# LOW-POWER, 12-BIT, 1MHz, SINGLE/DUAL UNIPOLAR INPUT, ANALOG-TO-DIGITAL CONVERTERS WITH SERIAL INTERFACE 

## FEATURES

- 2.7V to 5.5V Analog Supply, Low Power:
$-13.7 \mathrm{~mW}(1 \mathrm{MHz},+\mathrm{VA}=3 \mathrm{~V},+\mathrm{VBD}=1.8 \mathrm{~V})$
- 1 MHz Sampling Rate $3 \mathrm{~V} \leq+\mathrm{VA} \leq 5.5 \mathrm{~V}$, 900 kHz Sampling Rate $2.7 \mathrm{~V} \leq+\mathrm{VA} \leq 3 \mathrm{~V}$
- Excellent DC Performance:
- $\pm 0.15$ LSB Typ, $\pm 0.5$ LSB Max INL
- $\pm 0.12$ LSB Typ, $\pm 0.5$ LSB Max DNL
- $\pm 0.8 \mathrm{mV}$ Max Offset Error at 3 V
- $\pm 1.25 \mathrm{mV}$ Max Offset Error at 5V
- Excellent AC Performance at $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ with 73.9dB SNR, 93.4dB SFDR, -88.5dB THD
- Built-In Conversion Clock (CCLK)
- 1.65V to 5.5 V I/O Supply:
- SPITM/DSP-Compatible Serial Interface
- SCLK up to 50 MHz
- Comprehensive Power-Down Modes:
- Deep Power-Down
- Nap Power-Down
- Auto Nap Power-Down
- Unipolar Input Range: OV to $\mathrm{V}_{\text {REF }}$
- Software Reset
- Global CONVST (Independent of CS)
- Programmable Status/Polarity EOC/INT
- $4 \times 4$ QFN-16 and TSSOP-16 Packages
- Multi-Chip Daisy-Chain Mode
- Programmable TAG Bit Output
- Auto/Manual Channel Select Mode (ADS7230)


## APPLICATIONS

- Communications
- Transducer Interface
- Medical Instruments
- Magnetometers
- Industrial Process Control
- Data Acquisition Systems
- Automatic Test Equipment


## DESCRIPTION

The ADS7229 is a low-power, 12-bit, 1MSPS analog-to-digital converter (ADC) with a unipolar input. The device includes a 12-bit capacitor-based successive approximation register (SAR) ADC with inherent sample-and-hold.
The ADS7230 is based on the same core and includes a 2 -to- 1 input MUX with a programmable TAG bit output option. Both the ADS7229 and ADS7230 offer a high-speed, wide voltage serial interface and are capable of daisy-chain mode operation when multiple converters are used.
These devices are available in $4 \times 4$ QFN and TSSOP-16 packages, and are fully specified for operation over the industrial $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ temperature range.

Low Power, High-Speed SAR Converter Family

| Type/Speed |  | $\mathbf{5 0 0}$ kSPS | 1 MSPS |
| :--- | :--- | :---: | :---: |
| 16-bit single-ended | Single | ADS8327 | ADS8329 |
|  | Dual | ADS8328 | ADS8330 |
| 14-bit single-ended | Single |  | ADS7279 |
|  | Dual |  | ADS7280 |
| 12-bit single-ended | Single |  | ADS7229 |
|  | Dual |  | ADS7230 |



[^0]This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

ORDERING INFORMATION ${ }^{(1)}$

| MODEL | MAXIMUM INTEGRAL LINEARITY (LSB) | $\qquad$ | MAXIMUM OFFSET ERROR (mV) | PACKAGE TYPE | PACKAGE DESIGNATOR | TEMPERATURE RANGE | ORDERING INFORMATION | TRANSPORT MEDIA, QUANTITY |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS72291 | $\pm 0.5$ | $\pm 0.5$ | $\pm 1.25$ | $4 \times 4$ QFN-16 | RSA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | ADS7229IRSAT | Small tape and reel, 250 |
|  |  |  |  |  |  |  | ADS7229IRSAR | Tape and reel, 3000 |
|  |  |  |  | TSSOP-16 | PW |  | ADS7229IPW | Tube, 90 |
|  |  |  |  |  |  |  | ADS7229IPWR | Tape and reel, 2000 |
| ADS72301 | $\pm 0.5$ | $\pm 0.5$ | $\pm 1.25$ | $4 \times 4$ QFN-16 | RSA | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | ADS7230IRSAT | Small tape and reel, 250 |
|  |  |  |  |  |  |  | ADS7230IRSAR | Tape and reel, 3000 |
|  |  |  |  | TSSOP-16 | PW |  | ADS7230IPW | Tube, 90 |
|  |  |  |  |  |  |  | ADS7230IPWR | Tape and reel, 2000 |

(1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or see the TI web site at Www.ti.com.

## ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Over operating free-air temperature range, unless otherwise noted.

|  |  |  | ADS7229, ADS7230 | UNIT |
| :---: | :---: | :---: | :---: | :---: |
|  | +IN to AGND |  | -0.3 to +VA +0.3 | V |
|  | -IN to AGND |  | -0.3 to +VA +0.3 | V |
|  | +VA to AGND |  | -0.3 to 7 | V |
| Voltage range | +VBD to BDGND |  | -0.3 to 7 | V |
|  | AGND to BDGND |  | -0.3 to 0.3 | V |
| Digital input vo | to BDGND |  | -0.3 to +VBD + 0.3 | V |
| Digital output v | ge to BDGND |  | -0.3 to +VBD + 0.3 | V |
| $\mathrm{T}_{\mathrm{A}} \quad$ Operating free- | mperature range |  | -40 to +85 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {stg }} \quad$ Storage tempe | re range |  | -65 to +150 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{J}$ $\max$ Junction tempe |  |  | +150 | ${ }^{\circ} \mathrm{C}$ |
|  | Lead temperature, | Vapor phase (60 sec) | +215 | ${ }^{\circ} \mathrm{C}$ |
| $4 \times 4$ QFN-16 | soldering | Infrared (15 sec) | +220 | ${ }^{\circ} \mathrm{C}$ |
| package | Power dissipation |  | $\left(\mathrm{T}_{\text {J max }}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\text {JA }}$ |  |
|  | $\theta_{\text {JA }}$ thermal impeda |  | 47 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
|  | Lead temperature, | Vapor phase (60 sec) | +215 | ${ }^{\circ} \mathrm{C}$ |
| TSSOP-16 | soldering | Infrared (15 sec) | +220 | ${ }^{\circ} \mathrm{C}$ |
| package | Power dissipation |  | $\left(\mathrm{T}_{\text {J max }}-\mathrm{T}_{\mathrm{A}}\right) / \theta_{\text {JA }}$ |  |
|  | $\theta_{\text {JA }}$ thermal impeda |  | 86 | ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |

(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. InSTRUMENTS

## ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=+1.65 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}$, and $\mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MHz}$, unless otherwise noted.

| PARAMETER |  | TEST CONDITIONS | ADS7229, ADS7230 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |
| ANALOG INPUT |  |  |  |  |  |  |
| FSR | Full-scale input voltage ${ }^{(1)}$ |  | +IN - (-IN) or (+INx - COM) | 0 |  | $\mathrm{V}_{\text {REF }}$ | V |
| Absolute input voltage |  | +IN, +IN0, +IN1 | AGND - 0.2 |  | +VA + 0.2 | V |
|  |  | -IN or COM | AGND - 0.2 | AGND + 0.2 |  |  |
| Input capacitance |  |  | 45 |  |  | pF |
| Input leakage current |  | No ongoing conversion, dc input | 50 |  |  | nA |
| Input channel isolation, ADS7230 only |  | At dc | 109 |  |  | dB |
|  |  | $\mathrm{V}_{\mathrm{I}}= \pm 1.25 \mathrm{~V}_{\mathrm{PP}}$ at 50 kHz | $101$ |  |  |  |
| SYSTEM PERFORMANCE |  |  |  |  |  |  |
|  | Resolution |  | 12 |  |  | Bits |
| NMC | No missing codes |  | 12 |  |  | Bits |
| INL | Integral linearity |  | -0.5 | $\pm 0.15$ | 0.5 | $\mathrm{LSB}^{(2)}$ |
| DNL | Differential linearity |  | -0.5 | $\pm 0.12$ | 0.5 | $\mathrm{LSB}^{(2)}$ |
| $\mathrm{E}_{0}$ | Offset error ${ }^{(3)}$ |  | -1.25 | $\pm 0.3$ | 1.25 | mV |
|  | Offset error drift | $F S R=5 \mathrm{~V}$ |  | $\pm 0.2$ |  | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{E}_{\mathrm{G}}$ | Gain error |  | -0.1 | $\pm 0.002$ | 0.1 | \%FSR |
|  | Gain error drift |  |  | $\pm 0.5$ |  | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| CMRR |  | At dc |  | 70 |  |  |
| CMRR | Common-mode rejection ratio | $\mathrm{V}_{1}=0.4 \mathrm{~V}_{\mathrm{PP}}$ at 1 MHz |  | 50 |  |  |
|  | Noise |  |  | 33 |  | $\mu \mathrm{V}_{\text {RMS }}$ |
| PSRR | Power-supply rejection ratio | At FFFFF output code ${ }^{(3)}$ |  | 78 |  | dB |
| SAMPLIN | G DYNAMICS |  |  |  |  |  |
| tconv | Conversion time |  |  | 18 |  | CCLK |
| $\mathrm{t}_{\text {SAMPLE1 }}$ | Acquisition time | Manual trigger | 3 |  |  | CCLK |
| $\mathrm{t}_{\text {SAMPLE2 }}$ | Acquisition time | Auto trigger |  | 3 |  | CCLK |
|  | Throughput rate |  |  |  | 1 | MHz |
|  | Aperture delay |  |  | 5 |  | ns |
|  | Aperture jitter |  |  | 10 |  | ps |
|  | Step response |  |  | 100 |  | ns |
|  | Overvoltage recovery |  |  | 100 |  | ns |

(1) Ideal input span; does not include gain or offset error.
(2) LSB means least significant bit.
(3) Measured relative to an ideal full-scale input $[(+I N)-(-I N)]$ of 4.096 V when $+\mathrm{VA}=5 \mathrm{~V}$.

## ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\text {REF }}=5 \mathrm{~V}$ (continued)

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},+\mathrm{VA}=5 \mathrm{~V},+\mathrm{VBD}=+1.65 \mathrm{~V}$ to $+5.5 \mathrm{~V}, \mathrm{~V}_{\text {REF }}=5 \mathrm{~V}$, and $\mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MHz}$, unless otherwise noted.

| PARAMETER |  |  | TEST CONDITIONS | ADS7229, ADS7230 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX |  |
| DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |  |
| THD | Total harmonic distortion ${ }^{(4)}$ |  |  | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\mathrm{PP}}$ at 10 kHz |  | -88.5 |  | dB |
|  |  |  | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\text {PP }}$ at 100 kHz |  | -85.5 |  |  |  |
| SNR | Signal-to-noise ratio |  | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}_{\mathrm{PP}}$ at 10 kHz |  | 73.9 |  | dB |  |
|  |  |  | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\text {PP }}$ at 100 kHz | 72 | 73.8 |  |  |  |
| SINAD | Signal-to-noise + distortion |  | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\text {PP }}$ at 10 kHz |  | 73.7 |  | dB |  |
|  |  |  | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\text {PP }}$ at 100 kHz |  | 73.3 |  |  |  |
| SFDR | Spurious-free dynamic range |  | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\text {PP }}$ at 10 kHz |  | 93.4 |  | dB |  |
|  |  |  | $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}_{\text {PP }}$ at 100 kHz |  | 90.5 |  |  |  |
|  | -3dB small-signal bandwidth |  |  |  | 30 |  | MHz |  |
| CLOCK |  |  |  |  |  |  |  |  |
| Internal conversion clock frequency |  |  |  | 21 | 23 | 24.5 | MHz |  |
| SCLK external serial clock |  |  | Used as I/O clock only |  |  | 50 | MHz |  |
|  |  |  | As I/O clock and conversion clock | 1 |  | 42 |  |  |
| EXTERNAL VOLTAGE REFERENCE INPUT |  |  |  |  |  |  |  |  |
| $V_{\text {REF }}$ | Input reference range | $\mathrm{V}_{\text {REF }}[$ REF + - (REF-)] |  | 0.3 | 5 | +VA | V |  |
|  |  | (REF-) - AGND |  | -0.1 |  | 0.1 |  |  |
|  | Resistance ${ }^{(5)}$ |  | Reference input |  | 40 |  | $\mathrm{k} \Omega$ |  |
| DIGITAL INPUT/OUTPUT |  |  |  |  |  |  |  |  |
| Logic family-CMOS |  |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage |  | $5.5 \mathrm{~V} \geq+\mathrm{VBD} \geq 4.5 \mathrm{~V}$ | $0.65 \times(+$ VBD $)$ |  | +VBD + 0.3 | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage |  | $5.5 \mathrm{~V} \geq+\mathrm{VBD} \geq 4.5 \mathrm{~V}$ | -0.3 |  | $0.35 \times(+$ VBD $)$ | V |  |
| $\mathrm{I}_{1}$ | Input current |  | $\mathrm{V}_{1}=+\mathrm{VBD}$ or BDGND | -50 |  | 50 | nA |  |
| $\mathrm{C}_{i}$ | Input capacitance |  |  |  | 5 |  | pF |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage |  | $\begin{aligned} & 5.5 \mathrm{~V} \geq+\mathrm{VBD} \geq 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} \end{aligned}$ | +VBD - 0.6 |  | +VBD | V |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low-level output voltage |  | $\begin{aligned} & 5.5 \mathrm{~V} \geq+\mathrm{VBD} \geq 4.5 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{O}}=100 \mu \mathrm{~A} \end{aligned}$ | 0 |  | 0.4 | V |  |
| $\mathrm{C}_{0}$ | Output capacitance |  |  |  | 5 |  | pF |  |
| $\mathrm{C}_{\mathrm{L}}$ | Load capacitance |  |  |  |  | 30 | pF |  |
| Data format-straight binary |  |  |  |  |  |  |  |  |
| POWER-SUPPLY REQUIREMENTS |  |  |  |  |  |  |  |  |
| Power-supply voltage |  | +VBD |  | 1.65 | 3.3 | 5.5 | V |  |
|  |  | +VA |  | 4.5 | 5 | 5.5 | V |  |
| Supply current |  |  | 1MHz Sample rate |  | 5.7 | 7.0 | mA |  |
|  |  |  | Nap or Auto Nap mode |  | 0.3 | 0.5 |  |  |
|  |  |  | PD Mode |  | 4 | 1 | $\mu \mathrm{A}$ |  |
| Buffer I/O supply current |  |  | $1 \mathrm{MSPS}, \mathrm{BVDD}=1.8 \mathrm{~V}$ |  | 0.1 | 0.5 | mA |  |
|  |  |  | $1 \mathrm{MSPS}, \mathrm{BVDD}=3 \mathrm{~V}$ |  | 0.5 | 1.2 |  |  |
| Power dissipation |  |  | $\mathrm{AVDD}=5 \mathrm{~V}, \mathrm{BVDD}=1.8 \mathrm{~V}$ |  | 28.8 | 36.5 | mW |  |
|  |  |  | $\mathrm{AVDD}=5 \mathrm{~V}, \mathrm{BVDD}=3 \mathrm{~V}$ |  | 30.0 | 38.6 |  |  |
| TEMPERATURE RANGE |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature |  |  | -40 |  | +85 | ${ }^{\circ} \mathrm{C}$ |  |

(4) Calculated on the first nine harmonics of the input frequency.
(5) Can vary $\pm 30 \%$.

## ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},+\mathrm{VA}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V},+\mathrm{VBD}=1.65 \mathrm{~V}$ to $1.5 \mathrm{x}(+\mathrm{VA}), \mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MHz}$ for $3 \mathrm{~V} \leq+\mathrm{VA} \leq 3.6 \mathrm{~V}$, and $\mathrm{f}_{\text {SAMPLE }}=900 \mathrm{kHz}$ for $3 \mathrm{~V}<+\mathrm{VA} \leq 2.7 \mathrm{~V}$ using external clock, unless otherwise noted.

| PARAMETER |  | TEST CONDITIONS | ADS7229, ADS7230 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX |  |
| ANALOG INPUT |  |  |  |  |  |  |
| FSR | Full-scale input voltage ${ }^{(1)}$ |  | $+\mathrm{IN}-(-\mathrm{IN})$ or (+INx - COM) | 0 | 0 | $\mathrm{V}_{\text {REF }}$ | V |
| Absolute input voltage |  | $+\mathrm{IN},+\mathrm{IN} 0,+\mathrm{IN} 1$ | AGND - 0.2 |  | +VA + 0.2 | V |
|  |  | -IN or COM | AGND - 0.2 |  | AGND + 0.2 |  |
| Input capacitance |  |  |  |  | 45 | pF |
| Input leakage current |  | No ongoing conversion, dc Input | 50 |  |  | nA |
| Input channel isolation, ADS7230 only |  | At dc | 108 |  |  | dB |
|  |  | $\mathrm{V}_{\mathrm{I}}= \pm 1.25 \mathrm{~V}_{\text {PP }}$ at 50 kHz |  |  |  |  |
| SYSTEM PERFORMANCE |  |  |  |  |  |  |
|  | Resolution |  | 12 |  |  | Bits |
|  | No missing codes |  | 12 |  |  | Bits |
| INL | Integral linearity |  | -0.5 | $\pm 0.15$ | 0.5 | $L^{\text {S }}{ }^{(2)}$ |
| DNL | Differential linearity |  | -0.5 | $\pm 0.12$ | 0.5 | $L^{\text {S }}{ }^{(2)}$ |
| $\mathrm{E}_{\mathrm{O}}$ | Offset error ${ }^{(3)}$ |  | -0.8 | $\pm 0.07$ | 0.8 | mV |
|  | Offset error drift | $\mathrm{FSR}=2.5 \mathrm{~V}$ |  | $\pm 0.1$ |  | $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ |
| $\mathrm{E}_{\mathrm{G}}$ | Gain error |  | -0.1 | $\pm 0.008$ | 0.1 | \%FSR |
|  | Gain error drift |  |  | $\pm 0.3$ |  | ppm $/{ }^{\circ} \mathrm{C}$ |
|  | Common-mode rejection ratio | At dc |  | 70 |  | dB |
| 促 | Common-mode rejection ratio | $\mathrm{V}_{1}=0.4 \mathrm{~V}_{\mathrm{PP}}$ at 1 MHz |  | 50 |  | B |
|  | Noise |  |  | 33 |  | $\mu \mathrm{V}_{\text {RMS }}$ |
| PSRR | Power-supply rejection ratio | At FFFFh output code ${ }^{(3)}$ |  | 78 |  | dB |
| SAMPLI | G DYNAMICS |  |  |  |  |  |
| $\mathrm{t}_{\text {CONV }}$ | Conversion time |  |  | 18 |  | CCLK |
| $\mathrm{t}_{\text {SAMPLE1 }}$ | Acquisition time | Manual trigger | 3 |  |  | CCLK |
| $\mathrm{t}_{\text {SAMPLE2 }}$ | Acquistion time | Auto trigger |  | 3 |  | CCK |
|  | Throughpu | $2.7 \mathrm{~V} \leq+\mathrm{VA}<3.0 \mathrm{~V}$ |  |  | 0.9 | Mz |
|  | Throughput rate | $3.0 \mathrm{~V} \leq+\mathrm{VA} \leq 3.64 \mathrm{~V}$ |  |  | 1 | MHz |
|  | Aperture delay |  |  | 5 |  | ns |
|  | Aperture jitter |  |  | 10 |  | ps |
|  | Step response |  |  | 100 |  | ns |
|  | Overvoltage recovery |  |  | 100 |  | ns |

(1) Ideal input span; does not include gain or offset error.
(2) LSB means least significant bit.
(3) Measured relative to an ideal full-scale input $[(+\mathrm{IN})-(-\mathrm{IN})]$ of 2.5 V when $+\mathrm{VA}=3 \mathrm{~V}$.

