4-1/2 Digit A/D Converter

Features

- Low Rollover Error: ± 1 Count Max
- Nonlinearity Error: ± 1 Count Max
- Reading for OV Input
- True Polarity Indication at Zero for Null Detection
- Multiplexed BCD Data Output
- TTL-Compatible Outputs
- Differential Input
- Control Signals Permit Interface to UARTs and Microprocessors
- Blinking Display Visually Indicates Overrange Condition
- Low Input Current: 1 pA
- Low Zero Reading Drift: $2 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$
- Auto-Ranging Supported with Overrange and Underrange Signals
- Available in PDIP and Surface-Mount Packages

General Description

The TC7135 4-1/2 digit A/D Converter (ADC) offers $50 \mathrm{ppm}(1$ part in 20,000) resolution with a maximum nonlinearity error of 1 count. An auto-zero cycle reduces zero error to below $10 \mu \mathrm{~V}$ and zero drift to $0.5 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Source impedance errors are minimized by a 10 pA maximum input current. Rollover error is limited to ± 1 count.
Microprocessor-based measurement systems are supported by the BUSY, $\overline{\text { STROBE }}$ and RUN/HOLD control signals. Remote data acquisition systems with data transfer via UARTs are also possible. The additional control pins and multiplexed BCD outputs make the TC7135 the ideal converter for display or microprocessor-based measurement systems.

Applications

- Precision Analog Signal Processor
- Precision Sensor Interface
- High Accuracy DC Measurements

Functional Block Diagram

TC7135

Package Types

1.0 ELECTRICAL SPECIFICATIONS

Absolute Maximum Ratings \dagger
Positive Supply Voltage $+6 \mathrm{~V}$
Negative Supply Voltage 9 V
Analog Input Voltage (Pin 9 or 10)

\qquad
$\mathrm{V}+$ to V - (Note 2)Reference Input Voltage (Pin 2)$\mathrm{V}+$ to V -Clock Input Voltage
\qquad 0 V to $\mathrm{V}+$Operating Temperature Range $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$Package Power Dissipation; ($\mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$)
28-Pin PDIP

\qquad 1.14Ω
28-Pin PLCC 1.00Ω
64-Pin MQFP 1.14Ω
\dagger Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{CLOCK}}=120 \mathrm{kHz}, \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$. (see Functional Block Diagram).						
Parameters	Sym	Min.	Typ.	Max.	Units	Conditions
Analog						
Display Reading with Zero Volt Input		-0.0000	± 0.0000	+0.0000	Display Reading	Note 2, Note 3
Zero Reading Temperature Coefficient	TC_{z}	-	0.5	2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$, (Note 4)
Full Scale Temperature Coefficient	TC ${ }_{\text {FS }}$	-	-	5	ppm/ ${ }^{\circ} \mathrm{C}$	$\begin{array}{\|l} \hline \mathrm{V}_{I N}=2 \mathrm{~V}, \\ \text { (Note 4, } \text { Note 5) } \\ \hline \end{array}$
Nonlinearity Error	NL	-	0.5	1	Count	Note 6
Differential Linearity Error	DNL	-	0.01	-	LSB	Note 6
Display Reading in Ratiometric Operation		+0.9996	+0.9999	+1.0000	Display Reading	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {REF, }}$ (Note 2)
\pm Full Scale Symmetry Error (Rollover Error)	$\pm F S E$	-	0.5	1	Count	$-\mathrm{V}_{\mathrm{IN}}=+\mathrm{V}_{\text {IN }}$, (Note 7)
Input Leakage Current	I_{N}	-	1	10	pA	Note 3
Noise	e_{N}	-	15	-	$\mu \mathrm{V}_{\text {P-P }}$	Peak-to-Peak Value not Exceeded 95\% of Time
Digital						
Input Low Current	I_{L}	-	10	100	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$
Input High Current	I_{H}	-	0.08	10	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=+5 \mathrm{~V}$
Output Low Voltage	V_{OL}	-	0.2	0.4	V	$\mathrm{I}_{\mathrm{OL}}=1.6 \mathrm{~mA}$
Output High Voltage;	V_{OH}	2.4	4.4	5	V	$\mathrm{I}_{\mathrm{OH}}=1 \mathrm{~mA}$
$\mathrm{B}_{1}, \mathrm{~B}_{2}, \mathrm{~B}_{4}, \mathrm{~B}_{8}, \mathrm{D}_{1}-\mathrm{D}_{5}$ Busy, Polarity, Overrange, Underrange, Strobe		4.9	4.99	5	V	$\mathrm{I}_{\mathrm{OH}}=10 \mu \mathrm{~A}$
Clock Frequency	$\mathrm{F}_{\text {CLK }}$	0	200	1200	kHz	Note 8

