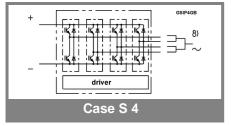

SKiiP 1242GB120-407CTV ...

SKiiP[®] 2

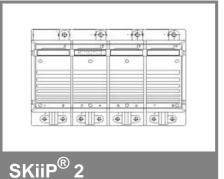
2-pack - integrated intelligent power System

Power section


SKiiP 1242GB120-407CTV

Features

- SKiiP technology inside
- Low loss IGBTs
- · CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3k3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP® 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute Maximum Ratings		r _s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT			•			
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1200 (900)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	1200 (900)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	8640	Α			
I ² t (Diode)	Diode, T _j = 150 °C, 10 ms	373	kA2s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

	•				•			
Characteristics T _s					$T_{s} = 25^{\circ}$	°C unless o	otherwise	specified
Symbol	Condition	ons			min.	typ.	max.	Units
IGBT					1			
V_{CEsat}	$I_{\rm C} = 1000 A$	A, T _i = 25 (125) °C		Ì	2,6 (3,1)	3,1	V
V _{CEO}	$T_i = 25 (12)$:5) °C				1,2 (1,3)	1,5 (1,6)	V
r_{CE}	$T_{j} = 25 (12)$	25) °C				1,3 (1,8)	1,6 (2)	mΩ
I _{CES}	$V_{GE} = 0 V$	$V_{CE} = V_{CE}$	s,			(60)	1,6	mA
	$T_j = 25 (12)$.5) °C						
E _{on} + E _{off}	I _C = 1000 A	A, V _{CC} = 60	00 V				300	mJ
	T _j = 125 °C	$V_{CC} = 90$	0 V				529	mJ
R _{CC' + EE'}	terminal ch	nip, T _j = 12	5 °C			0,13		mΩ
L _{CE}	top, bottom	n ´				3,8		nH
C _{CHC}	per phase,	AC-side				5,6		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 1000 A	A, T _j = 25 (125) °C			2,1 (2)	2,6	V
V_{TO}	$T_j = 25 (12)$					1,3 (1)	1,4 (1,1)	V
r _T	$T_{j} = 25 (12)$					0,8 (1)	1,1 (1,3)	mΩ
E _{rr}	$I_{\rm C} = 1000 A$						39	mJ
	T _j = 125 °C	C, V _{CC} = 90	0 V				49	mJ
Mechani	cal data							
M_{dc}	DC terminals, SI Units				6		8	Nm
M _{ac}	AC terminals, SI Units				13		15	Nm
W	SKiiP® 2 System w/o heat sink					3,5		kg
W	heat sink					8,5		kg
			P16 hea	at sink; 2	75m ³ /h)	; " _r " refer	ence to	
	ture sens	or			i	•		1
R _{th(j-s)I}	per IGBT						0,023	K/W
R _{th(j-s)D}	per diode						0,063	K/W
R _{th(s-a)}	per module						0,033	K/W
Z_{th}	R_i (mK/W) (max. values) $tau_i(s)$							
7	1	2	3	4	1	2	3	4
Z _{th(j-r)I}	2	17 40	3 8		1	0,13	0,001	
Z _{th(j-r)D}	7	48	-	0.4	1	0,13	0,001	0.00
$Z_{th(r-a)}$	1,6	22	7	2,4	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

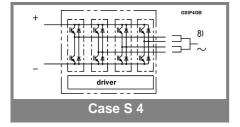
SKiiP 1242GB120-407CTV ...

2-pack - integrated intelligent power System

2-pack integrated gate driver

SKiiP 1242GB120-407CTV

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1} V_{S2}	stabilized 15 V power supply unstabilized 24 V power supply	18 30	V V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt V _{isollO}	secondary to primary side input / output (AC, r.m.s., 2s)	75 3000	kV/μs Vac		
V_{isol12} f_{max} $T_{op} (T_{stg})$	output 1 / output 2 (AC, r.m.s., 2s) switching frequency operating / storage temperature	1500 14 - 25 + 85	Vac kHz °C		

Characte	(T _a = 25 °C			= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	290+580	290+580*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	220+420*f/f _{max} +1,0*(I _{AC} /A)			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
tpERRRESET	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		3,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		1200		Α
ı	(available when supplied with 24 V)			50	mA
I _{Vs1outmax}	output current at pin 12/14			5	mA
I _{A0max} V _{0I}	logic low output voltage			0.6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1500		Α
I _{TRIPLG}	ground fault protection				Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