## ELECTRICAL CHARACTERISTICS: $\mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}$ (continued)

At $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C},+\mathrm{VA}=2.7 \mathrm{~V}$ to $3.6 \mathrm{~V},+\mathrm{VBD}=1.65 \mathrm{~V}$ to $1.5 \mathrm{x}(+\mathrm{VA}), \mathrm{V}_{\text {REF }}=2.5 \mathrm{~V}, \mathrm{f}_{\text {SAMPLE }}=1 \mathrm{MHz}$ for $3 \mathrm{~V} \leq+\mathrm{VA} \leq 3.6 \mathrm{~V}$, and $\mathrm{f}_{\text {SAMPLE }}=900 \mathrm{kHz}$ for $3 \mathrm{~V}<+\mathrm{VA} \leq 2.7 \mathrm{~V}$ using external clock, unless otherwise noted.

| PARAMETER |  |  | TEST CONDITIONS | ADS7229, ADS7230 |  |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP | MAX |  |
| DYNAMIC CHARACTERISTICS |  |  |  |  |  |  |  |
| THD | Total harmonic distortion ${ }^{(4)}$ |  |  | $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$ at 10 kHz |  | -96.8 |  | dB |
|  |  |  | $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}_{\mathrm{PP}}$ at 100 kHz |  | -88.4 |  |  |  |
| SNR | Signal-to-noise ratio |  | $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$ at 10 kHz | 72 | 73.2 |  | dB |  |
|  |  |  | $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}_{\mathrm{PP}}$ at 100 kHz |  | 72 |  |  |  |
| SINAD | Signal-to-noise + distortion |  | $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$ at 10 kHz |  | 73.1 |  | dB |  |
|  |  |  | $\mathrm{V}_{\text {IN }}=2.5 \mathrm{~V}_{\text {PP }}$ at 100 kHz |  | 72.1 |  |  |  |
| SFDR | Spurious-free dynamic range |  | $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$ at 10 kHz |  | 95.9 |  | dB |  |
|  |  |  | $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}_{\mathrm{PP}}$ at 100 kHz |  | 91.5 |  |  |  |
|  | -3dB small-signal bandwidth |  |  |  | 30 |  | MHz |  |
| CLOCK |  |  |  |  |  |  |  |  |
| Internal conversion clock frequency |  |  |  | 21 | 23 | 23.5 | MHz |  |
| SCLK external serial clock |  |  | Used as I/O clock only |  |  | 42 | MHz |  |
|  |  |  | As I/O clock and conversion clock | 1 |  | 42 |  |  |
| EXTERNAL VOLTAGE REFERENCE INPUT |  |  |  |  |  |  |  |  |
| $V_{\text {REF }}$ | Input reference range | $\mathrm{V}_{\text {REF }}[\mathrm{REF}+-$ (REF- $)$ ] | $3.6 \mathrm{~V} \geq+\mathrm{VA} \geq 2.7 \mathrm{~V}$ | 2.475 | 2.5 | 2.525 | V |  |
|  |  | (REF-) - AGND |  | -0.1 |  | 0.1 |  |  |
|  | Resistance ${ }^{(5)}$ |  | Reference input |  | 40 |  | k $\Omega$ |  |
| DIGITAL INPUT/OUTPUT |  |  |  |  |  |  |  |  |
| Logic family-CMOS |  |  |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | High-level input voltage |  | $(+\mathrm{VA} \times 1.5) \mathrm{V} \geq+\mathrm{VBD} \geq 1.65 \mathrm{~V}$ | $0.65 \times(+\mathrm{VBD})$ |  | +VBD + 0.3 | V |  |
| $\mathrm{V}_{\text {IL }}$ | Low-level input voltage |  | $(+\mathrm{VA} \times 1.5) \mathrm{V} \geq+\mathrm{VBD} \geq 1.65 \mathrm{~V}$ | -0.3 |  | $0.35 \times(+$ VBD $)$ | V |  |
| $\mathrm{I}_{1}$ | Input current |  | $\mathrm{V}_{1}=+\mathrm{VBD}$ or BDGND | -50 |  | 50 | nA |  |
| $\mathrm{Ci}_{\mathrm{i}}$ | Input capacitance |  |  | 5 |  |  | pF |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High-level output voltage |  | $\begin{aligned} & (+V A \times 1.5) V \geq+V B D \geq 1.65 \mathrm{~V}, \\ & I_{O}=100 \mu \mathrm{~A} \end{aligned}$ | +VBD - 0.6 |  | +VBD | V |  |
| $\mathrm{V}_{\mathrm{OL}}$ | Low-level output voltage |  | $\begin{aligned} & (+V A \times 1.5) V \geq+V B D \geq 1.65 \mathrm{~V}, \\ & I_{O}=100 \mu \mathrm{~A} \end{aligned}$ | 0 |  | 0.4 | V |  |
| $\mathrm{C}_{0}$ | Output capacitance |  |  |  | 5 |  | pF |  |
| $\mathrm{C}_{\mathrm{L}}$ | Load capacitance |  |  |  |  | 30 | pF |  |
| Data format-straight binary |  |  |  |  |  |  |  |  |
| POWER SUPPLY REQUIREMENTS |  |  |  |  |  |  |  |  |
| Power-supply voltage |  | +VBD |  | 1.65 | +VA | $1.5 \times(+\mathrm{VA})$ | V |  |
|  |  | +VA | $\mathrm{f}_{\mathrm{s}} \leq 1 \mathrm{MHz}$ | 3 |  | 3.6 | V |  |
|  |  | $\mathrm{f}_{\mathrm{s}} \leq 900 \mathrm{kHz}$ | 2.7 |  | 3.6 |  |  |
| Supply current |  |  | 1 MHz sample rate, $3 \mathrm{~V} \leq+\mathrm{VA} \leq 3.6 \mathrm{~V}$ |  | 4.5 | 6.0 | mA |  |
|  |  |  | 900 kHz sample rate, $2.7 \mathrm{~V} \leq+\mathrm{VA} \leq 3 \mathrm{~V}$ | 4.2 |  |  |  |  |
|  |  |  | Nap or Auto Nap mode |  | 0.25 | 0.4 |  |  |
|  |  |  | PD Mode |  | 0.001 | 1 | $\mu \mathrm{A}$ |  |
| Buffer I/O supply current |  |  | $1 \mathrm{MSPS}, \mathrm{BVDD}=1.8 \mathrm{~V}$ |  | 0.1 | 0.5 | mA |  |
|  |  |  | 1MSPS, BVDD $=3 \mathrm{~V}$ |  | 0.5 | 1.2 |  |  |
| Power dissipation |  |  | $\mathrm{AVDD}=3 \mathrm{~V}, \mathrm{BVDD}=1.8 \mathrm{~V}$ |  | 13.7 | 18.9 | mW |  |
|  |  |  | AVDD $=3 \mathrm{~V}, \mathrm{BVDD}=3 \mathrm{~V}$ |  | 15.0 | 21.6 |  |  |
| TEMPERATURE RANGE |  |  |  |  |  |  |  |  |
| $\mathrm{T}_{\mathrm{A}}$ | Operating free-air temperature |  |  | -40 |  | +85 | ${ }^{\circ} \mathrm{C}$ |  |

(4) Calculated on the first nine harmonics of the input frequency.
(5) Can vary $\pm 30 \%$.

