

S2A~S2M

SURFACE MOUNT RECTIFIER

VOLTAGE 50 to 1000 Volts CURRENT 2.0 Amperes

FEATURES

- Plastic package has Underwriters Laboratory Flammability Classification 94V-O
- For surface mounted applications
- Low profile package
- · Built-in strain relief
- Easy pick and place
- Glass passivated iunction
- In compliance with EU RoHS 2002/95/EC directives

MECHANICAL DATA

- Case: JEDEC DO-214AA molded plastic
- Terminals:Solder plated, solderable per MIL-STD-750,Method 2026
- Polarity: Indicated by cathode band
- Standard packaging: 12mm tape (EIA-481)
- Weight: 0.003 ounce, 0.092 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified. Single phase , half wave ,60Hz, resistive or inductive load. For capacitive load , derate current by 20%.

SYMBOL	S2A	S2B	S2D	S2G	S2J	S2K	S2M	UNITS
V _{RRM}	50	100	200	400	600	800	1000	V
V _{RMS}	35	70	140	280	420	560	700	V
V _{DC}	50	100	200	400	600	800	1000	V
I _{F(AV)}	2.0						А	
I _{FSM}	60						А	
V _F	1.1						V	
I _R	1.0 125							μΑ
C	30						pF	
R _{eJL}	16						°C / W	
T_J, T_{STG}	-55 to +150							°C
	V_{RRM} V_{RMS} V_{DC} $I_{F(AV)}$ I_{FSM} V_{F} I_{R} C_{J} $R_{\theta JL}$	V _{RRM} 50 V _{RMS} 35 V _{DC} 50 I _{F(AV)} I _{FSM} V _F I _R C _J R _{0JL}	V _{RRM} 50 100 V _{RMS} 35 70 V _{DC} 50 100 I _{F(AV)} I _{FSM} V _F I _R C _J R _{0JL}	V _{RRM} 50 100 200 V _{RMS} 35 70 140 V _{DC} 50 100 200 I _{F(AV)} I _{FSM} V _F I _R C _J R _{θJL}	V _{RRM} 50 100 200 400 V _{RMS} 35 70 140 280 V _{DC} 50 100 200 400 I _{F(AV)} 2.0 I _{FSM} 60 V _F 1.1 I _R 1.0 125 C _J 30 R _{θJL} 16	V _{RRM} 50 100 200 400 600 V _{RMS} 35 70 140 280 420 V _{DC} 50 100 200 400 600 I _{F(AV)} 2.0 I _{FSM} 60 V _F 1.1 I _R 1.0 125 C _J 30 R _{ØJL} 16	V _{RRM} 50 100 200 400 600 800 V _{RMS} 35 70 140 280 420 560 V _{DC} 50 100 200 400 600 800 I _{F(AV)} 2.0 I _{FSM} 60 V _F 1.1 I _R 1.0 125 C _J 30 R _{θJL} 16	V _{RRM} 50 100 200 400 600 800 1000 V _{RMS} 35 70 140 280 420 560 700 V _{DC} 50 100 200 400 600 800 1000 I _{F(AV)} 2.0 I _{FSM} 60 V _F 1.1 I _R 1.25 C _J 30 R _{θJL} 16

NOTES:

- 1.Measured at 1.0 MHZ and applied Vr=4.0 volts.
- 2.8.0mm²(.013mm thick)land areas.

STAD-FEB.27.2009 PAGE . 1

S2A~S2M

RATING AND CHARACTERISTIC CURVES

Fig.1 FORWARD CURRENT DERATING CURVE

Fig.3-TYPICAL REVERSE CHARACTERISTIC

KATING AND CHARACTERISTIC CORVER

Fig.2 MAXIMUM NON REPETITIVE PEAK SURGE CURRENT

FIG.2 TYPICAL FORWARD CHARACTERISTICS

STAD-FEB.27.2009 PAGE . 2

S2A~S2M

MOUNTING PAD LAYOUT

ORDER INFORMATION

• Packing information

T/R - 3K per 13" plastic Reel

T/R - 0.5Kper 7" plastic Reel

LEGAL STATEMENT

Copyright PanJit International, Inc 2009

The information presented in this document is believed to be accurate and reliable. The specifications and information herein are subject to change without notice. Pan Jit makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose. Pan Jit products are not authorized for use in life support devices or systems. Pan Jit does not convey any license under its patent rights or rights of others.

STAD-FEB.27.2009 PAGE . 3