CURRENT LIMITED POWER DISTRIBUTION SWITCHES

- $80 \mathrm{~m} \Omega \mathrm{HIGH}-$ SIDE MOSFET SWITCH
- 500mA CONTINUOUS CURRENT PER CHANNEL
- INDEPENDENT THERMAL AND SHORT-CIRCUIT PROTECTION WITH OVERCURRENT LOGIC OUTPUT
- OPERATING RANGE FROM 2.7V TO 5.5V
- CMOS- AND TTL-COMPATIBLE ENABLE INPUTS
- 10 ms OC_N FAULT BLANKING
- 2.5 ms TYPICAL RISE TIME
- UNDERVOLTAGE LOCKOUT
- 20 \quad A MAXIMUM STANDBY SUPPLY CURRENT
- AMBIENT TEMPERATURE RANGE, $0^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$
- ESD PROTECTION

DESCRIPTION

The ST2054 power distribution switches is intended for application where heavy capacitive loads and short circuits are likely to be encountered. These devices incorporate $80 \mathrm{~m} \Omega$ N -channel MOSFET high-side power switches for power-distribution systems that require multiple powers switches in a single package. Each switch is controlled by an independent logic enable input. Gate drive is provided by an internal charge pump designed to control the power-switch rise times and fall times to minimize current surges during switching. The charge pump requires no external

components and allows operation from supplies as low as 2.7 V .
When the output load exceeds the current-limit threshold or a short is present, these devices limit the output current to a safe level by switching into a constant-current mode, pulling the overcurrent $(\overline{\mathrm{OCx}})$ logic output low. A 10 ms deglitching circuit provides fault-blanking feature, preventing the OC_N pin to be asserted during hot-insertion or short spikes of overcurrent conditions.
When continuous heavy overloads and short circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts off the switch to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until valid input voltage is present. These power-distribution switches are designed to current limit at 0.9 A .

Table 1: Order Codes

Type	Temperature Range	Package	Comments
ST2054BD	-40 to $85^{\circ} \mathrm{C}$	SO-16 (Tube)	50parts per tube $/ 40$ tube per box
ST2054BDR	-40 to $85^{\circ} \mathrm{C}$	SO-16 (Tape \& Reel)	2500 parts per reel

Figure 1: Pin Configuration

Table 2: Pin Description

Pln \mathbf{N}°	Symbol	Name And Function
1	GNDA	Ground
2	IN1	Input Voltage
3	EN1	Enable Input. Logic High Turns On Power Switth IN-OUT1
4	EN2	Enable Input. Logic High Turns On Power Switch IN-OUT2
5	GNDB	Ground
6	IN2	Input Voltage
7	EN3	Enable Input. Logic High Turns On Power Switch IN-OUT3
8	EN4	Enable Input. Logic High Turns On Power Switch IN-OUT4
9	$\overline{\text { OC4 }}$	Overcurrent. Logic Output Active Low IN-OUT4
10	OUT4	Power Switch Output 11 12 OUT3Power Switch Output 13 OC3Overcurrent. Logic Output Active Low IN-OUT3
14	OC2	Overcurrent. Logic Output Active Low IN-OUT2
15	OUT1	Power Switch Output 16 Power Switch Output OC1Overcurrent. Logic Output Active Low IN-OUT1

Table 3: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V_{I}	Input Voltage Range (Note 1)	-0.3 to 6	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage Range (Note 1)	-0.3 to $\left(\mathrm{V}_{\mathrm{I}}+0.3\right)$	V
$\mathrm{V}_{\mathrm{IENX}}$	Input Voltage Range	-0.3 to 6	V
I_{O}	Continuous Output Current	Internally Limited	
ESD	Electrostatic Discharge	2	kV
T_{J}	Operating Junction Temperature	-40 to 125	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these condition is not implied.
Note1: All voltage are referred to GND
Table 4: Recommended Operating Condition