TIMING CHARACTERISTICS ${ }^{(1)(2): ~ 5 V ~}$
All specifications typical at $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$, unless otherwise noted.

| PARAMETER |  |  | ADS7229, ADS7230 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP MAX |  |
| $\mathrm{f}_{\text {CCLK }}$ | Frequency, conversion clock, CCLK | External, $\mathrm{f}_{\mathrm{CCLK}}=1 / 2 \mathrm{f}_{\text {SCLK }}$ | 0.5 | 21 | MHz |
|  |  | Internal, $f_{\text {CCLK }}=1 / 2 \mathrm{f}_{\text {SCLK }}$ | 21 | $23 \quad 24.5$ |  |
| $\mathrm{t}_{1}$ | Setup time, falling edge of CS to EOC |  | 1 |  | CCLK |
| $\mathrm{t}_{2}$ | Hold time, falling edge of $\overline{C S}$ to EOC |  | 0 |  | ns |
| $\mathrm{t}_{\mathrm{CL}}$ | Pulse duration, CONVST low |  | 40 |  | ns |
| $\mathrm{t}_{3}$ | Hold time, falling edge of $\overline{C S}$ to EOS |  | 20 |  | ns |
| $\mathrm{t}_{4}$ | Setup time, rising edge of $\overline{C S}$ to EOS |  | 20 |  | ns |
| $\mathrm{t}_{5}$ | Hold time, rising edge of $\overline{C S}$ to EOS |  | 20 |  | ns |
| $\mathrm{t}_{6}$ | Setup time, falling edge of $\overline{\mathrm{CS}}$ to first falling SCLK |  | 5 |  | ns |
| $\mathrm{t}_{\text {SCLKL }}$ | Pulse duration, SCLK low |  | 8 | $\mathrm{t}_{\text {SCLK }}-8$ | ns |
| tsCLKH | Pulse duration, SCLK high |  | 8 | $\mathrm{t}_{\text {SCLK }}-8$ | ns |
| tsclk | Cycle time, SCLK | I/O clock only | 20 |  | ns |
|  |  | I/O and conversion clock | 23.8 | 2000 |  |
|  |  | I/O clock, chain mode | 20 |  |  |
|  |  | I/O and conversion clock, chain mode | 23.8 | 2000 |  |
| $\mathrm{t}_{\mathrm{H} 2}$ | Hold time, falling edge of SCLK to SDO invalid | 10pF Load | 2 |  | ns |
| $\mathrm{t}_{\mathrm{D} 1}$ | Delay time, falling edge of SCLK to SDO valid | 10pF Load |  | 10 | ns |
| $\mathrm{t}_{\text {D2 }}$ | Delay time, falling edge of $\overline{C S}$ to SDO valid, SDO MSB output | 10pF Load |  | 8.5 | ns |
| $\mathrm{t}_{\text {S1 }}$ | Setup time, SDI to falling edge of SCLK |  | 8 |  | ns |
| $\mathrm{t}_{\mathrm{H} 1}$ | Hold time, SDI to falling edge of SCLK |  | 4 |  | ns |
| ${ }_{\text {t }}{ }^{\text {a }}$ | Delay time, rising edge of $\overline{\mathrm{CS}} / \mathrm{FS}$ to $\mathrm{SDO} \mathrm{t}_{\mathrm{D} 3}$ 3-state |  |  | 5 | ns |
| $\mathrm{t}_{7}$ | Setup time, 16th falling edge of SCLK before rising edge of $\overline{C S} /$ FS |  | 10 |  | ns |

(1) All input signals are specified with $t_{r}=t_{f}=1.5 \mathrm{~ns}\left(10 \%\right.$ to $90 \%$ of VBD) and timed from a voltage level of $\left(V_{I L}+V_{I H}\right) / 2$.
(2) See timing diagrams.

TIMING CHARACTERISTICS ${ }^{(1)(2)}: 1.8 \mathrm{~V}$
All specifications typical at $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C},+\mathrm{VA}=2.7 \mathrm{~V}$, and $+\mathrm{VBD}=1.8 \mathrm{~V}$, unless otherwise noted.

| PARAMETER |  |  | ADS7229, ADS7230 |  | UNIT |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | MIN | TYP MAX |  |
| $\mathrm{f}_{\text {cCLK }}$ | Frequency, conversion clock, CCLK | External, $3 \mathrm{~V} \leq+\mathrm{VA} \leq 3.6 \mathrm{~V}$, $\mathrm{f}_{\mathrm{CCLK}}=1 / 2 \mathrm{f}_{\text {SCLK }}$ | 0.5 | 21 | MHz |
|  |  | $\begin{aligned} & \text { External, } 2.7 \mathrm{~V} \leq+\mathrm{VA} \leq 3 \mathrm{~V}, \\ & \mathrm{f}_{\mathrm{CCLK}}=1 / 2 \mathrm{f}_{\text {SCLK }} \end{aligned}$ | 0.5 | 18.9 |  |
|  |  | Internal, $\mathrm{f}_{\mathrm{CCLK}}=1 / 2 \mathrm{f}_{\text {SCLK }}$ | 20 | 22.3 23.5 |  |
| $\mathrm{t}_{1}$ | Setup time, falling edge of $\overline{C S}$ to EOC |  | 1 |  | CCLK |
| $\mathrm{t}_{2}$ | Hold time, falling edge of CS to EOC |  | 0 |  | ns |
| $\mathrm{t}_{\mathrm{CL}}$ | Pulse duration, CONVST low |  | 40 |  | ns |
| $\mathrm{t}_{3}$ | Hold time, falling edge of $\overline{C S}$ to EOS |  | 20 |  | ns |
| $\mathrm{t}_{4}$ | Setup time, rising edge of $\overline{\mathrm{CS}}$ to EOS |  | 20 |  | ns |
| $\mathrm{t}_{5}$ | Hold time, rising edge of $\overline{C S}$ to EOS |  | 20 |  | ns |
| $\mathrm{t}_{6}$ | Setup time, falling edge of $\overline{C S}$ to first $t_{6}$ falling SCLK |  | 5 |  | ns |
| tsCLKL | Pulse duration, SCLK low |  | 8 | tsCLK - 8 | ns |
| tSCLKH | Pulse duration, SCLK high |  | 8 | $\mathrm{t}_{\text {SCLK }}-8$ | ns |
|  | le time SCLK | All modes, $3 \mathrm{~V} \leq+\mathrm{VA} \leq 3.6 \mathrm{~V}$ | 23.8 | 2000 | ns |
| tscLk | , | All modes, $2.7 \mathrm{~V} \leq+\mathrm{VA}<3 \mathrm{~V}$ | 26.5 | 2000 | ns |
| $\mathrm{t}_{\mathrm{H} 2}$ | Hold time, falling edge of SCLK to SDO invalid | 10pF Load | 7.5 |  | ns |
| $\mathrm{t}_{\mathrm{D} 1}$ | Delay time, falling edge of SCLK to SDO valid | 10pF Load |  | 16 | ns |
| $t_{02}$ | Delay time, falling edge of $\overline{\mathrm{CS}}$ to SDO valid, | $\begin{aligned} & \text { 10pF Load, } \\ & 2.7 \mathrm{~V} \leq+\mathrm{VA} \leq 3 \mathrm{~V} \end{aligned}$ |  | 13 | ns |
| D2 | SDO MSB output | $\begin{aligned} & \text { 10pF Load, } \\ & 3 \mathrm{~V} \leq+\mathrm{VA} \leq 3.6 \mathrm{~V} \end{aligned}$ |  | 11 |  |
| $\mathrm{t}_{\text {S }}$ | Setup time, SDI to falling edge of SCLK |  | 8 |  | ns |
| $\mathrm{t}_{\mathrm{H} 1}$ | Hold time, SDI to falling edge of SCLK |  | 4 |  | ns |
| $\mathrm{t}_{\text {D }}$ | Delay time, rising edge of $\overline{\mathrm{CS}} / \mathrm{FS}$ to SDO 3-state |  |  | 8 | ns |
| $\mathrm{t}_{7}$ | Setup time, 16th falling edge of SCLK $\mathrm{t}_{7}$ before rising edge of $\overline{\mathrm{CS}} / \mathrm{FS}$ |  | 10 |  | ns |

(1) All input signals are specified with $t_{r}=t_{f}=1.5 \mathrm{~ns}(10 \%$ to $90 \%$ of VBD$)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{IL}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$.
(2) See timing diagrams.

## PIN ASSIGNMENTS



CAUTION: The thermal pad is internally connected to the substrate. This pad can be connected to the analog ground or left floating. Keep the thermal pad separate from the digital ground, if possible.

$\mathrm{NC}=$ No internal connection

## ADS7229 Terminal Functions

| NAME | NO. |  | DESCRIPTION |
| :--- | :---: | :---: | :---: | :--- |

## ADS7230 Terminal Functions

| NAME | NO. |  | DESCRIPTION |
| :--- | :---: | :---: | :---: | :--- |

MANUAL TRIGGER/READ While Sampling
(use internal CCLK, EOC, and INT polarity programmed as active low)


Figure 1. Timing for Conversion and Acquisition Cycles for Manual Trigger (Read While Sampling)

MANUAL TRIGGER/READ While Converting
(use internal CCLK, EOC, and INT polarity programmed as active low)


Figure 2. Timing for Conversion and Acquisition Cycles for Manual Trigger (Read While Converting)

AUTO TRIGGER/READ While Converting
(use internal CCLK, EOC, and INT polarity programmed as active low)


Figure 3. Timing for Conversion and Acquisition Cycles for Autotrigger (Read While Converting)


Figure 4. Detailed SPI Transfer Timing

MANUAL TRIGGER/READ While Converting
(use internal CCLK, EOC, and INT polarity programmed as active low, TAG enabled, auto channel select)


Figure 5. Simplified Dual Channel Timing

## TYPICAL CHARACTERISTICS

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


Figure 6.


Figure 8.


Figure 10.


Figure 7.


Figure 9.


Figure 11.

## TYPICAL CHARACTERISTICS (continued)

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}$, $\mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


## TYPICAL CHARACTERISTICS (continued)

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


Figure 18.


Figure 20.


Figure 22.


Figure 19.


Figure 21.
SIGNAL-TO-NOISE AND DISTORTION


Figure 23.

## TYPICAL CHARACTERISTICS (continued)

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


Figure 24.


Figure 26.
SIGNAL-TO-NOISE RATIO vs FREE-AIR TEMPERATURE


Figure 28.


Figure 25.


Figure 27.


Figure 29.

## TYPICAL CHARACTERISTICS (continued)

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


Figure 30.


Figure 32.


Figure 34.


Figure 31.


Figure 33.


Figure 35.