Note 1: Limit input current to under $100 \mu \mathrm{~A}$ if input voltages exceed supply voltage.
2: Full-scale voltage $=2 \mathrm{~V}$
3: $\quad V_{I N}=0 V$
4: $\quad 30^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
5: External reference temperature coefficient less than $0.01 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
6: $\quad-2 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq+2 \mathrm{~V}$. Error of reading from best fit straight line.
7: $\quad\left|\mathrm{V}_{\text {IN }}\right|=1.9959$
8: Specification related to clock frequency range over which the TC7135 correctly performs its various functions. Increased errors result at higher operating frequencies.

DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{CLOCK}}=120 \mathrm{kHz}, \mathrm{V}+=+5 \mathrm{~V}, \mathrm{~V}-=-5 \mathrm{~V}$. (see Functional Block Diagram).

Parameters												
Sym								Min.	Typ.	Max.	Units	Conditions
Power Supply												
Positive Supply Voltage	$\mathrm{V}+$	4	5	6	V							
Negative Supply Voltage	$\mathrm{V}-$	-3	-5	-8	V							
Positive Supply Current	$\mathrm{I}+$	-	1	3	mA	$\mathrm{~F}_{\text {CLK }}=0 \mathrm{~Hz}$						
Negative Supply Current	$\mathrm{I}-$	-	0.7	3	mA	$\mathrm{~F}_{\text {CLK }}=0 \mathrm{~Hz}$						
Power Dissipation	PD	-	8.5	30	mW	$\mathrm{~F}_{\text {CLK }}=0 \mathrm{~Hz}$						

Note 1: Limit input current to under $100 \mu \mathrm{~A}$ if input voltages exceed supply voltage.
2: \quad Full-scale voltage $=2 \mathrm{~V}$
3: $\quad V_{I N}=0 V$
4: $30^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C}$
5: External reference temperature coefficient less than $0.01 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.
6: $\quad-2 \mathrm{~V} \leq \mathrm{V}_{\mathbb{I N}} \leq+2 \mathrm{~V}$. Error of reading from best fit straight line.
7: $\quad\left|\mathrm{V}_{\text {IN }}\right|=1.9959$
8: Specification related to clock frequency range over which the TC7135 correctly performs its various functions. Increased errors result at higher operating frequencies.

2.0 PIN DESCRIPTIONS

The description of the pins are listed in Table 2-1.

TABLE 2-1: PIN FUNCTION TABLE

Pin Number 28-Pin PDIP, 28-Pin PLCC	Pin Number 44-Pin MQFP*	Pin Number 64-Pin MQFP*	Symbol	Description

* Pins not identified or documented are NC (no connects).

3.0 DETAILED DESCRIPTION

All pin designations refer to the 28-pin PDIP package.

3.1 Dual-Slope Conversion Principles

The TC7135 is a dual-slope, integrating A/D converter. An understanding of the dual-slope conversion technique will aid in following the detailed TC7135 operational theory.
The conventional dual-slope converter measurement cycle has two distinct phases:

1. Input signal integration.
2. Reference voltage integration (de-integration).

The input signal being converted is integrated for a fixed time period. Time is measured by counting clock pulses. An opposite polarity constant reference voltage is then integrated until the integrator output voltage returns to zero. The reference integration time is directly proportional to the input signal.
In a simple dual-slope converter, a complete conversion requires the integrator output to "ramp-up" and "ramp-down".
A simple mathematical equation relates the input signal, reference voltage and integration time:

EQUATION 3-1:

$$
\frac{1}{R_{I N T} C_{I N T}} \int_{0}^{T_{I N T}} V_{I N}(T) D T=\frac{V_{R E F} T_{D E I N T}}{R_{I N T} C_{I N T}}
$$

Where:

$$
\begin{aligned}
V_{R E F} & =\text { Reference voltage } \\
T_{I N T}= & \text { Signal integration time (fixed) } \\
T_{D E I N T}= & \begin{array}{l}
\text { Reference voltage integration time } \\
\\
\end{array} \text { (variable) }
\end{aligned}
$$

For a constant V_{IN} :

EQUATION 3-2:

$$
V_{I N}=\frac{V_{R E F} T_{D E I N T}}{T_{I N T}}
$$

The dual-slope converter accuracy is unrelated to the integrating resistor and capacitor values, as long as they are stable during a measurement cycle. An inherent benefit is noise immunity. Noise spikes are integrated, or averaged, to zero during the integration periods.
Integrated ADCs are immune to the large conversion errors that plague successive approximation converters in high-noise environments (see Figure 3-1).