Symbol	Parameter	Min.	Typ.	Max.	Unit
V_{I}	Input Voltage Range (Note 1)	2.7		5.5	V
$\mathrm{~V}_{\mathrm{O}}$	Output Voltage Range (Note 1)	0		5.5	V
I_{O}	Continuous Output Current (Per Switch)	0		500	mA

Figure 2: Block Diagram

Table 5: Power Switch Electrical Characteristics $\left(\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=\right.$ rated current, $\mathrm{V}_{\text {IEN }}=\mathrm{V}_{\mathrm{I}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (See Note 1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{R}_{\mathrm{DS} \text { (ON) }}$	Static Drain-Source ON-State Resistance	$\mathrm{V}_{1}=5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{~A}$		80	100	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{l}}=5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{AT}_{\mathrm{J}}=85^{\circ} \mathrm{C}$		90	120	
		$\mathrm{V}_{1}=5 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{AT}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		100	135	
		$\mathrm{V}_{1}=3.3 \mathrm{~V} \quad \mathrm{l}_{\mathrm{O}}=0.5 \mathrm{~A}$		90	125	
		$\mathrm{V}_{\mathrm{I}}=3.3 \mathrm{~V} \quad \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{AT}_{\mathrm{J}}=85^{\circ} \mathrm{C}$		110	145	
		$\mathrm{V}_{1}=3.3 \mathrm{~V} \mathrm{I}_{\mathrm{O}}=0.5 \mathrm{AT}_{\mathrm{J}}=125^{\circ} \mathrm{C}$		120	160	
t_{r}	Output Rise Time	$\mathrm{V}_{1}=5.5 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$		2.5		ms
		$\mathrm{V}_{1}=2.7 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=10 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$		3		
t_{f}	Output Fall Time	$\mathrm{V}_{1}=5.5 \mathrm{~V} \mathrm{R}_{\mathrm{L}}=10 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$		0.3		ms
		$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V} \quad \mathrm{R}_{\mathrm{L}}=10 \Omega \mathrm{C}_{\mathrm{L}}=1 \mu \mathrm{~F}$		0.2		

Table 6: Enable Input ENx Characteristics $\left(\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=\right.$ rated current, $\mathrm{V}_{\mathrm{IEN}}=\mathrm{V}_{\mathrm{I}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (See Note 1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{IH}	High level Input Voltage	$\mathrm{V}_{\mathrm{I}}=2.7 \mathrm{~V}$ to 5.5 V	2			V
$\mathrm{~V}_{\mathrm{IL}}$	Low level Input Voltage	$\mathrm{V}_{\mathrm{I}}=4.5 \mathrm{~V}$ to 5.5 V			0.8	V
		$\mathrm{~V}_{\mathrm{I}}=2.7 \mathrm{~V}$ to 4.5 V			0.4	
I_{I}	Input Current	$\mathrm{V}_{\mathrm{IENX}}=\mathrm{V}_{\mathrm{I}}$ or 0 V	-0.5		0.5	$\mu \mathrm{~A}$
t_{on}	Turn-on Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega \quad \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$			20	ms
$\mathrm{t}_{\text {off }}$	Turn-off Time	$\mathrm{R}_{\mathrm{L}}=10 \Omega \quad \mathrm{C}_{\mathrm{L}}=100 \mu \mathrm{~F}$			40	ms

Table 7: Current Limit Characteristics $\left(\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=\right.$ rated current, $\mathrm{V}_{\mathrm{IEN}}=\mathrm{V}_{\mathrm{I}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (See Note 1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
IOS	Short Circuit Output Current	$V_{1}=5 \mathrm{~V}$, OUT connected to GND, device enabled into short circuit	0.7	1	1.3	A

