February 2006 ### LMH0024 # 3.3V SMPTE 259M / 344M Adaptive Cable Equalizer ### **General Description** The LMH0024 SMPTE 259M / 344M adaptive cable equalizer is a monolithic integrated circuit for equalizing data transmitted over cable (or any media with similar dispersive loss characteristics). The equalizer operates over a wide range of data rates from 143 Mbps to 540 Mbps and supports SMPTE 259M and SMPTE 344M. The LMH0024 implements DC restoration to correctly handle pathological data conditions. DC restoration can be bypassed for low data rate applications. The equalizer is flexible in allowing either single-ended or differential input drive. Additional features include a mute pin which can be used to manually mute the output and a cable length indicator which determines the amount of cable being equalized. ### **Features** - SMPTE 259M and SMPTE 344M compliant - Supports DVB-ASI at 270 Mbps - Data rates: 143 Mbps to 540 Mbps - Equalizes up to 350 meters of Belden 1694A at 270 Mbps - Manual bypass, cable length indicator, and output mute - Single-ended or differential input - 50Ω differential outputs - Single 3.3V supply operation - Industrial temperature range: -40°C to +85°C - 198mW typical power consumption with 3.3V supply - Footprint compatible with the LMH0034 and the GS9064 ### **Applications** - SMPTE 259M and SMPTE 344M serial digital interfaces - Serial digital data equalization and reception - Data recovery equalization ## **Typical Application** # **Absolute Maximum Ratings** (Note 1) Supply Voltage -0.5V to 3.6V Input Voltage (all inputs) -0.3V to $V_{\rm CC}$ +0.3V -65°C to +150°C Storage Temperature Range Junction Temperature Lead Temperature +260°C (Soldering 4 Sec) Package Thermal Resistance θ_{JA} 16-pin SOIC +115°C/W θ_{JC} 16-pin SOIC +105°C/W ESD Rating (HBM) 8kV ESD Rating (MM) 250V ## **Recommended Operating Conditions** Supply Voltage $(V_{CC} - V_{EE})$ 3.3V ±5% Input Coupling Capacitance 1.0 µF AEC Capacitor (Connected between AEC+ and AEC-) 1.0 µF Operating Free Air Temperature (T_A) -40°C to $+85^{\circ}\text{C}$ ## **DC Electrical Characteristics** Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Notes 2, 3). +150°C | Symbol | Parameter Conditions Reference | | Reference | Min | Тур | Max | Units | |--------------------|--------------------------------|--------------------------------|-----------|-----|---------------------------------------|-----|-------------------| | V _{CMIN} | Input Common Mode Voltage | | SDI, SDI | | 1.9 | | V | | V _{SDI} | Input Voltage Swing | At LMH0024 input, (Notes 4, 6) | 720 | | 800 | 950 | mV_{P-P} | | V _{CMOUT} | Output Common Mode Voltage | | SDO, SDO | | V _{CC} – V _{SDO} /2 | | V | | V _{SDO} | Output Voltage Swing | 50Ω load, differential | | | 750 | | mV _{P-P} | | | CLI DC Voltage | 0m cable | CLI | | 2.5 | | V | | | | no signal | | | 1.2 | | V | | | MUTE Input Voltage | Min to mute outputs | MUTE | 3.0 | | | V | | | | Max to force outputs active | | | | 2.0 | V | | I _{cc} | Supply Current | (Note 7) | | | 60 | 77 | mA | www.national.com 2 ### **AC Electrical Characteristics** Over Supply Voltage and Operating Temperature ranges, unless otherwise specified (Note 3). | Symbol | Parameter | Conditions | Reference | Min | Тур | Max | Units | |--------------------------------|-----------------------------|-------------------------------|-----------|-----|-------|-----|-------| | BR _{SDI} | Input Data Rate | | SDI, SDI | 143 | | 540 | Mbps | | | Maximum Equalized Cable | 270 Mbps, Belden 1694A, | | | 350 | | m | | | Length (with equalizer | 0.2UI output jitter, (Note 4) | | | 330 | | "" | | | pathological) | 270 Mbps, Belden 8281, | | | 280 | | m | | | | 0.2UI output jitter, (Note 4) | | | 200 | | "" | | | | 540 Mbps, Belden 1694A, | | | 250 | | m | | | | 0.2UI output jitter, (Note 4) | | | 250 | | "" | | | | 540 Mbps, Belden 8281, | | | 180 | | m | | | | 0.2UI output jitter, (Note 4) | | | 100 | | "" | | t _r ,t _f | Output Rise Time, Fall Time | 20% - 80%, (Note 4) | SDO, SDO | | 100 | 220 | ps | | | Mismatch in Rise/Fall Time | (Note 4) | | | 2 | 15 | ps | | tos | Output Overshoot | (Note 4) | | | 1 | 5 | % | | R _{OUT} | Output Resistance | single-ended, (Note 5) | | | 50 | | Ω | | RL _{IN} | Input Return Loss | (Note 8) | SDI, SDI | 15 | 18-20 | | dB | | R _{IN} | Input Resistance | single-ended | | | 1.3 | · | kΩ | | C _{IN} | Input Capacitance | single-ended, (Note 5) | | | 1 | | pF | **Note 1:** "Absolute Maximum Ratings" are those parameter values beyond which the life and operation of the device cannot be guaranteed. The stating herein of these maximums shall not be construed to imply that the device can or should be operated at or beyond these values. The table of "Electrical Characteristics" specifies acceptable device operating conditions. Note 2: Current flow into device pins is defined as positive. Current flow out of device pins is defined as negative. All voltages are stated referenced to V_{EE} = 0 Volts. Note 3: Typical values are stated for V_{CC} = +3.3V and T_A = +25°C. Note 4: Specification is guaranteed by characterization. Note 5: Specification is guaranteed by design. Note 6: The maximum input voltage swing assumes a nonstressing, DC-balance signal; specifically, the SMPTE-recommended color bar test signal. Pathological or other stressing signals may not be used. This specification is for 0m cable only. Note 7: Supply current depends on the amount of