junction Temperature	+200	°C
T _{stg}	Storage Temperature	-65 to +150	°C

THERMAL DATA

R _{TH(j-c)} Junction-Case Thermal Resistance	2	°C/W
---	---	------

MS1454

ELECTRICAL SPECIFICATIONS (Tcase = 25°C)

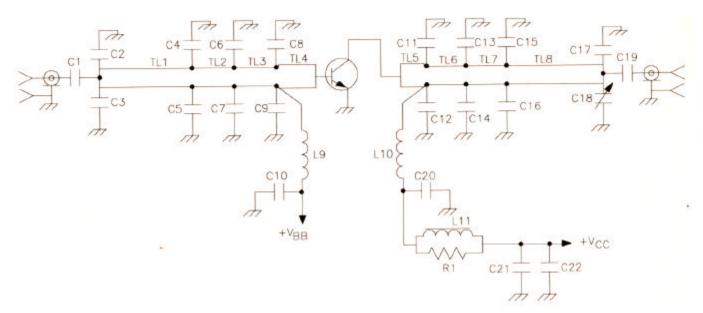
STATIC

Symbol	Test Conditions	Value			Unit
		Min.	Тур.	Max.	Oilit
BV _{CES}	I _C = 100 mA	48	55		V
BV _{EBO}	I _E = 10 mA	3.5	5		V
BV _{CEO}	I _C = 40 mA	25	28		V
BV _{CER}	$I_E = 40 \text{ mA}$ $R_{BE} = 100 \Omega$	30	40		V
I _{CBO}	V _{CE} = 24 V				mA
h _{FE}	$V_{CE} = 20 \text{ V}$ $I_C = 2 \text{ A}$	15	40	100	

DYNAMIC

Cumbal	Test Conditions		Value			
Symbol	rest conditions	Min.	Тур.	Max.	Unit	
P _{out}	$f = 860 \text{ MHz}$ $I_{CQ} = 60 \text{ mA}$ $V_{CE} = 25 \text{ V}$	30			W	
ης	$f = 860 \text{ MHz}$ $I_{CQ} = 60 \text{ mA}$ $V_{CE} = 25 \text{ V}$		55		%	
G₽	f = 860 MHz I _{CQ} = 60 mA V _{CE} = 25 V	7.5	9		DB	
Сов	$V_{CB} = 25 \text{ V}$ $f_0 = 1 \text{ MHz}$		42		pF	
IMD ₃	$P_{OUT} = 30 \text{ W PEP } f_1 = 860.0 \text{ MHz}$ $f_2 = 860.1 \text{ MHz}$		-35		dBc	
VSWR₁	VSWR = 20:1 V _{CE} = 25 V VSWR = 10:1 V _{CE} = 25 V ± 20%		NO DEGRADATION IN OUTPUT DEVICE		Тур.	
VSWR ₂	VSWR = 5:1 V _{CE} = 25 V ± 20% P _{IN} = P _{IN} (norm) + 3 dB	NO DEGRADATION IN OUTPUT DEVICE		Тур.		
OVD	$P_{IN}(norm) = +5dB$ $V_{CE} = 25 \text{ V}$ $V_{IN}(norm) = +5dB$ $V_{CE} = 25 \text{ V} \pm 20\%$	NO DEGRADATION IN OUTPUT DEVICE			Тур.	

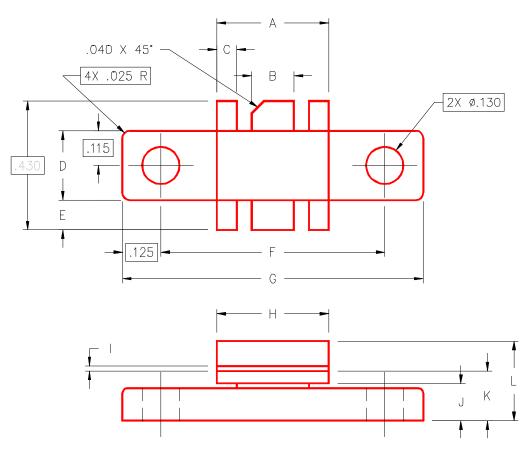
MS1454


IMPEDANCE DATA

Freq.	Z _{IN} (Ω)	Z _{CL} (Ω)
800 MHz	4.3 + j 5.8	3.5 + j 0.2
830 MHz	3.2 + j 6.1	3.5 + j 0.1
860 MHz	3.5 + j 7.1	2.9 – j 0.2
900 MHz	5.3 + j 6.4	2.0 – j 0.6
915 MHz	6.1 + j 6.3	3.2 – j 0.7
930 MHz	9.4 + j 6.3	3.2 – j 1.1
945 MHz	6.6 + j 3.0	3.3 – j 1.2
960 MHz	5.9 + j 1.0	3.4 – j 1.5

MS1454

TEST CIRCUIT


: .5 - 6.0pF Gigatrim Adjustable Capacitor C18 33pF ATC 100B Chip Capacitor : 10pF ATC 100B Chip Capacitor C20 3.6pF ATC 100B Chip Capacitor C2, C15 : 10µF (50V) Electrolytic Capacitor C21 : 4.5pF ATC 100B Chip Capacitor C3 4 Turns (tight) I.D. 120mil ENAM Cu 20 AWG L9 C4, C16 : 4 Turns (tight) I.D. 158mil ENAM Cu 18 AWG 5.0pF ATC 100B Chip Capacitor L10 C17 2.9pF ATC 100B Chip Capacitor : 1.5 Turns VK-200 Ferrite H.F. Choke C5 L11 : 964 x 85.69 mils (50Ω/36.84°) C6, C7: 1.8pF ATC 100B Chip Capacitor TL1,TL8 352 x 85.69 mils (50Ω/13.46°) TL2,TL3 : 6.2pF ATC 100B Chip Capacitor TL4 222 x 109.03 mils (42.6Ω/8.56') C10,C22 : 300pF ATC 100B Chip Capacitor 149 x 109.03 mils (42.6Ω/5.74°) TL5 C11,C12 334 x 85.69 mils (50Ω/12.75°) TL6

PACKAGE MECHANICAL DATA

PACKAGE STYLE M142

	MINIMUM	MAXIMUM		MINIMUM	MAXIMUM
	INCHES/MM	INCHES/MM		INCHES/MM	INCHES/MM
Α	.355/9,02	.365/9,27	- 1	.004/0,10	.006/0,15
В	.115/2,92	.125/3,18	J	.120/3,05	.130/3,30
С	.075/1,91	.085/2,16	K	.160/4,06	.180/4,57
D	.225/5,72	.235/5,97	L	.230/5,84	.260/6,60
Ε	.090/2,29	.110/2,79			
F	.720/18,29	.730/18,54			
G	.970/24,64	.980/24,89			
Н	.355/9,02	.365/9,27			