FIGURE 3-1: Basic Dual-Slope Converter.

3.2 TC7135 Operational Theory

The TC7135 incorporates a system zero phase and integrator output voltage zero phase to the normal twophase dual-slope measurement cycle. Reduced system errors, fewer calibration steps and a shorter overrange recovery time result.
The TC7135 measurement cycle contains four phases:

1. System zero.
2. Analog input signal integration.
3. Reference voltage integration.
4. Integrator output zero.

Internal analog gate status for each phase is shown in Figure 3-1.

TABLE 3-1: INTERNAL ANALOG GATE STATUS

Conversion Cycle Phase	$\mathbf{S W}_{\mathbf{I}}$	$\mathbf{S W}_{\mathbf{R I}^{+}}$	$\mathbf{S W}_{\mathbf{R I}^{-}}$	$\mathbf{S W}_{\mathbf{Z}}$	$\mathbf{S W}_{\mathbf{R}}$	$\mathbf{S W}_{\mathbf{1}}$	$\mathbf{S W}_{\mathbf{I Z}}$	Reference Figures
System Zero	-	-	-	Closed	Closed	Closed	-	Figure 3-2
Input Signal Integration	Closed	-	-	-	-	-	-	Figure 3-3
Reference Voltage Integration	-	Closed *	-	-	-	Closed	-	Figure 3-4
Integrator Output Zero	-	-	-	-	-	Closed	Closed	Figure 3-5

[^0]
3.2.1 SYSTEM ZERO

During this phase, errors due to buffer, integrator and comparator offset voltages are compensated for by charging C_{AZ} (auto-zero capacitor) with a compensating error voltage. With a zero input voltage, the integrator output will remain at zero.
The external input signal is disconnected from the internal circuitry by opening the two SW, switches. The internal input points connect to the ANALOG COMMON pin. The reference capacitor charges to the reference voltage potential through SW_{R}. A feedback loop, closed around the integrator and comparator, charges the C_{AZ} capacitor with a voltage to compensate for buffer amplifier, integrator and comparator offset voltages (see Figure 3-2).

FIGURE 3-2: System Zero Phase.

3.2.2 ANALOG INPUT SIGNAL INTEGRATION

The TC7135 integrates the differential voltage between the +INPUT and -INPUT pins. The differential voltage must be within the device Common mode range; -1V from either supply rail, typically. The input signal polarity is determined at the end of this phase.

FIGURE 3-3: Input Signal Integration
Phase.

3.2.3 REFERENCE VOLTAGE INTEGRATION

The previously charged reference capacitor is connected with the proper polarity to ramp the integrator output back to zero (see Figure 3-4). The digital reading displayed is:

EQUATION 3-3:

$$
\text { Reading }=10,000 \frac{[\text { Differential Input }]}{V_{R E F}}
$$

FIGURE 3-4: Reference Voltage Integration Cycle.

3.2.4 INTEGRATOR OUTPUT ZERO

This phase ensures the integrator output is at 0 V when the system zero phase is entered. It also ensures that the true system offset voltages are compensated for. This phase normally lasts 100 to 200 clock cycles. If an overrange condition exists, the phase is extended to 6200 clock cycles (see Figure 3-5).

FIGURE 3-5:
Integrator Output Zero
Phase.

4.0 ANALOG SECTION FUNCTIONAL DESCRIPTION

4.1 Differential Inputs

The TC7135 operates with differential voltages (+INPUT, pin 10 and -INPUT, pin 9) within the input amplifier Common mode range, which extends from 1V below the positive supply to 1 V above the negative supply. Within this Common mode voltage range, an 86 dB Common mode rejection ratio is typical.

The integrator output also follows the Common mode voltage and must not be allowed to saturate. A worstcase condition exists, for example, when a large positive Common mode voltage with a near full scale negative differential input voltage is applied. The negative input signal drives the integrator positive when most of its swing has been used up by the positive Common mode voltage. For these critical applications, the integrator swing can be reduced to less than the recommended 4 V full scale swing, resulting in some loss of accuracy. The integrator output can swing within 0.3 V of either supply without loss of linearity.

