

Preliminary

N-Channel Enhancement-Mode DMOS FETs

Ordering Information

BV _{DSS} /	R _{DS(ON)}	I _{D(ON)}	Order Numb	er / Package
BV _{DGS}	(max)	(min)	TO-236AB*	Die
500V	1.0KΩ	3.0mA	LNE150K1	LNE150ND

Product marking for TO-236AB: NEE* where * = 2-week alpha date code

*Same as SOT-23. All units shipped on 3,000 piece carrier tape reels.

Features

- □ Free from secondary breakdown
- Low power drive requirement
- Ease of paralleling
- \Box Low C_{ISS} and fast switching speeds
- Excellent thermal stability
- Integral Source-Drain diode
- □ High input impedance and high gain

Applications

- □ Logic level interface ideal for TTL and CMOS
- □ Solid state relays
- Battery operated systems
- Photo voltaic drive
- Analog switches
- □ General purpose line drivers
- Telecom switches

Absolute Maximum Ratings

Drain-to-Source Voltage	BV _{DSS}		
Drain-to-Gate Voltage	BV _{DGS}		
Gate-to-Source Voltage	-0.7V to +10V		
Operating and Storage Temperature	-55°C to +150°C		
Soldering Temperature*	300°C		
· · · · · · · · · · · ·			

* Distance of 1.6 mm from case for 10 seconds.

Advanced DMOS Technology

This low threshold Enhancement-mode (normally-off) transistor utilizes an advanced DMOS structure and Supertex's well-proven silicon-gate manufacturing process. This combination produces devices with the power handling capabilities of bipolar transistors and with the high impedance and positive temperature coefficient inherent in MOS devices. Characteristic of all MOS structures, these devices are free from thermal runaway and thermallyinduced secondary breakdown.

Supertex's DMOS FETs are ideally suited to a wide range of switching and amplifying applications where high breakdown voltage, high input impedance, low input capacitance, and fast switching speeds are desired.

Package Options

Note: See Package Outline section for dimensions.

Thermal Characteristics

Package	I _D (continuous)*	I _D (pulsed)	Power Dissipation @ T _A = 25°C	θ _{jc} °C/W	θ _a °C/W	I _{DR}	I _{DRM}
TO-236AB	3mA	20mA	0.36W	200	350	3mA	20mA

* I_D (continuous) is limited by max rated T_j .

OBSOLETE -

Electrical Characteristics (@ 25°C unless otherwise specified)

Symbol	Parameter	Min	Тур	Max	Unit	Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	500			V	$V_{GS} = 0V, I_D = 100\mu A$
BV _{GSS}	Gate-to-Source Diode Breakdown Voltage	10			V	I _{GS} = 100μA
V_{SG}	Source-to-Gate diode Forward Voltage Drop			0.7	V	I _{SG} = 100μA
I _{SG}	Source-to-Gate Continuous Diode Current			3	mA	$V_{DS} = 0V$
V _{GS(TH)}	Gate Threshold Voltage	0.6		2.5	V	$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$
$\Delta V_{GS(TH)}$	Change in $V_{\text{GS(TH)}}$ with Temperature			-4.5	mV/°C	$V_{GS} = V_{DS}, I_D = 1.0 \text{mA}$
I _{GSS}	Gate Body Leakage Current			50	nA	$V_{GS} = +5.0V, V_{DS} = 0V$
I _{DSS}	Zero Gate Voltage Drain Current			100	nA	$V_{GS} = 0V, V_{DS} = 500V$
I _{D(ON)}	ON-State Drain Current	3			mA	$V_{GS} = 5.0V, V_{DS} = 25V$
R _{DS(ON)}	Static Drain-to-Source ON-State Resistance			1.0	KΩ	$V_{GS} = 5.0V, I_D = 500 \mu A$
$\Delta R_{DS(ON)}$	Change in $R_{DS(ON)}$ with Temperature			1.1	%/°C	$V_{GS} = 0V$, $I_D = 500\mu A$
C _{ISS}	Input Capacitance		12			$V_{GS} = 0V, V_{DS} = 25V,$
C _{OSS}	Common Source Output Capacitance		2		pF	f=1.0MHz
C _{RSS}	Reverse Transfer Capacitance		0.8			
t _{ON}	Turn-ON Time			10	ns	$V_{GS} = 0V$ to 5V, $R_{GEN} = 100\Omega$,
t _{OFF}	Turn-OFF Time			10		V_{DD} = 1.0V, R_{load} = 200 Ω
V _{SD}	Diode forward Voltage Drop			1.8	V	$V_{GS} = 0V, I_{SD} = 3.0mA$

Notes:

1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)

2. All A.C. parameters sample tested.

Switching Waveforms and Test Circuit

