FEATURES

High common-mode voltage range
 -8 V to +28 V at a 5 V supply voltage

Operating temperature range: $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply voltage range: 3.5 V to 12 V
Low-pass filter (1-pole or 2-pole)

EXCELLENT AC AND DC PERFORMANCE

$\pm 1 \mathrm{mV}$ voltage offset
$\pm 1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ gain drift
$\mathbf{8 0 ~ d B ~ C M R R ~ m i n ~ d c ~ t o ~} \mathbf{1 0} \mathbf{~ k H z}$

PLATFORMS

Transmission control
Diesel injection control
Engine management
Adaptive suspension control
Vehicle dynamics control

GENERAL DESCRIPTION

The AD8202 is a single-supply difference amplifier for amplifying and low-pass filtering small differential voltages in the presence of a large common-mode voltage. The input CMV range extends from -8 V to +28 V at a typical supply voltage of 5 V .

The AD8202 is offered in die and packaged form. Both package options are specified over a wide temperature range of $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, making the AD8202 well-suited for use in many automotive platforms.

Automotive platforms demand precision components for better system control. The AD8202 provides excellent ac and dc performance, which keeps errors to a minimum in the user's system. Typical offset and gain drift in the SOIC package are $5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$, respectively. The device also delivers a minimum CMRR of 80 dB from dc to 10 kHz .

The AD8202 features an externally accessible $100 \mathrm{k} \Omega$ resistor at the output of the preamp A1, which can be used for low-pass filter applications and for establishing gains other than 20.

Figure 1. SOIC (R) Package Die Form

Figure 2. High-Line Current Sensor

Figure 3. Low-Line Current Sensor

AD8202

TABLE OF CONTENTS

Specifications-Single Supply 3
Absolute Maximum Ratings. 4
ESD Caution 4
Pin Configuration and Function Descriptions. 5
Typical Performance Characteristics 6
Theory of Operation 8
Applications. 9
Current Sensing 9
Gain Adjustment 9
REVISION HISTORY
11/04—Rev. 0 to a Rev. AChanges to the Features 1
Changes to the General Description 1
Changes to Specifications (Table 1) 3
Changes to Absolute Maximum Ratings (Table 2) 4
Changes to Pin Function Descriptions (Table 3) 5
Changes to Figure 5 5
Changes to Figure 9 and Figure 10. 6
Updated Outline Dimensions 12
Changes to the Ordering Guide 12
Gain Trim 10
Low-Pass Filtering 10
High-Line Current Sensing with LPF and Gain Adjustment 11
Driving Charge Redistribution ADCs 11
Outline Dimensions 12
Ordering Guide 12

SPECIFICATIONS—SINGLE SUPPLY

$\mathrm{T}_{\mathrm{A}}=$ operating temperature range, $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$, unless otherwise noted.
Table 1.

		AD8202 SOIC		AD8202 DIE				
Parameter	Conditions		Min	Typ	Max	Min	Typ	Max

[^0]
ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	12.5 V
Transient Input Voltage (400 ms)	44 V
Continuous Input Voltage (Common Mode)	35 V
Reversed Supply Voltage Protection	0.3 V
Operating Temperature Range	
\quad Die	$-40^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
\quad SOIC	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Output Short-Circuit Duration Lead Temperature Range (Soldering 10 sec)	Indefinite

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Table 3. 8-Lead SOIC Pin Function Descriptions

Pin No.	Mnemonic	X	Y
1	- IN	-409.0	-205.2
2	GND	-244.6	-413.0
3	A1	+229.4	-413.0
4	A2	+410.0	-308.6
5	OUT	+410.0	+272.4
6	+ Vs	+121.0	+417.0
7	NC	NA	NA
8	+ IN	-409.0	+205.2

Figure 5. Metallization Photograph

AD8202

TYPICAL PERFORMANCE CHARACTERISTICS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$, unless otherwise noted.

Figure 6. Power Supply Rejection Ratio vs. Frequency

Figure 7. AD8202 Bandwidth

Figure 8. Common-Mode Rejection Ratio vs. Frequency

Figure 9. Negative Common-Mode Voltage vs. Voltage Supply

Figure 10. Positive Common-Mode Voltage vs. Voltage Supply

Figure 11. Output Swing vs. Load Resistance

Figure 12. Swing Minus Supply vs. Supply Voltage

Figure 13. Pulse Response

THEORY OF OPERATION

The AD8202 consists of a preamp and buffer arranged as shown in Figure 14. Like-named resistors have equal values.