## TYPICAL CHARACTERISTICS (continued)

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}$, $\mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


Figure 36.


Figure 38.


Figure 40.


Figure 37.


Figure 39.


Figure 41.

## TYPICAL CHARACTERISTICS (continued)

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


Figure 42.


Figure 44.


Figure 46.

DIFFERENTIAL NONLINEARITY


Figure 43.


Figure 45.


Figure 47.

## TYPICAL CHARACTERISTICS (continued)

At $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=5 \mathrm{~V}$ when $+\mathrm{VA}=+\mathrm{VBD}=5 \mathrm{~V}$ or $\mathrm{V}_{\text {REF }}[(\mathrm{REF}+)-(\mathrm{REF}-)]=2.5 \mathrm{~V}$ when $+\mathrm{VA}=$ $+\mathrm{VBD}=3 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=42 \mathrm{MHz}$, or $\mathrm{V}_{\text {REF }}=2.5$ when $+\mathrm{VA}=+\mathrm{VBD}=2.7 \mathrm{~V}, \mathrm{f}_{\text {SCLK }}=37.8 \mathrm{MHz}$, and $\mathrm{f}_{\mathrm{i}}=\mathrm{dc}$ for dc curves, $\mathrm{f}_{\mathrm{i}}=100 \mathrm{kHz}$ for ac curves with 5 V supply and $\mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz}$ for ac curves with 3 V supply, unless otherwise noted.


Figure 48.


Figure 50.


Figure 49.


Figure 51.


Figure 52.

## THEORY OF OPERATION

The ADS7229 and ADS7230 are two high-speed, low power, successive approximation register (SAR) analog-to-digital converters (ADCs) that use an external reference. The architecture is based on charge redistribution, which inherently includes a sample-and-hold function.

These devices have an internal clock that is used to run the conversion; these devices can also be programmed to run the conversion based on the external serial clock, SCLK.
The ADS7229 has one analog input. The analog input is provided to two input pins: $+\mathbb{I N}$ and $-\operatorname{IN}$. When a conversion is initiated, the differential input on these pins is sampled on the internal capacitor array. While a conversion is in progress, both +IN and -IN inputs are disconnected from any internal function.

The ADS7230 has two inputs. Both inputs share the same common pin, COM. The negative input is the same as the $-\operatorname{IN}$ pin for the ADS7229. The ADS7230 can be programmed to select a channel manually or can be programmed into the auto channel select mode to sweep between channel 0 and channel 1 automatically.

Throughout this document, the term ADS7229/30 refers to both devices, unless specifically noted otherwise.

## ANALOG INPUT

When the converter enters before hold mode, the voltage difference between the $+\mathbb{N}$ and $-\mathbb{N}$ inputs is captured on the internal capacitor array. The voltage on the -IN input is limited between AGND -0.2 V and AGND +0.2 V , allowing the input to reject small signals that are common to both the $+\mathbb{I N}$ and $-\mathbb{I N}$ inputs. The $+\mathbb{I N}$ input has a range of -0.2 V to $\left(\mathrm{V}_{\text {REF }}+0.2 \mathrm{~V}\right)$. The input span $[(+\mathrm{IN})-(-\mathrm{IN})]$ is limited to 0 V to $\mathrm{V}_{\text {REF }}$.
The (peak) input current through the analog inputs depends upon a number of factors: sample rate, input voltage, and source impedance. The current into the ADS7229/30 charges the internal capacitor array during the sample period. After this capacitance has been fully charged, there is no further input current. The source of the analog input voltage must be able to charge the input capacitance ( 45 pF ) to a 12 -bit settling level within the minimum acquisition time (120ns). When the converter goes into hold mode, the input impedance is greater than $1 G \Omega$.

Care must be taken regarding the absolute analog input voltage. To maintain linearity of the converter, the +IN and $-\mathbb{I N}$ inputs and the span $[(+\mathbb{I N})-(-I N)]$ should be within the limits specified. Outside of these ranges, converter linearity may not meet specifications. To minimize noise, low bandwidth input signals with low-pass filters should be used. Care should be taken to ensure that the output impedance of the sources driving the +IN and $-I N$ inputs are matched. If this input matching is not observed, the two inputs could have different settling times. This difference may result in an offset error, gain error, and linearity errors that change with temperature and input voltage.


Figure 53. Input Equivalent Circuit

## Driver Amplifier Choice

The analog input to the converter must be driven with a low-noise operational amplifier such as the THS4031 or OPA365. An RC filter is recommended at the input pins to low-pass filter the noise from the source. Two $20 \Omega$ resistors and a 470 pF capacitor are recommended. The input to the converter is a unipolar input voltage in the range of 0 V to $\mathrm{V}_{\text {REF }}$. The minimum -3 dB bandwidth of the driving operational amplifier can be calculated as:

$$
f_{3 \mathrm{dbb}}=(\ln (2) \times(n+1)) /\left(2 \pi \times t_{\mathrm{AcQ}}\right)
$$

where $n$ is equal to 12 , the resolution of the ADC (in the case of the ADS7229/30). When $\mathrm{t}_{\mathrm{ACQ}}=120 \mathrm{~ns}$ (minimum acquisition time), the minimum bandwidth of the driving amplifier is 12 MHz . The bandwidth can be relaxed if the acquisition time is increased by the application. The OPA365 or THS4031 from Texas Instruments are recommended. The THS4031 used in the source follower configuration to drive the converter is shown in a typical input drive configuration, Figure 54.

## Bipolar to Unipolar Driver

In systems where the input is bipolar, the THS4031 can be used in the inverting configuration with an additional dc bias applied to its positive input to keep the input to the ADS7229/30 within the rated operating voltage range. This configuration is also recommended when the ADS7229/30 is used in signal processing applications where good SNR and THD performance are required. The dc bias can be derived from the REF5025 or the REF5040 reference voltage ICs. The input configuration shown in Figure 55 is capable of delivering better than 72 dB SNR and -88.5 dB THD at an input frequency of 10 kHz . If bandpass filters are used to filter the input, care should be taken to ensure that the signal swing at the input of the bandpass filter is small in order to keep the distortion introduced by the filter minimal. In such cases, the gain of the circuit shown in Figure 55 can be increased to keep the input to the ADS7229/30 large in order to maintain a high SNR of the system. Note that the gain of the system from the positive input to the output of the THS4031 in such a configuration is a function of the ac signal gain. A resistor divider can be used to scale the output of the REF5025 or REF5040 to reduce the voltage at the dc input to the THS4031 to maintain the voltage at the converter input within its rated operating range.


Figure 54. Unipolar Input Drive Configuration


Figure 55. Bipolar Input Drive Configuration

## REFERENCE

The ADS7229/30 must operate with an external reference with a range from 0.3 V to 5 V . A clean, low-noise, well-decoupled reference voltage on this pin is required to ensure good converter performance. A low-noise bandgap reference such as the REF5040 can be used to drive this pin. A $22 \mu \mathrm{~F}$ ceramic decoupling capacitor is required between the REF+ and REF- pins of the converter. These capacitors should be placed as close as possible to the device pins. REF- should be connected to its own via to the analog ground plane with the shortest possible distance. A series resistor between the reference and the REF50xx is neither required (because the REF50xx is capable of driving a $22 \mu \mathrm{~F}$ capacitor while maintaining stability) nor recommended (due to additional nonlinearity); see also Figure 67.

## CONVERTER OPERATION

The ADS7229/30 has an oscillator that is used as an internal clock that controls the conversion rate. The frequency of this clock is 21 MHz minimum. The oscillator is always on unless the device is in the deep power-down state or the device is programmed for using SCLK as the conversion clock (CCLK). The minimum acquisition (sampling) time takes 3 CCLKs (equivalent to 143 ns at 21 MHz ) and the conversion time takes 18 conversion clocks (CCLK) or approximately 857 ns at 21 MHz to complete one conversion.
The conversion can also be programmed to run based on the external serial clock, SCLK. This option allows a system designer to achieve system synchronization. The serial clock SCLK, is first reduced to $1 / 2$ of its frequency before it is used as the conversion clock (CCLK). For example, with a 42 MHz SCLK, this reduction provides a 21 MHz clock for conversions. If it is desired to start a conversion at a specific rising edge of SCLK when the external SCLK is programmed as the source of the conversion clock (and manual conversion start is selected), the setup time between CONVST and that rising SCLK edge should be observed. This configuration ensures that the conversion is complete in 18 CCLKs (or 36 SCLKs). The minimum setup time is 20 ns to ensure synchronization between CONVST and SCLK. In many cases, the conversion can start one SCLK period (or CCLK) later, which results in a conversion of 19 CCLKs (or 37 SCLKs). The 20 ns setup time is not required if the synchronization is not critical in the application.

The duty cycle of SCLK is not critical as long as it meets the minimum high and low time requirements of 8 ns . The ADS7229/30 is designed for high-speed applications; therefore, a higher serial clock (SCLK) must be supplied to be able to sustain the high throughput with the serial interface. As a result, the clock period of SCLK must be at most $1 \mu \mathrm{~s}$ (when used as the conversion clock, CCLK). The minimum clock frequency is also governed by the parasitic leakage of the capacitive digital-to-analog (CDAC) capacitors internal to the ADS7229/30.


Figure 56. Converter Clock

## Manual Channel Select Mode

The conversion cycle starts with selecting an acquisition channel by writing a channel number to the command register, CMR. The command length can be as short as four SCLKs.