4.2 Analog Common Input

The ANALOG COMMON pin is used as the -INPUT return during auto-zero and de-integrate. If -INPUT is different from ANALOG COMMON, a Common mode voltage exists in the system. However, this signal is rejected by the excellent CMRR of the converter. In most applications, -INPUT will be set at a fixed, known voltage (power supply common, for instance). In this application, ANALOG COMMON should be tied to the same point, thus removing the Common mode voltage from the converter. The reference voltage is referenced to ANALOG COMMON.

4.3 Reference Voltage Input

The reference voltage input (REF IN) must be a positive voltage with respect to ANALOG COMMON. A reference voltage circuit is shown in Figure 4-1.

FIGURE 4-1: Using An External Reference.

5.0 DIGITAL SECTION
 FUNCTIONAL DESCRIPTION

The major digital subsystems within the TC7135 are illustrated in Figure 5-1, with timing relationships shown in Figure 5-2. The multiplexed BCD output data can be displayed on LCD or LED displays. The digital section is best described through a discussion of the control signals and data outputs.

FIGURE 5-1: Digital Section Functional Diagram.

FIGURE 5-2: \quad Timing Diagrams For Outputs.

5.1 RUN/HOLD Input

When left open, this pin assumes a logic ' 1 ' level. With a RUN/ $\overline{\text { HOLD }}=1$, the TC7135 performs conversions continuously, with a new measurement cycle beginning every 40,002 clock pulses.
When RUN/HOLD changes to a logic ' 0 ', the measurement cycle in progress will be completed, with the data held and displayed as long as the logic ' 0 ' condition exists.
A positive pulse ($>300 \mathrm{nsec}$) at RUN/HOLD initiates a new measurement cycle. The measurement cycle in progress when RUN/HOLD initially assumed the logic ' 0 ' state must be completed before the positive pulse can be recognized as a single conversion run command.
The new measurement cycle begins with a 10,001 count auto-zero phase. At the end of this phase, the busy signal goes high.

5.2 STROBE Output

During the measurement cycle, the $\overline{\text { STROBE }}$ control line is pulsed low five times. The five low pulses occur in the center of the digit drive signals $\left(D_{1}, D_{2}, D_{3}, D_{5}\right)$ (see Figure 5-3).
D_{5} (MSD) goes high for 201 counts when the measurement cycles end. In the center of the D_{5} pulse, 101 clock pulses after the end of the measurement cycle, the first STROBE occurs for one half clock pulse. After the D_{5} digit strobe, D_{4} goes high for 200 clock pulses. The STROBE then goes low 100 clock pulses after D_{4} goes high. This continues through the D_{1} digit drive pulse.
The digit drive signals will continue to permit display scanning. STROBE pulses are not repeated until a new measurement is completed. The digit drive signals will not continue if the previous signal resulted in an overrange condition.
The active-low $\overline{\text { STROBE }}$ pulses aid BCD data transfer to UARTs, processors and external latches. For more information, please refer to Application Note 784 (DS00784).

FIGURE 5-3: Strobe Signal Low Five
Times Per Conversion.

5.3 BUSY Output

At the beginning of the signal integration phase, BUSY goes high and remains high until the first clock pulse after the integrator zero crossing. BUSY returns to the logic ' 0 ' state once the measurement cycle ends in an overrange condition. The internal display latches are loaded during the first clock pulse after BUSY and are latched at the clock pulse end. The BUSY signal does not go high at the beginning of the measurement cycle, which starts with the auto-zero cycle.

5.4 OVERRANGE Output

If the input signal causes the reference voltage integration time to exceed 20,000 clock pulses, the OVERRANGE output is set to a logic ' 1 '. The OVERRANGE output register is set when BUSY goes low and is reset at the beginning of the next reference integration phase.

5.5 UNDERRANGE Output

If the output count is 9% of full scale or less (-1800 counts), the UNDERRANGE register bit is set at the end of BUSY. The bit is set low at the next signal integration phase.

5.6 POLARITY Output

A positive input is registered by a logic ' 1 ' polarity signal. The polarity bit is valid at the beginning of reference integrate and remains valid until determined during the next conversion.

The polarity bit is valid even for a zero reading. Signals less than the converter's LSB will have the signal polarity determined correctly. This is useful in null applications.

