74FCT534 Octal D Flip-Flop with TRI-STATE® Outputs ### **General Description** The 'FCT534 is a high-speed, low-power octal D-type flipflop featuring separate D-type inputs for each flip-flop and TRI-STATE outputs for bus-oriented applications. A buffered Clock (CP) and Output Enable $(\overline{\text{OE}})$ are common to all flip-flops. FACTTM FCT utilizes NSC quiet series technology to provide improved quiet output switching and dynamic threshold performance. FACT FCT features GTOTM output control and undershoot corrector in addition to a split ground bus for superior performance. The 'FCT534 is the same as the 'FCT374 except that the outputs are inverted. #### **Features** - \blacksquare I_{CC} and I_{OZ} reduced to 40.0 μA and $\pm2.5~\mu\text{A}$ respectively - NSC 54/74FCT534 is pin and functionally equivalent to IDT 54/74FCT534 - Edge-triggered D-type inputs - Buffered positive edge-triggered clock - Input clamp diodes to limit bus reflections - TTL/CMOS input and output level compatible - \blacksquare I_{OL} = 48 mA - CMOS power levels - ESD immunity ≥ 4 kV typ # **Logic Symbols** # **Connection Diagram** | Pin Names | Description | |--|---| | $\begin{array}{c} D_0 - D_7 \\ CP \\ \overline{OE} \\ \overline{O}_0 - \overline{O}_7 \end{array}$ | Data Inputs Clock Pulse Input TRI-STATE Output Enable Input Complementary TRI-STATE Outputs | TRI-STATE® is a registered trademark of National Semiconductor Corporation. FACT™ and GTO™ are trademarks of National Semiconductor Corporation. ### **Functional Description** The 'FCT534 consists of eight edge-triggered flip-flops with individual D-type inputs and TRI-STATE complementary outputs. The buffered clock and buffered Output Enable are common to all flip-flops. The eight flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH Clock (CP) transition. With the Output Enable (OE) LOW, the contents of the eight flip-flops are available at the outputs. When the $\overline{\text{OE}}$ is HIGH, the outputs go to the high impedance state. Operation of the $\overline{\text{OE}}$ input does not affect the state of the flip-flops. ## **Logic Diagram** TL/F/10665-5 Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. #### **Function Table** | | Output | | | |----|--------|---|------------------| | СР | OE | D | ō | | _ | L | Н | L | | | L | L | Н | | L | L | X | \overline{O}_0 | | X | Н | Χ | Z | H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial = LOW-to-HIGH Clock Transition Z =High Impedance $\overline{O}_0 =$ Value stored from previous clock cycle #### **Absolute Maximum Ratings** (Note 1) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. Terminal Voltage with Respect to GND (V_{TERM}) 74FCT -0.5V to +7.0V Temperature Under Bias (T_{BIAS}) 74FCT -55° C to $+125^{\circ}$ C Storage Temperature (T_{STG}) 74FCT -55°C to +125°C DC Output Current (I_{OUT}) 120 mA Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. Exposure to absolute maximum rating conditions for extended periods may affect reliability. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. #### **Recommended Operating Conditions** Supply Voltage (V_{CC}) 74FCT 4.75V to 5.25V Input Voltage 0V to V_{CC} Output Voltage 0V to V_{CC} Operating Temperature (T_A) 74FCT -0°C to +70°C Junction Temperature (T_J) 140°C Note: All commercial packaging is not recommended for applications requiring greater than 2000 temperature cycles from -40°C to $+125^{\circ}\text{C}$. ## **DC Characteristics for 'FCTA Family Devices** Typical values are at $V_{CC} = 5.0V$, 25°C ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC} = 5.0V \pm 5\%$, $T_A = 0^{\circ}C$ to $+70^{\circ}C$; $V_{HC} = V_{CC} - 0.2V$. | 7 7 7 66 7 7 7 10 66 | | | | | | | | | |----------------------|-------------------------------------|------------------------|------------------------|----------------------------|-------|--|--|--| | Symbol | Parameter | 74FCTA | | | Units | Conditions | | | | Symbol | Farameter | Min | Тур | Max | Onits | Cond | itions | | | V_{IH} | Minimum High Level
Input Voltage | 2.0 | | | V | | | | | V _{IL} | Maximum Low Level
Input Voltage | | | 0.8 | V | | | | | lіН | Input High Current | | | 5.0
5.0 | μΑ | V _{CC} = Max | $V_I = V_{CC}$
$V_I = 2.7V \text{ (Note 2)}$ | | | I _{IL} | Input Low Current | | | -5.0
-5.0 | μΑ | V _{CC} = Max | V _I = 0.5V (Note 2)
V _I = GND | | | I _{OZ} | Maximum TRI-STATE Current | | | 2.5
2.5
-2.5
-2.5 | μΑ | V _{CC} = Max | $V_{O} = V_{CC}$
$V_{O} = 2.7V \text{ (Note 2)}$
$V_{O} = 0.5V \text{ (Note 2)}$
$V_{O} = \text{GND}$ | | | V_{IK} | Clamp Diode Voltage | | -0.7 | -1.2 | V | $V_{CC} = Min; I_N = -18 \text{ mA}$ | | | | los | Short Circuit Current | -60 | -120 | | mA | V _{CC} = Max (Note 1); V _O = GND | | | | V _{OH} | Minimum High Level | 2.8 | 3.0 | | | $V_{CC} = 3V$; $V_{IN} = 0.2V$ or V_{HC} ; $I_{OH} = -32 \mu A$ | | | | | Output Voltage | V _{HC}
2.4 | V _{CC}
4.3 | | V | $V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ | | | | V _{OL} | Maximum Low Level | | GND | 0.2 | | $V_{CC} = 3V; V_{IN} = 0.2V o$ | r V _{HC} ; I _{OL} = 300 μA | | | | Output Voltage | | GND
0.3 | 0.2
0.5 | V | $V_{CC} = Min$ $V_{IN} = V_{IH} \text{ or } V_{IL}$ | $I_{OL} = 300 \mu A$
$I_{OL} = 48 \text{ mA}$ | | ## DC Characteristics for 'FCT Family Devices (Continued) Typical values are at $V_{CC}=5.0V$, $25^{\circ}C$ ambient and maximum loading. For test conditions shown as Max, use the value specified for the appropriate device type: Com: $V_{CC}=5.0V$ $\pm 5\%$, $T_A=0^{\circ}C$ to $+70^{\circ}C$; $V_{HC}=V_{CC}-0.2V$. | Symbol | Parameter | 74FCT | | | Units | Conditions | | | |------------------|--|--|--------------------------------|------|--------|--|--|---| | Зушьог | | Min | Тур | Max | Oilles | Conditions | | | | Icc | Maximum Quiescent
Supply Current | | 1.0 | 40.0 | μΑ | $\label{eq:VCC} \begin{aligned} V_{CC} &= \text{Max} \\ V_{IN} &\geq V_{HC}, V_{IN} \leq 0.2V \\ f_I &= 0 \end{aligned}$ | | | | ΔI _{CC} | Quiescent Supply Current;
TTL Inputs HIGH | | 0.5 | 2.0 | mA | V _{CC} = Max
V _{IN} = 3.4V (Note 3) | | | | ICCD | Dynamic Power
Supply Current (Note 4) | | 0.15 | 0.25 | mA/MHz | V _{CC} = Max Outputs Open $\overline{\text{OE}} = \text{GND}$ One Input Toggling 50% Duty Cycle | $ \begin{array}{c} V_{IN} \geq V_{HC} \\ V_{IN} \leq 0.2V \end{array} $ | | | I _C | Total Power Supply
Current (Note 6) | | 1.5 | 4.0 | | $V_{CC} = Max$ Outputs Open $f_{CP} = 10 \text{ MHz}$ $\overline{OE} = GND$ | $ \begin{array}{c} V_{IN} \geq V_{HC} \\ V_{IN} \leq 0.2V \end{array} $ | | | | 1 1.8 6.0 1 | f _I = 5 MHz
One Bit Toggling
50% Duty Cycle | $V_{IN} = 3.4V$ $V_{IN} = GND$ | | | | | | | | | | 3.0 | 7.8 | MA | | (Note 5) V _{CC} = Max Outputs Open $\overline{OE} = \text{GND}$ $f_{CP} = 10 \text{MHz}$ | $ \begin{array}{c} V_{IN} \geq V_{HC} \\ V_{IN} \leq 0.2V \end{array} $ | | | | | 5.0 | 16.8 | | f _I = 2.5 MHz
Eight Bits Toggling