## Auto Channel Select Mode

Channel selection can also be done automatically if auto channel select mode is enabled. This mode is the default channel select mode. The dual channel converter, ADS7230, has an onboard 2-to-1 MUX. If the device is programmed for auto channel select mode, then signals from channel 0 and channel 1 are acquired with a fixed order. Channel 0 is accessed first in the next cycle after the command cycle that configured CFR_D11 to '1' for auto channel select mode. This automatic access stops the cycle after the command cycle that sets CFR_D11 to '0'.

## Start of a Conversion

The end of sampling instance (EOS) or acquisition is the same as the start of a conversion. This event is initiated by bringing the CONVST pin low for a minimum of 40 ns . After the minimum requirement has been met, the CONVST pin can be brought high. CONVST acts independently of FS/CS so it is possible to use one common CONVST for applications that require a simultaneous sample/hold with multiple converters. The ADS7229/30 switches from sample to hold mode on the falling edge of the CONVST signal. The ADS7229/30 requires 18 conversion clock (CCLK) edges to complete a conversion. The conversion time is equivalent to 857 ns with a 21 MHz internal clock. The minimum time between two consecutive CONVST signals is 21 CCLKs.

A conversion can also be initiated without using CONVST if it is so programmed (CFR_D9 = 0). When the converter is configured as an auto trigger, the next conversion automatically starts three conversion clocks (CCLK) after the end of a conversion. These three conversion clocks are used as the acquisition time. In this case, the time to complete one acquisition and conversion cycle is 21 CCLKs. Table 1 summarizes the different conversion modes.

Table 1. Different Types of Conversion

| MODE | SELECT CHANNEL | START CONVERSION |
| :--- | :--- | :--- |
| Automatic | Auto Channel Select ${ }^{(1)}$ | Auto Trigger |
|  | No need to write channel number to the CMR. Use internal sequencer for the <br> ADS7230. | Start a conversion based on the conversion <br> clock CCLK. |
|  | Manual Channel Select | Manual Trigger |
|  | Write the channel number to the CMR. | Start a conversion with CONVST. |

(1) Auto channel select should be used with the TAG bit enabled.

## Status Output EOC/INT

When the status pin is programmed as EOC and the polarity is set as active low, the pin works in the following manner: The EOC output goes low immediately after CONVST goes low when the manual trigger is programmed. EOC stays low throughout the conversion process and returns high when the conversion ends. The EOC output goes low for three conversion clocks after the previous rising edge of EOC, if auto trigger is programmed.
This status pin is programmable. It can be used as an EOC output (CFR_D[7:6] =1, 1) where the low time is equal to the conversion time. This status pin can also be used as INT (CFR_D[7:6] = 1, 0), which is set low as the end of a conversion is brought high (cleared) by the next read cycle. The polarity of this pin, used as either function (EOC or $\mathbb{N T}$ ), is programmable through CFR_D7.

## Power-Down Modes

The ADS7229/30 has a comprehensive, built-in power-down feature. There are three power-down modes: Deep power-down mode, Nap power-down mode, and Auto nap power-down mode. All three power-down modes are enabled by setting the related CFR bits. The first two power-down modes are activated when enabled. A wakeup command, 1011b, resumes device operation from a power-down mode. Auto nap power-down mode works slightly differently. When the converter is enabled in Auto nap power-down mode, an end of conversion instance (EOC) puts the device into auto nap power-down. The beginning of sampling resumes converter operation. The contents of the configuration register are not affected by any of the power-down modes. Any ongoing conversion when nap or deep power-down is activated is aborted.


Figure 57. Typical Analog Supply Current Drop vs Time After Power-Down

## Deep Power-Down Mode

Deep power-down mode can be activated by writing to configuration register bit CFR_D2. When the device is in Deep power-down mode, all blocks except the interface are in power-down. The external SCLK is blocked to the analog block. The analog blocks no longer have bias currents and the internal oscillator is turned off. In this mode, power dissipation falls from 5.7 mA to 4 nA in 100 ns . The wake-up time after a deep power-down is $1 \mu \mathrm{~s}$. When bit D2 in the configuration register is set to '0', the device is in Deep power-down. Setting this bit to '1' or sending a wake-up command resumes the converter operation from the Deep power-down state.

## Nap Mode

In Nap mode, the ADS7229/30 turns off biasing of the comparator and the mid-voltage buffer. In this mode, supply current falls from 5.7 mA in normal mode to about 0.3 mA in 200 ns after the configuration cycle. The wake-up (resume) time from Nap power-down mode is 3 CCLKs (143ns with a 21 MHz conversion clock). As soon as the CFR_D3 bit in the control register is set to ' 0 ', the device goes into Nap power-down mode, regardless of the conversion state. Setting this bit to '1' or sending a wake-up command resumes converter operation from the Nap power-down state.

## Auto Nap Mode

Auto nap mode is almost identical to nap mode. The only difference is the time when the device is actually powered down and the method used to wake up the device. Configuration register bit D4 is only used to enable/disable Auto nap mode. If Auto nap mode is enabled, the device turns off the biasing after the conversion has finished; that is, the end of conversion activates Auto nap power-down mode. Supply current falls from 5.7 mA in normal mode to about 0.3 mA in 200ns. A CONVST command resumes the device and turns on the biasing on again in 3 CCLKs (143ns with a 21 MHz conversion clock). The device can also be woken up by disabling auto nap mode when bit D4 of the configuration register is set to ' 1 '. Any channel select command 0 XXXb , a wake-up command, or the set default mode command 1111b can also wake up the device from Auto nap power-down. Table 2 compares the various power-down modes.

## NOTE:

1. This wake-up command is the word 1011 b in the command word. This command sets bits D2 and D3 to ' 1 ' in the configuration register, but not D4. A wake-up command removes the device from any of these power-down states, Deep/Nap/Auto nap power-down.
2. Wake-up time is defined as the time between when the host processor tries to wake up the converter and when a conversion start can occur.

Table 2. Power-Down Mode Comparisons

| TYPE OF <br> POWER-DOWN | SUPPLY <br> CURRENT <br> AT 5V/3V | ACTIVATED BY | TIME TO <br> POWER-DOWN <br> (ns) |  | WAKE-UP BY |
| :---: | :---: | :---: | :---: | :--- | :---: |



Figure 58. Read While Converting versus Read While Sampling (Manual Trigger)


Figure 59. Read While Converting versus Read While Sampling with Deep or Nap Power-Down


Figure 60. Read While Converting with Auto Nap Power-Down
Total Acquisition + Conversion Cycle Time:
Auto trigger: = 21 CCLKs
Manual: $\geq 21$ CCLKs
Manual + deep $\geq 4$ SCLK $+100 \mu \mathrm{~s}+3$ CCLK +18 CCLK +16 SCLK $+1 \mu \mathrm{~s}$ power-down:
Manual + nap power-down: $\geq 4$ SCLK + 3 CCLK + 3 CCLK + 18 CCLK + 16 SCLK
Manual + auto nap $\geq 1$ CCLK +3 CCLK +3 CCLK +18 CCLK +16 SCLK (use CONVST to resume) power-down:

Manual + auto nap $\geq 4$ SCLK + 3 CCLK + 3 CCLK + 18 CCLK + 16 SCLK (use wake up to resume) power-down:

## DIGITAL INTERFACE

The serial clock is designed to accommodate the latest high-speed processors with an SCLK frequency up to 50 MHz . Each cycle starts with the falling edge of FS/CS. The internal data register content that is made available to the output register at the EOC (presented on the SDO output pin at the falling edge of FS/CS) is the MSB. Output data are valid at the falling edge of SCLK with a $\mathrm{t}_{\mathrm{d}(\mathrm{SCLKF}-\text { SDOVALID })}$ delay so that the host processor can read it at the falling edge. Serial data input is also read at the falling edge of SCLK.
The complete serial I/O cycle starts with the first falling edge of SCLK after the falling edge of FS/CS and ends 16 falling edges of SCLK later (see NOTE). The serial interface is very flexible. It works with CPOL $=0, \mathrm{CPHA}=$ 1 or $\mathrm{CPOL}=1, \mathrm{CPHA}=0$. This flexibility means the falling edge of FS/CS may fall while SCLK is high. The same relaxation applies to the rising edge of FS/CS where SCLK may be high or low as long as the last SCLK falling edge occurs before the rising edge of $\mathrm{FS} / \overline{\mathrm{CS}}$.

## NOTE:

There are cases where a cycle is 4 SCLKs or up to 24 SCLKs depending on the read mode combination. See Table 3 and Table 6 for details.

## Internal Register

The internal register consists of two parts, 4 bits for the command register (CMR) and 12 bits for configuration data register (CFR).

Table 3. Command Set Defined by Command Register (CMR) ${ }^{(1)}$

| D[15:12] | HEX | COMMAND | D[11:0] | WAKE-UP FROM AUTO NAP | MINIMUM SCLKs REQUIRED | R/W |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0000b | Oh | Select analog input channel $0^{(2)}$ | Don't care | Y | 4 | W |
| 0001b | 1h | Select analog input channel $1^{(2)}$ | Don't care | Y | 4 | W |
| 0010b | 2 h | Don't care | Don't care | - | - | - |
| 0011b | 3h | Don't care | Don't care | - | - | - |
| 0100b | 4h | Don't care | Don't care | - | - | - |
| 0101b | 5 h | Don't care | Don't care | - | - | - |
| 0110b | 6 h | Don't care | Don't care | - | - | - |
| 0111b | 7h | Don't care | Don't care | - | - | - |
| 1000b | 8h | Reserved for factory test, don't use | Reserved | - | - | - |
| 1001b | 9 h | Reserved for factory test, don't use | Reserved | - | - | - |
| 1010b | Ah | Reserved for factory test, don't use | Reserved | - | - | - |
| 1011b | Bh | Wake up | Don't care | Y | 4 | W |
| 1100b | Ch | Read CFR | Don't care | - | 16 | R |
| 1101b | Dh | Read data | Don't care | - | 12 | R |
| 1110 | Eh | Write CFR | CFR value | - | 16 | W |
| 1111b | Fh | Default mode (load CFR with default value) | Don't care | Y | 4 | W |

(1) When SDO is not in 3-state mode (FS/CS low), the bits from SDO are always part of a conversion result (depending on how many SCLKs are supplied).
(2) These two commands apply to the ADS7230 only.