5.7 Digit Drive Outputs

Digit drive signals are positive-going signals. The scan sequence is D_{5} to D_{1}. All positive pulses are 200 clock pulses wide, with the exception D_{5}, which is 201 clock pulses wide.
All five digits are scanned continuously, unless an overrange condition occurs. In an overrange condition, all digit drives are held low from the final STROBE pulse until the beginning of the next reference integrate phase. The scanning sequence is then repeated. This provides a blinking visual display indication.

5.8 BCD Data Outputs

The binary coded decimal (BCD) bits $\mathrm{B}_{8}, \mathrm{~B}_{4}, \mathrm{~B}_{2}$ and B_{1} are positive-true logic signals. The data bits become active at the same time as the digit drive signals. In an overrange condition, all data bits are at a logic ' 0 ' state.

6.0 TYPICAL APPLICATIONS

6.1 Component Value Selection

6.1.1 INTEGRATING RESISTOR

The integrating resistor $R_{I N T}$ is determined by the fullscale input voltage and the output current of the buffer used to charge the integrator capacitor $\left(\mathrm{C}_{\mathbb{I N T}}\right)$. Both the buffer amplifier and the integrator have a class A output stage, with $100 \mu \mathrm{~A}$ of quiescent current. A $20 \mu \mathrm{~A}$ drive current gives negligible linearity errors. Values of $5 \mu \mathrm{~A}$ to $40 \mu \mathrm{~A}$ give good results. The exact value of an integrating resistor for a $20 \mu \mathrm{~A}$ current is easily calculated.

EQUATION 6-1:

$$
R_{I N T}=\frac{\text { Full Scale Voltage }}{20 \mu \mathrm{~A}}
$$

6.1.2 INTEGRATING CAPACITOR ($\mathrm{C}_{\operatorname{INT}}$)

The product of integrating resistor and capacitor should be selected to give the maximum voltage swing that ensures the tolerance build-up will not saturate the integrator swing (approximately 0.3 V from either supply). For $\pm 5 \mathrm{~V}$ supplies and ANALOG COMMON tied to supply ground, a $\pm 3.5 \mathrm{~V}$ to $\pm 4 \mathrm{~V}$ full scale integrator swing is adequate. A $0.10 \mu \mathrm{~F}$ to $0.47 \mu \mathrm{~F}$ is recommended. In general, the value of $\mathrm{C}_{\mathrm{INT}}$ is given by:

EQUATION 6-2:

$$
\begin{aligned}
C_{I N T} & =\frac{[10,000 \times \text { clock period }] \times I_{I N T}}{\text { integrator output voltage } s w i n g} \\
& =\frac{(10,000)(\text { clock period }) \times 20 \mu A}{\text { integrator output voltage swing }}
\end{aligned}
$$

A very important characteristic of the integrating capacitor $\mathrm{C}_{\mathrm{INT}}$ is that it has low dielectric absorption to prevent rollover or ratiometric errors. A good test for dielectric absorption is to use the capacitor with the input tied to the reference. This ratiometric condition should read half scale 0.9999, with any deviation probably due to dielectric absorption. Polypropylene capacitors give undetectable errors at reasonable cost. Polystyrene and polycarbonate capacitors may also be used in less critical applications.

6.1.3 AUTO-ZERO AND REFERENCE CAPACITORS

The size of the auto-zero capacitor has some influence on the noise of the system, with a larger capacitor reducing the noise. The reference capacitor should be large enough such that stray capacitance to ground from its nodes is negligible.
The dielectric absorption of the reference and autozero capacitors are only important at power-on or when the circuit is recovering from an overload. Smaller or cheaper capacitors can be used if accurate readings are not required for the first few seconds of recovery.

6.1.4 REFERENCE VOLTAGE

The analog input required to generate a full-scale output is $\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}_{\mathrm{REF}}$
The stability of the reference voltage is a major factor in the overall absolute accuracy of the converter. For this reason, it is recommended that a high-quality reference be used where high-accuracy absolute measurements are being made.

6.2 Conversion Timing

6.2.1 LINE FREQUENCY REJECTION

A signal integration period at a multiple of the 60 Hz line frequency will maximize 60 Hz "line noise" rejection. A 100 kHz clock frequency will reject 50 Hz , 60 Hz and 400 Hz noise. This corresponds to five readings per second (see Table 6-1 and Table 6-2).