cable being equalized. The current is highest for short cable and decreases as the cable length is increased. Refer to Figure 1. Note 8: Input return loss is dependent on board design. The LMH0024 meets this specification on the SD034 evaluation board from 5MHz to 1.5GHz. # **Connection Diagram** 16-Pin SOIC Order Number LMH0024MA See NS Package Number M16A # **Pin Descriptions** | Pin # | Name | Description | | |-------|-----------------|--|--| | 1 | CLI | Cable length indicator. Provides a voltage inversely proportional to the cable length being | | | | | equalized. | | | 2 | V _{CC} | Positive power supply (+3.3V). | | | 3 | V _{EE} | Negative power supply (ground). | | | 4 | SDI | Serial data true input. | | | 5 | SDI | Serial data complement input. | | | 6 | V _{EE} | Negative power supply (ground). | | | 7 | AEC+ | AEC loop filter external capacitor (1µF) positive connection. | | | 8 | AEC- | AEC loop filter external capacitor (1µF) negative connection. | | | 9 | BYPASS | Bypasses equalization and DC restoration when high. No equalization occurs in this mode. | | | 10 | NC | No connect. | | | 11 | V _{EE} | Negative power supply (ground). | | | 12 | SDO | Serial data complement output. | | | 13 | SDO | Serial data true output. | | | 14 | V _{EE} | Negative power supply (ground). | | | 15 | V _{CC} | Positive power supply (+3.3V). | | | 16 | MUTE | Output mute. To force SDO and SDO to mute, tie to V _{CC} . To disable MUTE, tie to GND. | | | | | Typical application is MUTE tied to GND to enable the outputs. MUTE must be tied either high | | | | | or low; it may not be left unconnected. | | ### **Block Diagram** 20172502 ### **Device Operation** #### **BLOCK DESCRIPTION** The **Equalizer Filter** block is a multi-stage adaptive filter. If Bypass is high, the equalizer filter is disabled. The **DC Restoration / Level Control** block receives the differential signals from the equalizer filter block. This block incorporates a self-biasing DC restoration circuit to fully DC restore the signals. If Bypass is high, this function is disabled. The signals before and after the DC Restoration / Level Control block are used to generate the **Automatic Equalization Control (AEC)** signal. This control signal sets the gain and bandwidth of the equalizer filter. The loop response in the AEC block is controlled by an external 1µF capacitor placed across the AEC+ and AEC- pins. **Cable Length Indicator (CLI)** is derived from this block. The **Output Driver** produces SDO and $\overline{\text{SDO}}$. SDO and $\overline{\text{SDO}}$ may be force to mute by activating **MUTE**. #### **CABLE LENGTH INDICATOR (CLI)** The cable length indicator provides a voltage to indicate the length of cable being equalized. The CLI voltage decreases as the cable length increases. #### MUTE MUTE can be used to manually mute or enable the LMH0024 outputs. MUTE must be tied to a low-level input or ground for SDO and $\overline{\text{SDO}}$ to be active. Applying a high input to MUTE will mute the LMH0024 outputs. #### **INPUT INTERFACING** The LMH0024 accepts either differential or single-ended input. The input must be AC coupled. Transformer coupling is not supported. The LMH0024 correctly handles equalizer pathological signals for standard definition serial digital video, as described in SMPTE RP 178. #### **OUTPUT INTERFACING** The SDO and $\overline{\text{SDO}}$ outputs are internally loaded with 50Ω . They produce a 750 mV_{P-P} differential output, or a 375 mV_{P-P} single-ended output. # **Application Information** #### PCB LAYOUT RECOMMENDATIONS Please refer to the following Application Note for the CLC034 on National's website: **AN-1372**, "CLC034 PCB Layout Techniques." The PCB layout techniques in this application note apply to the LMH0024 as well. #### **REPLACING THE GENNUM GS9064** The LMH0024 is footprint compatible with the Gennum GS9064. Pin 16 (MUTE) of the LMH0024 must be connect to ground for correct operation. #### SUPPLY CURRENT VS. CABLE LENGTH The supply current ($I_{\rm CC}$) depends on the amount of cable being equalized. The current is highest for short cable and decreases as the cable length is increased. *Figure 1* shows supply current vs. Belden 1694A cable length for 270 Mbps data. # Application Information (Continued) FIGURE 1. Supply Current vs. Belden 1694A Cable Length, 270 Mbps www.national.com ### Physical Dimensions inches (millimeters) unless otherwise noted 16-Pin SOIC Order Number LMH0024MA NS Package Number M16A National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications. For the most current product information visit us at www.national.com. #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### **BANNED SUBSTANCE COMPLIANCE** National Semiconductor manufactures products and uses packing materials that meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2. Leadfree products are RoHS compliant. National Semiconductor Americas Customer Support Center Email: new.feedback@nsc.com Tel: 1-800-272-9959 www.national.com National Semiconductor Europe Customer Support Center Fax: +49 (0) 180-530 85 86 Email: europe.support@nsc.com Deutsch Tel: +49 (0) 69 9508 6208 English Tel: +44 (0) 870 24 0 2171 Français Tel: +33 (0) 1 41 91 8790 National Semiconductor Asia Pacific Customer Support Center Email: ap.support@nsc.com National Semiconductor Japan Customer Support Center Fax: 81-3-5639-7507 Email: jpn.feedback@nsc.com Tel: 81-3-5639-7560