The preamp incorporates a dynamic bridge (subtractor) circuit. Identical networks (within the shaded areas), consisting of R_{A}, $\mathrm{R}_{\mathrm{B}}, \mathrm{R}_{\mathrm{C}}$, and R_{G}, attenuate input signals applied to Pins 1 and 8 . Note that when equal amplitude signals are asserted at inputs 1 and 8 , and the output of A 1 is equal to the common potential (i.e., zero), the two attenuators form a balanced-bridge network. When the bridge is balanced, the differential input voltage at A1, and thus its output, is zero.

Any common-mode voltage applied to both inputs keeps the bridge balanced and the A1 output at zero. Because the resistor networks are carefully matched, the common-mode signal rejection approaches this ideal state.

However, if the signals applied to the inputs differ, the result is a difference at the input to A1. A1 responds by adjusting its output to drive R_{B}, by way of R_{G}, to adjust the voltage at its inverting input until it matches the voltage at its noninverting input.

By attenuating voltages at Pins 1 and 8, the amplifier inputs are held within the power supply range, even if Pin 1 and Pin 8 input levels exceed the supply, or fall below common (ground). The input network also attenuates normal (differential) mode voltages. R_{C} and R_{G} form an attenuator that scales $A 1$ feedback, forcing large output signals to balance relatively small differential inputs. The resistor ratios establish the preamp gain at 10 .

Because the differential input signal is attenuated and then amplified to yield an overall gain of 10 , Amplifier A1 operates at a higher noise gain, multiplying deficiencies such as input offset voltage and noise with respect to Pins 1 and 8.

Figure 14. Simplified Schematic

To minimize these errors while extending the common-mode range, a dedicated feedback loop is employed to reduce the range of common-mode voltage applied to A1 for a given overall range at the inputs. By offsetting the range of voltage applied to the compensator, the input common-mode range is also offset to include voltages more negative than the power supply. Amplifier A3 detects the common-mode signal applied to A1 and adjusts the voltage on the matched R_{CM} resistors to reduce the common-mode voltage range at the A1 inputs. By adjusting the common voltage of these resistors, the common-mode input range is extended while, at the same time, the normal mode signal attenuation is reduced, leading to better performance referred to input.

The output of the dynamic bridge taken from A 1 is connected to Pin 3 by way of a $100 \mathrm{k} \Omega$ series resistor, provided for lowpass filtering and gain adjustment. The resistors in the input networks of the preamp and the buffer feedback resistors are ratio trimmed for high accuracy.

The output of the preamp drives a gain-of- 2 buffer amplifier, A2, implemented with carefully matched feedback resistors R_{F}.

The 2-stage system architecture of the AD8202 enables the user to incorporate a low-pass filter prior to the output buffer. By separating the gain into two stages, a full-scale, rail-to-rail signal from the preamp can be filtered at Pin 3, and a half-scale signal, resulting from filtering, can be restored to full scale by the output buffer amp. The source resistance seen by the inverting input of A2 is approximately $100 \mathrm{k} \Omega$ to minimize the effects of A2's input bias current. However, this current is quite small and errors resulting from applications that mismatch the resistance are correspondingly small.

APPLICATIONS

The AD8202 difference amplifier is intended for applications where it is required to extract a small differential signal in the presence of large common-mode voltages. The input resistance is nominally $170 \mathrm{k} \Omega$, and the device can tolerate common-mode voltages higher than the supply voltage and lower than ground.

The open collector output stage sources current to within 20 mV of ground and to within 200 mV of V_{s}.

CURRENT SENSING

High-Line, High Current Sensing

Basic automotive applications making use of the large commonmode range are shown in Figure 2 and Figure 3. The capability of the device to operate as an amplifier in primary battery supply circuits is shown in Figure 2; Figure 3 illustrates the ability of the device to withstand voltages below system ground.

Low Current Sensing

The AD8202 can also be used in low current sensing applications, such as the 4 to 20 mA current loop shown in Figure 15. In such applications, the relatively large shunt resistor can degrade the common-mode rejection. Adding a resistor of equal value on the low impedance side of the input corrects for this error.

Figure 15.4 to 20 mA Current Loop Receiver

GAIN ADJUSTMENT

The default gain of the preamplifier and buffer are $\times 10$ and $\times 2$, respectively, resulting in a composite gain of $\times 20$. With the addition of external resistor(s) or trimmer(s), the gain may be lowered, raised, or finely calibrated.

Gains Less than 20

Since the preamplifier has an output resistance of $100 \mathrm{k} \Omega$, an external resistor connected from Pins 3 and 4 to GND decreases the gain by a factor $R_{E X T} /\left(100 \mathrm{k} \Omega+R_{E X T}\right)$ (see Figure 16).