TABLE 6-1: CONVERSION RATE VS. CLOCK FREQUENCY

Oscillator Frequency (kHz)	Conversion Rate (Conv./Sec.)
100	2.5
120	3
200	5
300	7.5
400	10
800	20
1200	30

TABLE 6-2: LINE FREQUENCY REJECTION VS. CLOCK FREQUENCY

Oscillator Frequency (kHz)	Line Frequency Rejection (Hz)
300	60
200	
150	
120	
100	
40	
$33-1 / 3$	
250	
$166-2 / 3$	50
125	
100	
100	

The conversion rate is easily calculated:
EQUATION 6-3:

$$
\text { Reading 1/sec }=\frac{\text { Clock Frequency }(H z)}{4000}
$$

6.3 High Speed Operation

The maximum conversion rate of most dual-slope A/D converters is limited by the frequency response of the comparator. The comparator in this circuit follows the integrator ramp with a $3 \mu \mathrm{sec}$ delay, at a clock frequency of 160 kHz ($6 \mu \mathrm{sec}$ period). Half of the first reference integrate clock period is lost in delay. This means that the meter reading will change from 0 to 1 with a $50 \mu \mathrm{~V}$ input, 1 to 2 with $150 \mu \mathrm{~V}$, 2 to 3 at $250 \mu \mathrm{~V}$, etc. This transition at midpoint is considered desirable by most users. However, if the clock frequency is increased appreciably above 200 kHz , the instrument will flash "1" on noise peaks, even when the input is shorted.

For many dedicated applications where the input signal is always of one polarity, the delay of the comparator need not be a limitation. Since the nonlinearity and noise do not increase substantially with frequency, clock rates of up to $\sim 1 \mathrm{MHz}$ may be used. For a fixed clock frequency, the extra count (or counts) caused by comparator delay will be a constant and can be subtracted out digitally.

The clock frequency may be extended above 160 kHz without this error, however, by using a low value resistor in series with the integrating capacitor. The effect of the resistor is to introduce a small pedestal voltage on to the integrator output at the beginning of the reference integrate phase. By careful selection of
the ratio between this resistor and the integrating resistor (a few tens of ohms in the recommended circuit), the comparator delay can be compensated and the maximum clock frequency extended by approximately a factor of 3 . At higher frequencies, ringing and second-order breaks will cause significant nonlinearities in the first few counts of the instrument.

The minimum clock frequency is established by leakage on the auto-zero and reference capacitors. With most devices, measurement cycles as long as 10 seconds give no measurable leakage error.

The clock used should be free from significant phase or frequency jitter. Several suitable low-cost oscillators are shown in Section 6.0 "Typical Applications". The multiplexed output means that if the display takes significant current from the logic supply, the clock should have good PSRR.

6.4 Zero Crossing Flip Flop

The flip flop interrogates the data once every clock pulse after the transients of the previous clock pulse and half clock pulse have died down. False zero crossings caused by clock pulses are not recognized. Of course, the flip flop delays the true zero crossing by up to one count in every instance. If a correction were not made, the display would always be one count too high. Therefore, the counter is disabled for one clock pulse at the beginning of the reference integrate (de-integrate) phase. This one-count delay compensates for the delay of the zero crossing flip flop and allows the correct number to be latched into the display. Similarly, a onecount delay at the beginning of auto-zero gives an overload display of 0000 instead of 0001. No delay occurs during signal integrate so that true ratiometric readings result.

6.5 Generating a Negative Supply

A negative voltage can be generated from the positive supply by using a TC7135 (see Figure 6-1).

FIGURE 6-1:
Negative Supply Voltage Generator.

TC7135

FIGURE 6-2: \quad 4-1/2 Digit ADC With Multiplexed Common Anode Led Display.

FIGURE 6-3: RC Oscillator Circuit.

FIGURE 6-4: Comparator Clock Circuits.

FIGURE 6-5:
4-1/2 Digit ADC With Multiplexed Common Cathode LED Display.

TC7135

7.0 PACKAGING INFORMATION

7.1 Package Marking Information

28-Pin PLCC

28-Pin PDIP (Wide)

44-Pin MQFP

64-Pin MQFP

Example:

Example:

Example:

Example:

Legend: $\mathrm{XX} \ldots \mathrm{X}$ Customer specific information*
YY Year code (last 2 digits of calendar year)
WW Week code (week of January 1 is week '01’)
NNN Alphanumeric traceability code
Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information.