Table 8: Supply Current Characteristics $\left(\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=\right.$ rated current, $\mathrm{V}_{\mathrm{IEN}}=\mathrm{V}_{\mathrm{I}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (See Note 1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\text {SOL }}$	Current Low Level Output	$\mathrm{V}_{\text {IENX }}=0$, No Load,		0.05	2	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IENX }}=0$, No Load, $\quad \mathrm{T}_{\mathrm{J}}=-40$ to $125^{\circ} \mathrm{C}$			20	
$\mathrm{I}_{\mathrm{SOH}}$	Current Low High Output	$\mathrm{V}_{\text {IENX }}=\mathrm{V}_{1}$, No Load,		140	180	$\mu \mathrm{A}$
		$\mathrm{V}_{\text {IENX }}=\mathrm{V}_{\mathrm{I}}$, No Load, $\mathrm{T}_{\mathrm{J}}=-40$ to $125^{\circ} \mathrm{C}$			200	
I_{L}	Output Leakage Current	$\mathrm{V}_{\text {IENX }}=0$, Output Connected to GND, $\mathrm{T}_{\mathrm{J}}=-40 \text { to } 125^{\circ} \mathrm{C}$			20	$\mu \mathrm{A}$

Table 9: UndervoItage Characteristics $\left(\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=\right.$ rated current, $\mathrm{V}_{\mathrm{IEN}}=\mathrm{V}_{\mathrm{I}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (See Note 1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
V_{IL}	Low Level Input Voltage		2		2.5	V
$\mathrm{~V}_{\mathrm{HYS}}$	Hysteresys			100		mV

Table 10: Overcurrent $(\overline{\mathrm{OC}})$ Characteristics $\left(\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=\right.$ rated current, $\mathrm{V}_{\mathrm{IEN}}=\mathrm{V}_{\mathrm{I}}, \mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$, unless otherwise specified.) (See Note 1)

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
$\mathrm{I}_{\mathrm{SINK}}$	Sink Current	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}$	10			mA
$\mathrm{~V}_{\mathrm{O}}$	Output Low Voltage	$\mathrm{I}_{\mathrm{O}}=5 \mathrm{~mA}$			0.5	V
$\mathrm{I}_{\mathrm{OFF}}$	OFF-State Current	$\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V} \mathrm{~V}_{\mathrm{O}}=3.3 \mathrm{~V}$			1	$\mu \mathrm{~A}$
$\mathrm{~T}_{\mathrm{FB}}$	Fault-Blanking period	$\mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}($ See Note 2 and 3$)$	2	10		ms

Note 1: Pulse testing techniques maintain junction temperature close to ambient temperature: thermal effect must be takes into account separately.
Note 2: Specified by design, not production tested.
Note 3: Guaranteed by design.
Figure 3: Test Circuit

Figure 4: Waveform - Propagation Delays ($\mathrm{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			1.75			0.068
a1	0.1		0.25	0.004		0.010
a2			1.64			0.063
b	0.35		0.46	0.013		0.018
b1	0.19		0.25	0.007		0.010
C		0.5			0.019	
c1	45° (typ.)					
D	9.8		10	0.385		0.393
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		8.89			0.350	
F	3.8		4.0	0.149		0.157
G	4.6		5.3	0.181		0.208
L	0.5		1.27	0.019		0.050
M			0.62			0.024
S	8° (max.)					

Tape \& Reel SO-16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
A			330			12.992
C	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60		22.4			0.882
T			10.5	0.406		0.262
Ao	6.45		2.3	0.082		0.090
Ko	2.1		4.1	0.153		0.161
Po	3.9			8.1	0.311	
P	7.9					0.319

Note: Drawing not in scale

Table 11: Revision History

Date	Revision	Description of Changes
28-Oct-2004	2	Maturity Change.
13-Jul-2005	3	Add bullet on pag. 1, add paragraph in the description on pag. 1 and add row $\mathrm{T}_{\text {FB }}$ on Table 10.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics
All other names are the property of their respective owners
© 2005 STMicroelectronics - All Rights Reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com

