TOSHIBA Photocoupler GaAlAs IRED & Photo-IC

TLP716

Plasma display panel. High Speed Interface. Factory Automation.

The TOSHIBA TLP716 consists of a GaAlAs light emitting diode and a high speed photodetector. This unit is 6-lead SDIP. TLP716 is 50% smaller than 8PIN DIP and has suited the safety standard reinforced insulation class. So, mounting area in safety standard required equipment can be reduced.

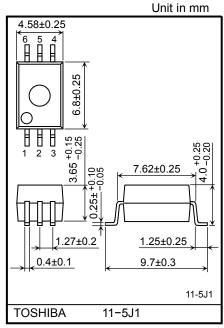
- Inverter Logic (totempole output)
- Package Type : SDIP6
- Guaranteed Performance Over Temperature : -40~100°C
- Power Supply Voltage: 4.5~5.5 V
- Input Thresholds Current : IFHL=6.5 mA(max.)
- Propagation delay Time (tpHL/ tpLH): 75 ns(max.)
- Switching speed: 15 MBd(typ.) (NRZ)
- Common mode transient immunity: 10 kV/us(min.)
- Isolation voltage : 5000 Vrms(min.)
- UL Recognized :UL1577, File No.E67349
- Option (D4)

TÜV Approved: EN60747-5-2

 $\label{eq:maximum operating Insulation Voltage: 890 V_{PK} \\ \mbox{Highest Permissible Over Voltage} : 8000 V_{PK} \\$

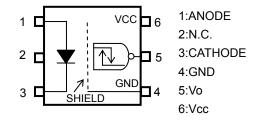
(Note):When a EN60747-5-2 approved type is needed, Please designate "Option(D4)"

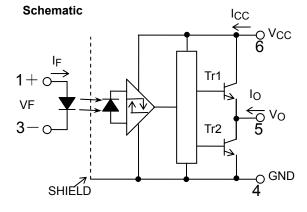
0.4 mm (min)


Construction Mechanical Rating

Insulation Thickness

	7.62 mm pitch standard type	10.16 mm pitch		
	31	31		
Creepage Distance Clearance	7.0 mm (min) 7.0 mm (min)	8.0 mm (min) 8.0 mm (min)		


Truth Table


Input	LED	Tr1	Tr2	Output
Н	ON	OFF	ON	L
L	OFF	ON	OFF	Н

Weight: 0.26 g (typ.)

Pin Configuration (Top View)

 $0.1~\mu F$ bypass capacitor must be connected between pins 6 and 4. (Note 4)

0.4 mm (min)

Absolute Maximum Ratings (Ta=25°C)

	CHARACTERISTIC	SYMBOL	RATING	UNIT
	Forward Current (Ta ≤ 85°C)	lF	20	mA
	Forward Current Derating (Ta > 85°C)	ΔIF/ΔTa	-0.5	mA/°C
E	Peak Transient Forward Current (Note1)	IFPT	1	Α
	Reverse Voltage	VR	5	V
	Junction Temperature	Tj	125	°C
	Output Current (Ta ≤ 85°C)	Ю	10	mA
	Output Current Derating (Ta > 85°C)	Δ ΙΟ /ΔΤα	-0.25	mA/°C
DETECTOR	Output Voltage(Vo ≤ Vcc)	Vo	-0.5~6	V
EC	Supply Voltage	VCC	-0.5~6	V
DEJ	Power Dissipation (Ta ≤ 85°C)	PD	40	mW
	Power Dissipation Derating (Ta > 85°C)	ΔΡο/ΔΤα	-1	mW/°C
	Junction Temperature	Tj	125	°C
Oper	ating Temperature Range	Topr	-40~100	°C
Stora	Storage Temperature Range		-55~125	°C
Lead	Solder Temperature(10s)	Tsol	260	°C
	tion Voltage .C,1min.,R.H.≤60%,Ta=25°C) (Note2)	BVs	5000	Vrms

Note: Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Recommended Operating Conditions

CHARACTERISTIC	SYMBOL	MIN.	TYP.	MAX.	UNIT
Input Current , ON	IF(ON)	8	12	18	mA
Input Voltage , OFF	VF(OFF)	0	_	0.8	V
Supply Voltage (*) (Note3, Note4)	VCC	4.5	5	5.5	V

Note: Recommended operating conditions are given as a design guideline to obtain expected performance of the device. Additionally, each item is an independent guideline respectively. In developing designs using this product, please confirm specified characteristics shown in this document.

2

(*) This item denotes operating ranges, not meaning of recommended operating conditions.

The correlation between input current and switching speed and drive circuit (reference information).

Input Current (IF)	TEST CIRCUIT	Typical Switching Speed
12mA	1 (Page 4)	14 – 16 MBd
8mA	1 (Page 4)	11 – 13 MBd
8mA	2 (Page 4,with Speed up capacitor)	16 – 20 MBd

- Note 1: Pulse width PW≤1us,300pps.
- Note 2: Device Considered a two terminal device: pins 1,2 and 3 shorted together and pins 4,5 and 6 shorted together.
- Note 3: The detector of this product requires a power supply voltage (VCC) of 4.5 V or higher for stable operation. If the VCC is lower than this value, an Icc may increase, or an output may be unstable. Be sure to use the product after checking the supply current, and the operation of a power-on/-off.
- Note 4: A ceramic capacitor($0.1 \mu F$) should be connected from pin 6 to pin 4 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypassing may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