50% Duty Cycle | V _{IN} = 3.4V
V _{IN} = GND | | | V _H | Input Hysteresis
on Clock Only | | 200 | | mV | | | | Note 1: Maximum test duration not to exceed one second, not more than one output shorted at one time. Note 2: This parameter guaranteed but not tested. Note 3: Per TTL driven input ($V_{IN}\,=\,3.4V$); all other inputs at V_{CC} or GND. Note 4: This parameter is not directly testable, but is derived for use in Total Power Supply calculations. $\textbf{Note 5:} \ \ \textbf{Values for these conditions are examples of the I}_{CC} \ \ \textbf{formula.} \ \ \textbf{These limits are guaranteed but not tested.}$ Note 6: $I_C = I_{QUIESCENT} + I_{INPUTS} + I_{DYNAMIC}$ $I_{C}\,=\,I_{CC}\,+\,\Delta I_{CC}\;D_{H}N_{T}\,+\,I_{CCD}\;(f_{CP}/2\,+\,f_{I}\;N_{I})$ $I_{CC} = Quiescent Current$ $\Delta I_{CC} =$ Power Supply Current for a TTL High Input (V_{IN} = 3.4V) $D_{H} = Duty Cycle for TTL inputs High$ $N_T = Number of Inputs at D_H$ $I_{CCD} = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)$ $f_{\mbox{\footnotesize{CP}}} = \mbox{Clock Frequency for Register Devices}$ (Zero for Non-Register Devices) $f_{\parallel} = Input Frequency$ $N_I = Numbers of Inputs at f_I$ All currents are in milliamps and all frequencies are in megahertz. #### **AC Electrical Characteristics** | | | 74FCT | 74FC | Units | | |--------------------------------------|---|--------------------------------------|---|-------|----| | Symbol | Parameter | $T_A = +25^{\circ}C$ $V_{CC} = 5.0V$ | T _A , V _{CC} = C _L = 5 | | | | | | Тур | Min
(Note 1) | Max | | | t _{PLH}
t _{PHL} | Propagation Delay
C _P to On | 6.5 | 1.5 | 10.0 | ns | | t _{PZH}
t _{PZL} | Output Enable
Time | 9.0 | 1.5 | 12.5 | ns | | t _{PHZ}
t _{PLZ} | Output Disable
Time | 6.0 | 1.5 | 8.0 | ns | | t _s | Set Up Time High or Low
Dn to CP | 1.0 | 2.0 | | ns | | t _h | Hold Time High or Low
Dn to CP | 0.5 | 1.5 | | ns | | t _w | CP Pulse Width
High or Low | 4.0 | 7.0 | | ns | Note 1: Minimum limits guaranteed but not tested on propagation delays. #### Capacitance $T_A = +25$ °C, $f_I = 1.0 \text{ MHz}$ | Symbol | Parameter | Тур | Max | Units | Conditions | |------------------|--------------------|-----|-----|-------|-----------------------| | C _{IN} | Input Capacitance | 6 | 10 | pF | $V_{IN} = 0V$ | | C _{OUT} | Output Capacitance | 8 | 12 | pF | V _{OUT} = 0V | Note: This parameter is measured at characterization but not tested. $C_{\mbox{\scriptsize OUT}}$ for 74FCT only. ## **Ordering Information** The device number is used to form part of a simplified purchasing code where a package type and temperature range are defined as follows: ## Physical Dimensions inches (millimeters) (Continued) 20-Lead Plastic Dual-In-Line Package (P) NS Package Number N20B #### LIFE SUPPORT POLICY NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. N20B (REV A) National Semiconductor Corporation 1111 West Bardin Road Arlington, TX 76017 Tel: 1(800) 272-9959 Fax: 1(800) 737-7018 National Semiconductor Europe Fax: (+49) 0-180-530 85 86 Email: onlyeg@tevnz.nsc.com Deutsch Tel: (+49) 0-180-530 85 85 English Tel: (+49) 0-180-532 78 32 Français Tel: (+49) 0-180-532 93 58 Italiano Tel: (+49) 0-180-534 16 80 National Semiconductor Hong Kong Ltd. 13th Floor, Straight Block, Ocean Centre, 5 Canton Rd. Tsimshatsui, Kowloon Hong Kong Tel: (852) 2737-1600 Fax: (852) 2736-9960 National Semiconductor Japan Ltd. Tel: 81-043-299-2309 Fax: 81-043-299-2408