## WRITING TO THE CONVERTER

There are two different types of writes to the register, a 4-bit write to the CMR and a full 16 -bit write to the CMR plus CFR. The command set is listed in Table 3. A simple command requires only 4 SCLKs and the write takes effect at the fourth falling edge of SCLK. A 16 -bit write or read takes at least 16 SCLKs (see Table 6 for exceptions that require more than 16 SCLKs).

ADS7229
ADS7230

## Configuring the Converter and Default Mode

The converter can be configuring with command 1110b (write to the CFR) or command 1111b (default mode). A write to the CFR requires a 4-bit command followed by 12 bits of data. A 4 -bit command takes effect at the fourth falling edge of SCLK. A CFR write takes effect at the 16th falling edge of SCLK.

A default mode command can be achieved by simply tying SDI to +VBD. As soon as the chip is selected, at least four '1's are clocked in by SCLK. The default value of the CFR is loaded into the CFR at the fouth falling edge of SCLK.
CFR default values are all 1s (except for CFR_D1 on the ADS7229; this bit is ignored by the device and is always read as a ' 0 '). The same default values apply for the CFR after a power-on reset (POR) and software reset.

## READING THE CONFIGURATION REGISTER

The host processor can read back the value programmed in the CFR by issuing command 1100 b . The timing is similar to reading a conversion result, except that CONVST is not used and there is no activity on the EOC/INT pin. The CFR value read back contains the first four MSBs of conversion data plus valid 12-bit CFR contents. Table 4 shows the Configuration Register Map.

Table 4. Configuration Register (CFR) Map

| SDI BIT | DEFINITION |  |
| :---: | :---: | :---: |
| CFR - D[11-0] |  |  |
| D11 default = 1 | Channel select mode |  |
|  | 0: Manual channel select enabled. Use channel select commands to access a different channel. | 1: Auto channel select enabled. All channels are sampled and converted sequentially until the cycle after this bit is set to 0 . |
| D10 default = 1 | Conversion clock (CCLK) source select |  |
|  | 0: Conversion clock (CCLK) = SCLK/2 | 1: Conversion clock (CCLK) = Internal OSC |
| D9 default = 1 | Trigger (conversion start) select: start conversion at the end of sampling (EOS). If D9 = 0, the D4 setting is ignored. |  |
|  | 0: Auto trigger automatically starts (4 internal clocks after EOC inactive) | 1: Manual trigger manually started by falling edge of CONVST |
| D8 default = 1 | Don't care | Don't care |
| D7 default = 1 | Pin 10 polarity select when used as an output (EOC/INT) |  |
|  | 0: EOC Active high / INT active high | 1: EOC active low / INT active low |
| D6 default = 1 | Pin 10 function select when used as an output (EOC/INT) |  |
|  | 0: Pin used as INT | 1: Pin used as EOC |
| D5 default = 1 | Pin $10 \mathrm{I} / \mathrm{O}$ select for chain mode operation |  |
|  | 0 : Pin 10 is used as CDI input (chain mode enabled) | 1: Pin 10 is used as EOC/INT output |
| D4 default = 1 | Auto nap power-down enable/disable (mid voltage and comparator shut down between cycles). This bit setting is ignored if D9 = 0 . |  |
|  | 0: Auto nap power-down enabled (not activated) | 1: Auto nap power-down disabled |
| D3 default = 1 | Nap power-down (mid voltage and comparator shut down between cycles). This bit is set to 1 automatically by wake-up command. |  |
|  | 0: Enable/activate device in nap power-down | 1: Remove device from nap power-down (resume) |
| D2 default = 1 | Deep power-down. This bit is set to 1 automatically by wake-up command. |  |
|  | 0: Enable/activate device in deep power-down | 1: Remove device from deep power-down (resume) |
| D1 default = <br> 0: ADS7229 <br> 1: ADS7230 | TAG bit enable. This bit is ignored by the ADS7229 and is alway read 0. |  |
|  | 0 : TAG bit disabled. | 1: TAG bit output enabled. TAG bit appears at the 17th SCLK. |
| D0 default = 1 | Reset |  |
|  | 0: System reset | 1: Normal operation |

## READING CONVERSION RESULT

The conversion result is available to the input of the output data register (ODR) at EOC and presented to the output of the output register at the next falling edge of CS or FS. The host processor can then shift the data out via the SDO pin any time except during the quiet zone. This quite zone is 20 ns before and 20 ns after the end of sampling (EOS) period. In the quiet zone the FS/CS should be high, to avoid performance loss when switching from sampling-mode to hold-mode. End of sampling (EOS) is defined as the falling edge of CONVST when manual trigger is used or the end of the third conversion clock (CCLK) after EOC if auto trigger is used.

The falling edge of FS/ $\overline{C S}$ should not be placed at the precise moment of the end of a conversion; otherwise, the data may be corrupt. There must be a minimum of at least one conversion clock (CCLK) delay at the end of a conversion. If FS/ $\overline{\mathrm{CS}}$ is placed before the end of a conversion, the previous conversion result is read. If $\mathrm{FS} / \overline{\mathrm{CS}}$ is placed after the end of a conversion, the current conversion result is read.

The conversion result is 12-bit data in straight binary format as shown in Table 5. Generally, 12 SCLKs are necessary, but there are exceptions where more than 12 SCLKS are required (see Table 60). Data output from the serial output (SDO) is left-adjusted, MSB first. The 12-bit conversion result is followed by '0000', the TAG bit (if enabled), and additional zeros. SDO remains low until FS/CS is brought high again.

Table 5. Ideal Input Voltages and Output Codes

| DESCRIPTION | ANALOG VALUE | DIGITAL OUTPUT <br> STRAIGHT BINARY |  |
| :---: | :---: | :---: | :---: |
| Full-scale range | $\mathrm{V}_{\text {REF }}$ | BINARY CODE | HEX CODE |
| Least significant bit (LSB) | $\mathrm{V}_{\text {REF }} / 4096$ |  | FFF |
| Full-scale | $+\mathrm{V}_{\text {REF }}-1 \mathrm{LSB}$ | 100000000000 | 800 |
| Midscale | $\mathrm{V}_{\text {REF }} / 2$ | 011111111111 | 7 FF |
| Midscale -1 LSB | $\mathrm{V}_{\text {REF }} / 2-1 \mathrm{LSB}$ | 000000000000 | 000 |
| Zero | 0 V |  | 000 |

SDO is active when FS/ $\overline{\mathrm{CS}}$ is low. The rising edge of FS/CS 3-states the SDO output.

## NOTE:

Whenever SDO is not in 3-state mode (that is, when FS/ $\overline{C S}$ is low), a portion of the conversion result is output at the SDO pin. The number of bits depends on how many SCLKs are supplied. For example, a manual select channel command cycle requires 4 SCLKs; therefore, 4MSBs of the conversion result are output at SDO. The exception is that SDO outputs all 1 s during the cycle immediately after any reset (POR or software reset).
If SCLK is used as the conversion clock (CCLK) and a continuous SCLK is used, it is not possible to clock out all 12 SDO bits during the sampling time ( 6 SCLKs) because of the quiet zone requirement. In this case, it is better to read the conversion result during the conversion time ( 36 SCLKs or 48 SCLKs in Auto nap mode).

## TAG Mode

The ADS7230 includes a feature, TAG, that can be used as a tag to indicate which channel sourced the converted result. An address bit is added after the LSB read out from SDO that indicates which channel the result came from if TAG mode is enabled. This address bit is ' 0 ' for channel 0 and ' 1 ' for channel 1 . The converter requires more than the 16 SCLKs that are required for a 4-bit command plus 12-bit CFR or 12 data bits followed by '0000' because of the additional TAG bit.

## Chain Mode

The ADS7229/30 can operate as a single converter or in a system with multiple converters. System designers can take advantage of the simple, high-speed, SPI-compatible serial interface by cascading the devices in a daisy-chain when multiple converters are used. A bit in the CFR is used to reconfigure the EOC/INT status pin as a secondary serial data input, chain data input (CDI), for the conversion result from an upstream converter. This configuration is chain mode operation. A typical connection of three converters is shown in Figure 61.


Figure 61. Multiple Converters Connected Using Chain Mode
When multiple converters are used in daisy-chain mode, the first converter is configured in regular mode while the other converters are configured in chain mode. When a converter is configured in chain mode, the CDI input data go straight to the output register; therefore, the serial input data passes through the converter with a 16 SCLK delay (if the TAG feature is disabled) or a 24 SCLK delay, as long as $\overline{C S}$ is active. Figure 62 shows a detailed timing diagram. In this timing, the conversions in each device are performed simultaneously.

```
Cascaded Manual Trigger/Read While Sampling
(Use internal CCLK, EOC, and INT programmed as active low)
\(\overline{\mathrm{CS}}\) held low during the N times 16 bits transfer cycle
```



Figure 62. Simplified Cascade Mode Timing with Shared $\overline{\text { CONVST }}$ and Continuous $\overline{\text { CS }}$
Care must be given to handle the multiple $\overline{\mathrm{CS}}$ signals when the converters operate in daisy-chain mode. The different chip select signals must be low for the entire data transfer (in this example, 48 bits for three converters). The first 16 -bit word after the falling chip select is always the data from the chip that received the chip select signal.