Figure 16. Adjusting for Gains Less than 20
The overall bandwidth is unaffected by changes in gain by using this method, although there may be a small offset voltage due to the imbalance in source resistances at the input to the buffer. In many cases this can be ignored, but if desired, it can be nulled by inserting a resistor equal to $100 \mathrm{k} \Omega$ minus the parallel sum of $\mathrm{Rext}_{\mathrm{Ext}}$ and $100 \mathrm{k} \Omega$, in series with Pin 4 . For example, with $\mathrm{Rext}_{\mathrm{Ext}}=$ $100 \mathrm{k} \Omega$ (yielding a composite gain of $\times 10$), the optional offset nulling resistor is $50 \mathrm{k} \Omega$.

Gains Greater than 20

Connecting a resistor from the output of the buffer amplifier to its noninverting input, as shown in Figure 17, increases the gain. The gain is now multiplied by the factor $\mathrm{R}_{\mathrm{EXT}} /\left(\mathrm{R}_{\mathrm{EXT}}-100 \mathrm{k} \Omega\right)$; for example, it is doubled for $\mathrm{Rext}=200 \mathrm{k} \Omega$. Overall gains as high as 50 are achievable in this way. Note that the accuracy of the gain becomes critically dependent on the resistor value at high gains. Also, the effective input offset voltage at Pin 1 and Pin 8 (about six times the actual offset of A1) limits the part's use in high gain, dc-coupled applications.

Figure 17. Adjusting for Gains Greater than 20

AD8202

GAIN TRIM

Figure 18 shows a method for incremental gain trimming by using a trim potentiometer and external resistor Rext.

The following approximation is useful for small gain ranges.

$$
\Delta \mathrm{G} \approx\left(10 \mathrm{M} \Omega \div R_{E X T}\right) \%
$$

Thus, the adjustment range is $\pm 2 \%$ for $\mathrm{RexT}=5 \mathrm{M} \Omega ; \pm 10 \%$ for $R_{\text {ExT }}=1 \mathrm{M} \Omega$, and so on.

Figure 18. Incremental Gain Trim

Internal Signal Overload Considerations

When configuring gain for values other than 20, the maximum input voltage with respect to the supply voltage and ground must be considered, since either the preamplifier or the output buffer reaches its full-scale output (approximately $\mathrm{V}_{\mathrm{s}}-0.2 \mathrm{~V}$) with large differential input voltages. The input of the AD8202 is limited to ($V_{s}-0.2$) $\div 10$ for overall gains ≤ 10, since the preamplifier, with its fixed gain of $\times 10$, reaches its full-scale output before the output buffer. For gains greater than 10 , the swing at the buffer output reaches its full scale first and limits the AD8202 input to $\left(V_{S}-0.2\right) \div G$, where G is the overall gain.

LOW-PASS FILTERING

In many transducer applications, it is necessary to filter the signal to remove spurious high frequency components including noise, or to extract the mean value of a fluctuating signal with a peak-to-average ratio (PAR) greater than unity. For example, a full-wave rectified sinusoid has a PAR of 1.57 , a raised cosine has a PAR of 2, and a half-wave sinusoid has a PAR of 3.14. Signals having large spikes may have PARs of 10 or more.

When implementing a filter, the PAR should be considered so that the output of the AD8202 preamplifier (A1) does not clip before A2, since this nonlinearity would be averaged and appear as an error at the output. To avoid this error, both amplifiers should be made to clip at the same time. This condition is achieved when the PAR is no greater than the gain of the second amplifier (2 for the default configuration). For example, if a PAR of 5 is expected, the gain of A2 should be increased to 5 .

Low-pass filters can be implemented in several ways by using the features provided by the AD8202. In the simplest case, a single-pole filter ($20 \mathrm{~dB} /$ decade) is formed when the output of A 1 is connected to the input of A2 via the internal $100 \mathrm{k} \Omega$ resistor by strapping Pins 3 and 4 and a capacitor added from this node to ground, as shown in Figure 19. If a resistor is added across the capacitor to lower the gain, the corner frequency increases; it should be calculated using the parallel sum of the resistor and $100 \mathrm{k} \Omega$.

Figure 19. Single-Pole, Low-Pass Filter Using the Internal $100 \mathrm{k} \Omega$ Signal
If the gain is raised using a resistor, as shown in Figure 17, the corner frequency is lowered by the same factor as the gain is raised. Thus, using a resistor of $200 \mathrm{k} \Omega$ (for which the gain would be doubled), the corner frequency is now $0.796 \mathrm{~Hz} \mu \mathrm{~F}$ ($0.039 \mu \mathrm{~F}$ for a 20 Hz corner frequency.)