28-Lead Plastic Leaded Chip Carrier (LI) - Square (PLCC)

UnitsDimension Limits		INCHES*			MILLIMETERS		
		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	p		. 050			1.27	
Pins per Side	n1		7			7	
Overall Height	A	. 165	. 173	. 180	4.19	4.39	4.57
Molded Package Thickness	A2	. 145	. 153	. 160	3.68	3.87	4.06
Standoff §	A1	. 020	. 028	. 035	0.51	0.71	0.89
Side 1 Chamfer Height	A3	. 021	. 026	. 031	0.53	0.66	0.79
Corner Chamfer 1	CH1	. 035	. 045	. 055	0.89	1.14	1.40
Corner Chamfer (others)	CH2	. 000	. 005	. 010	0.00	0.13	0.25
Overall Width	E	. 485	. 490	. 495	12.32	12.45	12.57
Overall Length	D	. 485	. 490	. 495	12.32	12.45	12.57
Molded Package Width	E1	. 450	. 453	. 456	11.43	11.51	11.58
Molded Package Length	D1	. 450	. 453	. 456	11.43	11.51	11.58
Footprint Width	E2	. 410	. 420	. 430	10.41	10.67	10.92
Footprint Length	D2	. 410	. 420	. 430	10.41	10.67	10.92
Lead Thickness	C	. 008	. 011	. 013	0.20	0.27	0.33
Upper Lead Width	B1	. 026	. 029	. 032	0.66	0.74	0.81
Lower Lead Width	B	. 013	. 020	. 021	0.33	0.51	0.53
Mold Draft Angle Top	α	0	5	10	0	5	10
Mold Draft Angle Bottom	β	0	5	10	0	5	10

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
010 " (0.254 mm) per side
JEDEC Equivalent: MO-047
Drawing No. C04-026

28-Lead Plastic Dual In-line (PI) - 600 mil (PDIP)

UnitsDimension Limits		INCHES*			MILLIMETERS		
		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	p		. 100			2.54	
Top to Seating Plane	A	. 160	. 175	. 190	4.06	4.45	4.83
Molded Package Thickness	A2	. 140	. 150	. 160	3.56	3.81	4.06
Base to Seating Plane	A1	. 015			0.38		
Shoulder to Shoulder Width	E	. 595	. 600	. 625	15.11	15.24	15.88
Molded Package Width	E1	. 505	. 545	. 560	12.83	13.84	14.22
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21
Tip to Seating Plane	L	. 120	. 130	. 135	3.05	3.30	3.43
Lead Thickness	C	. 008	. 012	. 015	0.20	0.29	0.38
Upper Lead Width	B1	. 030	. 050	. 070	0.76	1.27	1.78
Lower Lead Width	B	. 014	. 018	. 022	0.36	0.46	0.56
Overall Row Spacing §	eB	. 620	. 650	. 680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
$.010 "(0.254 \mathrm{~mm})$ per side.
JEDEC Equivalent: MO-011
Drawing No. C04-079

44-Lead Plastic Metric Quad Flatpack (KW) 10x10x2 mm Body, Lead Form (MQFP)

Units		INCHES			MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		44			44	
Pitch	p		. 031			0.80	
Pins per Side	n1		11			11	
Overall Height	A	. 079	. 086	. 093	2.00	2.18	2.35
Molded Package Thickness	A2	. 077	. 080	. 083	1.95	2.03	2.10
Standoff §	A1	. 002	. 006	. 010	0.05	0.15	0.25
Foot Length	L	. 029	. 035	. 041	0.73	0.88	1.03
Footprint (Reference)	(F)		. 063			1.60	
Foot Angle	ϕ	0	3.5	7	0	3.5	7
Overall Width	E	. 510	. 520	. 530	12.95	13.20	13.45
Overall Length	D	. 510	. 520	. 530	12.95	13.20	13.45
Molded Package Width	E1	. 390	. 394	. 398	9.90	10.00	10.10
Molded Package Length	D1	. 390	. 394	. 398	9.90	10.00	10.10
Lead Thickness	c	. 005	. 007	. 009	0.13	0.18	0.23
Lead Width	B	. 012	. 015	. 018	0.30	0.38	0.45
Pin 1 Corner Chamfer	CH	. 025	. 035	. 045	0.64	0.89	1.14
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed
.010" (0.254 mm) per side.
JEDEC Equivalent: MS-022
Drawing No. C04-071