Electrical Characteristics

(Unless otherwise specified, Ta=-40 to 100°C,Vcc=4.5~5.5V)

		,		- 		
CHARACTERISTIC	SYMBOL	CONDITION	MIN.	TYP. *	MAX.	UNIT
Input Forward Voltage	VF	IF=10mA ,Ta=25°C	_	1.65	1.8	V
Temperature Coefficient of Forward Voltage	ΔVF/ΔTa	IF=10mA	l	-2.0	ı	mV/°C
Input Reverse Current	IR	VR=5V,Ta=25°C	_	_	10	μA
Input Capacitance	СТ	V=0V,f=1MHz,Ta=25°C	_	45	_	pF
Logic Low Output Voltage	VOL	IOL=1.6mA, IF=12mA,VCC=5V		_	0.4	V
Logic High Output Voltage	Voн	IOH=-0.02mA, VF=1.05V, VCC=5V	4.0	_	-	V
Logic Low Supply Current	ICCL	IF=12mA	-	_	5.0	mA
Logic High Supply Current	ICCH	VF=0V	1	_	5.0	mA
Input Current Logic Low Output	IFHL	IO=1.6mA,VO<0.4V		_	6.5	mA
Input Voltage Logic High Output	VFLH	IO=-0.02mA,VO>4.0V	0.8	_	_	V

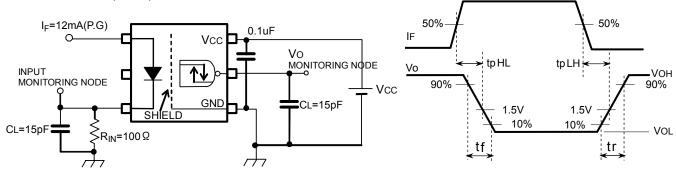
^{*}All typical values are at Ta=25°C,VCC=5V , IF(ON)=12mA unless otherwise specified

Isolation Characteristics (Ta = 25°C)

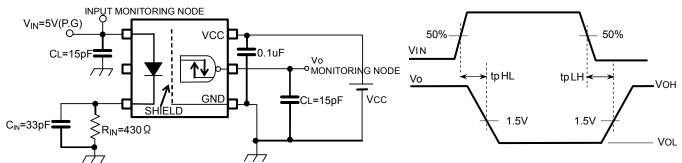
CHARACTERISTIC	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Capacitance input to output	CS	VS = 0V , f = 1MHz (Note 2)	_	0.8	_	pF
Isolation resistance	R _S	R.H. ≤ 60%,V _S = 500V (Note 2)	1×10 ¹²	10 ¹⁴	_	Ω
		AC,1 minute	5000	_	_	V _{rms}
Isolation voltage	BVS	AC,1 second,in oil	_	10000	_	Vdc
		DC,1 minute,in oil	_	10000		vuc

3

Switching Characteristics

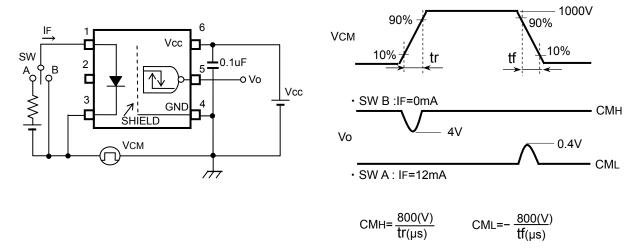

(Unless otherwise specified, Ta= -40 to 100°C, Vcc=4.5~5.5V)

CHARACTERISTIC	SYMBOL	TEST -CIRCUIT	CONI	DITION	MIN.	TYP.	MAX.	UNIT
propagation Delay Time to Logic Low output	tpHL	1	IF=0→12mA	RIN=100Ω CL=15pF			75	ns
propagation Delay Time to Logic High output	tpLH	ı	IF=12→0mA	(Note 5)		l	75	ns
propagation Delay Time to Logic Low output	tpHL	2	V _{IN} =0→5V (IF=0→8mA)			l	65	ns
propagation Delay Time to Logic High output	tpLH	2	V _{IN} =5→0V CI		_	l	65	ns
Switching Time Dispersion between ON and OFF	tpLH- tpHL		IF=12mA $R_{IN}=100\Omega, CL=1$ $IF=0\rightarrow 12mA$.=15pF (Note 5)	_	1	45	ns
Output Fall Time (90 ~ 10%)	tf	1		R _{IN} =100Ω CL=15pF		15		ns
Output Rise Time (10 ~ 90%)	tr		IF=12→0mA	(Note 5)	_	15	_	ns
Common Mode transient Immunity at High Level Output	СМН	2	VCM=1000Vp- VO(Min)=4V,Ta		10000		l	V/us
Common Mode transient Immunity at Low Level Output	CML	3	VCM=1000Vp- VO(Max)=0.4V		-10000	_	_	V/us


^{*}All typical values are at Ta=25°C

Note 5: CL is approximately 15pF which includes probe and Jig/stray wiring capacitance.

TEST CIRCUIT 1: tpLH, tpHL


TEST CIRCUIT 2: tpLH, tpHL

The PROBE and JIG capacitances are included in CL.

(P.G): Pulse Generation

TEST CIRCUIT 3: Common-Mode Transient Immunity Test Circuit

 CM_{L} (CM_H) is the maximum rate of fall (rise) of the common mode voltage that can be sustained with the output voltage in the low (high) state.

5

RESTRICTIONS ON PRODUCT USE

20070701-EN

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.