Figure 20. 2-Pole, Low-Pass Filter
A 2-pole filter (with a roll-off of $40 \mathrm{~dB} /$ decade) can be implemented using the connections shown in Figure 20. This is a Sallen-Key form based on a $\times 2$ amplifier. It is useful to remember that a 2-pole filter with a corner frequency f_{2} and a 1-pole filter with a corner at f_{1} have the same attenuation at the frequency $\left(f_{2}{ }^{2} / f_{1}\right)$. The attenuation at that frequency is $40 \log \left(f_{2} / f_{1}\right)$, which is illustrated in Figure 21. Using the standard resistor value shown and equal capacitors (Figure 20), the corner frequency is conveniently scaled at $1 \mathrm{~Hz} \mu \mathrm{~F}$ ($0.05 \mu \mathrm{~F}$ for a 20 Hz corner). A maximally flat response occurs when the resistor is lowered to $196 \mathrm{k} \Omega$ and the scaling is then $1.145 \mathrm{~Hz} \mu \mathrm{~F}$. The output offset is raised by approximately 5 mV (equivalent to $250 \mu \mathrm{~V}$ at the input pins).

Figure 21. Comparative Responses of 1-Pole and 2-Pole Low-Pass Filters

HIGH-LINE CURRENT SENSING WITH LPF AND GAIN ADJUSTMENT

Figure 22 is another refinement of Figure 2, including gain adjustment and low-pass filtering.

Figure 22. High-Line Current Sensor Interface; Gain $=\times 40$, Single-Pole, Low-Pass Filter

A power device that is either on or off controls the current in the load. The average current is proportional to the duty cycle of the input pulse and is sensed by a small value resistor. The average differential voltage across the shunt is typically 100 mV , although its peak value is higher by an amount that depends on the inductance of the load and the control frequency. The common-mode voltage, on the other hand, extends from roughly 1 V above ground for the on condition to about 1.5 V above the battery voltage in the off condition. The conduction of the clamping diode regulates the common-mode potential applied to the device. For example, a battery spike of 20 V may result in an applied common-mode potential of 21.5 V to the input of the devices.

To produce a full-scale output of 4 V , a gain $\times 40$ is used, adjustable by $\pm 5 \%$ to absorb the tolerance in the shunt. There is sufficient headroom to allow 10% overrange (to 4.4 V). The roughly triangular voltage across the sense resistor is averaged
by a 1-pole, low-pass filter, here set with a corner frequency of 3.6 Hz , which provides about 30 dB of attenuation at 100 Hz . A higher rate of attenuation can be obtained using a 2-pole filter with $\mathrm{f}_{\mathrm{C}}=20 \mathrm{~Hz}$, as shown in Figure 23. Although this circuit uses two separate capacitors, the total capacitance is less than half that needed for the 1 -pole filter.

Figure 23. 2-Pole Low-Pass Filter

DRIVING CHARGE REDISTRIBUTION ADCS

When driving CMOS ADCs such as those embedded in popular microcontrollers, the charge injection $(\Delta \mathrm{Q})$ can cause a significant deflection in the output voltage of the AD8202. Though generally of short duration, this deflection may persist until after the sample period of the ADC has expired due to the relatively high open-loop output impedance of the AD8202. Including an R-C network in the output can significantly reduce the effect. The capacitor helps to absorb the transient charge, effectively lowering the high frequency output impedance of the AD8202. For these applications, the output signal should be taken from the midpoint of the $\mathrm{R}_{\mathrm{LAG}}-\mathrm{C}_{\mathrm{LAG}}$ combination as shown in Figure 24.

Since the perturbations from the analog-to-digital converter are small, the output impedance of the AD8202 appears to be low. The transient response, therefore, has a time constant governed by the product of the two LAG components, $\mathrm{C}_{\mathrm{LAG}} \times \mathrm{R}_{\mathrm{LAG}}$. For the values shown in Figure 24, this time constant is programmed at approximately $10 \mu \mathrm{~s}$. Therefore, if samples are taken at several tens of microseconds or more, there is negligible charge stack-up.

Figure 24. Recommended Circuit for Driving CMOS A/D

OUTLINE DIMENSIONS

Figure 25. 8-Lead Standard Small Outline Package [SOIC] Narrow Body (R-8)
Dimensions shown in millimeters (inches)

ORDERING GUIDE

Model	Temperature Package	Package Description	Package Outline
AD8202YR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 Lead Standard Small Outline Package (SOIC)	R-8
AD8202YR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package (SOIC)	R-8
AD8202YR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8-Lead Standard Small Outline Package (SOIC)	R-8
AD8202YCSURF		Die	

[^0]: ${ }^{1}$ Source imbalance $<2 \Omega$.
 ${ }^{2}$ The AD8202 preamplifier exceeds 80 dB CMRR at 10 kHz . However, since the signal is available only by way of a $100 \mathrm{k} \Omega$ resistor, even the small amount of pin-to-pin capacitance between Pins 1, 8 and 3, 4 may couple an input common-mode signal larger than the greatly attenuated preamplifier output. The effect of pin-to-pin coupling may be neglected in all applications by using filter capacitors at Node 3.