64 Lead Metric Plastic Quad Flat (BU) (MQFP)

Units		INCHES			MILLIMETERS*		
Dimension Limits		MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n	64			64		
Pitch	e	. 031 BSC			0.80 BSC		
Overall Height	A	. 098	--	. 124	2.50	--	3.15
Molded Package Thickness	A2	. 098	. 106	. 114	2.50	2.70	2.90
Standoff §	A1	. 000	--	. 010	0.00	--	0.25
Overall Width	E	. 677 BSC			17.20 BSC		
Molded Package Width	E1	. 551 BSC			14.00 BSC		
Overall Length	D	. 677 BSC			17.20 BSC		
Molded Package Length	D1	. 551 BSC			14.00 BSC		
Foot Length	L	. 029	. 035	. 041	0.73	0.88	1.03
Footprint (Reference)	(F)	. 063 REF			1.60 REF		
Foot Angle	f	0°	--	6°	0°	--	7°
Lead Thickness	c	. 004	--	. 009	0.11	--	0.23
Lead Width	B	. 011	--	. 018	0.29	--	0.45
Mold Draft Angle Top	a	5°	--	16°	5°	--	16°
Mold Draft Angle Bottom	b	5°	--	16°	5°	--	16°

*Controlling Parameter
§ Significant Characteristic
Notes:
Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash
or protrusions shall not exceed $.010^{\prime \prime}(0.254 \mathrm{~mm})$ per side.
JEDEC equivalent: MS-022 BE.
Formerly TelCom PQFP package.
Drawing No. C04-022

PRODUCT IDENTIFICATION SYSTEM

Sales and Support

Data Sheets

Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office
2. The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277
3. The Microchip Worldwide Site (www.microchip.com)

Please specify which device, revision of silicon and Data Sheet (include Literature \#) you are using.

Customer Notification System

Register on our web site (www.microchip.com/cn) to receive the most current information on our products.

TC7135

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.

Abstract

Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KeELoQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.
All other trademarks mentioned herein are property of their respective companies.
© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

- Printed on recycled paper.

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro ${ }^{\circledR}$-bit MCUs, KEELOQ ${ }^{\oplus}$ code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office

2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: www.microchip.com

Atlanta

3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034
Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848
Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071
Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423
Fax: 972-818-2924

Detroit

Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250
Fax: 248-538-2260

Kokomo

2767 S. Albright Road
Kokomo, IN 46902
Tel: 765-864-8360
Fax: 765-864-8387

Los Angeles

18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888
Fax: 949-263-1338

San Jose

1300 Terra Bella Avenue
Mountain View, CA 94043
Tel: 650-215-1444
Fax: 650-961-0286

Toronto

6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC

Australia

Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755

China - Beijing

Unit 706B
Wan Tai Bei Hai Bldg
No. 6 Chaoyangmen Bei Str.
Beijing, 100027, China
Tel: 86-10-85282100
Fax: 86-10-85282104
China - Chengdu
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200
Fax: 86-28-86766599

China - Fuzhou

Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506
Fax: 86-591-7503521
China - Hong Kong SAR
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Shanghai
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700
Fax: 86-21-6275-5060

China - Shenzhen

Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380
Fax: 86-755-8295-1393

China - Shunde

Room 401, Hongjian Building, No. 2
Fengxiangnan Road, Ronggui Town, Shunde
District, Foshan City, Guangdong 528303, China
Tel: 86-757-28395507 Fax: 86-757-28395571

China - Qingdao

Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India

Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O'Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-22290061 Fax: 91-80-22290062

Japan

Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471-6166 Fax: 81-45-471-6122

Korea

168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore

200 Middle Road
\#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan

Kaohsiung Branch
30F-1 No. 8
Min Chuan 2nd Road
Kaohsiung 806, Taiwan
Tel: 886-7-536-4818
Fax: 886-7-536-4803

Taiwan

Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Austria

Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark

Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45-4420-9895 Fax: 45-4420-9910

France

Parc d'Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79

Germany

Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611
Fax: 39-0331-466781

Netherlands

Waegenburghtplein 4
NL-5152 JR, Drunen, Netherlands
Tel: 31-416-690399
Fax: 31-416-690340
United Kingdom
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44-118-921-5869
Fax: 44-118-921-5820

[^0]: * Assumes a positive polarity input signal. $\mathrm{SW}_{\mathrm{RI}}$ would be closed for a negative input signal.