Case 1: If chip select is not toggled ( $\overline{\mathrm{CS}}$ stays low), the next 16 bits are data from the upstream converter, and so on. This configuration is shown in Figure 62. If there is no upstream converter in the chain, as with converter \#1 in the example, the same data from the converter are going to be shown repeatedly.
Case 2: If the chip select is toggled during a chain mode data transfer cycle, as illustrated in Figure 63, the same data from the converter are read out again and again in all three discrete 16 -bit cycles. This result is not a desired outcome.

Cascaded Manual Trigger/Read While Sampling
(Use internal CCLK, EOC, and INT programmed as active low)


Figure 63. Simplified Cascade Mode Timing with Shared CONVST and Discrete $\overline{\mathbf{C S}}$

Figure 64 shows a slightly different scenario where CONVST is not shared by the second converter. Converters \#1 and \#3 have the same CONVST signal. In this case, converter \#2 simply passes the previous conversion data downstream.

Cascaded Manual Trigger/Read While Sampling
$\frac{\text { (Use internal CCLK, EOC, and INT programmed as active low) }}{\text { CS held low during the } N \text { times } 16 \text { bits transfer cycle }}$


Figure 64. Simplified Cascade Timing (Separate CONVST)
The number of SCLKs required for a serial read cycle depends on the combination of different read modes, TAG bit, chain mode, and the way a channel is selected (that is, auto channel select). These possible configurations are listed in able 6 .

Table 6. Required SCLKs For Different Read Out Mode Combinations

| CHAIN MODE <br> ENABLED CFR.D5 | AUTO CHANNEL <br> SELECT CFR.D11 | TAG ENABLED CFR.D1 | NUMBER OF SCLK PER SPI | TRAILING BITS |
| :---: | :---: | :---: | :---: | :--- |
| 0 | 0 | 0 | 12 | READ |
| 0 | 0 | 1 | $\geq 17$ | MSB is TAG bit plus zero(s) |
| 0 | 1 | 0 | 12 | None |
| 0 | 1 | 1 | $\geq 17$ | TAG bit plus seven zeros |
| 1 | 0 | 0 | 16 | None |
| 1 | 0 | 1 | 24 | TAG bit plus seven zeros |
| 1 | 1 | 0 | 16 | None |
| 1 | 1 | 1 | 24 | TAG bit plus seven zeros |

SCLK skew between converters and data path delay through the converters configured in chain mode can affect the maximum frequency of SCLK. The delay can also be affected by supply voltage and loading. It may be necessary to slow down the SCLK when the devices are configured in chain mode. Figure 65 shows a typical delay process through multiple converters linked in daisy-chain mode.


Figure 65. Typical Delay Through Converters Configured in Chain Mode

## RESET

The converter has two reset mechanisms: a power-on reset (POR) and a software reset using CFR_D0. These two mechanisms are NOR-ed internally. When a reset (software or POR) is issued, all register data are set to the default values (all 1s) and the SDO output (during the cycle immediately after reset) is set to all 1s. The state machine is reset to the power-on state. Figure 66 illustrates the digital output under a reset condition.


Figure 66. Digital Output Under Reset Condition

## APPLICATION INFORMATION

## TYPICAL CONNECTION

Figure 67 shows a typical circuit configuration for the device.


Figure 67. Typical Circuit Configuration

## PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package Type | Package Drawing | Pins | Package Qty | $\text { e Eco Plan }{ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS7229IPW | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229IPWG4 | ACTIVE | TSSOP | PW | 16 | 90 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229IPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229IPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229IRSAR | ACTIVE | QFN | RSA | 16 | 3000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229IRSARG4 | ACTIVE | QFN | RSA | 16 | 3000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229IRSAT | ACTIVE | QFN | RSA | 16 | 250 | $\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229IRSATG4 | ACTIVE | QFN | RSA | 16 | 250 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7229RSAR | PREVIEW | QFN | RSA | 16 | 3000 | TBD | Call TI | Call TI |
| ADS7230IPW | ACTIVE | TSSOP | PW | 16 | 90 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7230IPWG4 | ACTIVE | TSSOP | PW | 16 | 90 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7230IPWR | ACTIVE | TSSOP | PW | 16 | 2000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7230IPWRG4 | ACTIVE | TSSOP | PW | 16 | 2000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$ | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7230IRSAR | ACTIVE | QFN | RSA | 16 | 3000 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$ | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7230IRSARG4 | ACTIVE | QFN | RSA | 16 | 3000 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7230IRSAT | ACTIVE | QFN | RSA | 16 | 250 | Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$ ) | CU NIPDAU | Level-2-260C-1 YEAR |
| ADS7230IRSATG4 | ACTIVE | QFN | RSA | 16 | 250 | $\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$ | CU NIPDAU | Level-2-260C-1 YEAR |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed $0.1 \%$ by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$ ): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine ( Br ) and Antimony ( Sb ) based flame retardants ( Br or Sb do not exceed $0.1 \%$ by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

## TAPE AND REEL INFORMATION



QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

| Device | Package <br> Type | Package <br> Drawing | Pins | SPQ | Reel <br> Diameter <br> $(\mathbf{m m})$ | Reel <br> Width <br> $\mathbf{W}(\mathbf{m m})$ | A0 $(\mathbf{m m})$ | B0 (mm) | K0 $(\mathbf{m m})$ | P1 <br> $(\mathbf{m m})$ | $\mathbf{W}$ <br> $(\mathbf{m m})$ | Pin1 <br> Quadrant |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS7229IPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.67 | 5.4 | 1.6 | 8.0 | 12.0 | Q1 |
| ADS7229IRSAR | QFN | RSA | 16 | 3000 | 330.0 | 12.4 | 4.3 | 4.3 | 1.5 | 8.0 | 12.0 | Q2 |
| ADS7229IRSAT | QFN | RSA | 16 | 250 | 330.0 | 12.4 | 4.3 | 4.3 | 1.5 | 8.0 | 12.0 | Q2 |
| ADS7230IPWR | TSSOP | PW | 16 | 2000 | 330.0 | 12.4 | 6.67 | 5.4 | 1.6 | 8.0 | 12.0 | Q1 |
| ADS7230IRSAR | QFN | RSA | 16 | 3000 | 330.0 | 12.4 | 4.3 | 4.3 | 1.5 | 8.0 | 12.0 | Q2 |
| ADS7230IRSAT | QFN | RSA | 16 | 250 | 330.0 | 12.4 | 4.3 | 4.3 | 1.5 | 8.0 | 12.0 | Q2 |


*All dimensions are nominal

| Device | Package Type | Package Drawing | Pins | SPQ | Length (mm) | Width (mm) | Height (mm) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ADS7229IPWR | TSSOP | PW | 16 | 2000 | 346.0 | 346.0 | 29.0 |
| ADS7229IRSAR | QFN | RSA | 16 | 3000 | 340.5 | 333.0 | 20.6 |
| ADS7229IRSAT | QFN | RSA | 16 | 250 | 340.5 | 333.0 | 20.6 |
| ADS7230IPWR | TSSOP | PW | 16 | 2000 | 346.0 | 346.0 | 29.0 |
| ADS7230IRSAR | QFN | RSA | 16 | 3000 | 340.5 | 333.0 | 20.6 |
| ADS7230IRSAT | QFN | RSA | 16 | 250 | 340.5 | 333.0 | 20.6 |



| PIMS $^{* *}$ | $\mathbf{8}$ | $\mathbf{1 4}$ | $\mathbf{1 6}$ | $\mathbf{2 0}$ | $\mathbf{2 4}$ | $\mathbf{2 8}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A MAX | 3,10 | 5,10 | 5,10 | 6,60 | 7,90 | 9,80 |
| A MIN | 2,90 | 4,90 | 4,90 | 6,40 | 7,70 | 9,60 |

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153


NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Quad Flatpack, No-leads (QFN) package configuration.
(D) The package thermal pad must be soldered to the board for thermal and mechanical performance.

See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
E. Falls within JEDEC MO-220.
THERMAL PAD MECHANICAL DATA
RSA (S-PQFP-N16)

## THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB). After soldering, the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to the appropriate copper plane shown in the electrical schematic for the device, or alternatively, can be attached to a special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).

For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com.

The exposed thermal pad dimensions for this package are shown in the following illustration.


Bottom View
Exposed Thermal Pad Dimensions
NOTES:

1) All linear dimensions are in millimeters
2) The Pin 1 Identification mark is an optional feature that may be present on some devices In addition, this Pin 1 feature if present is electrically connected to the center thermal pad and therefore should be considered when routing the board layout.

## RSA (S-PQFP-N16)



NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC-7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, QFN Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com [http://www.ti.com](http://www.ti.com).
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for solder mask tolerances.

## IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

| Products |  |
| :--- | :--- |
| Amplifiers |  |
| Data Converters | amplifier.ti.com |
| DSP | dataconverter.ti.com |
| Clocks and Timers | dsp.ti.com |
| Interface | www.ti.com/cocks |
| Logic | nterace.ti.com |
| Power Mgmt | ogic.ti.com |
| Microcontrollers | Dowe.ti.com |
| RFID | nicrocontroler.ti.com |
| RF/IF and ZigBee® Solutions | NWw.ti-rfid.com |
|  |  |


| Applications |  |
| :---: | :---: |
| Audio | www.ti.com/audio |
| Automotive | www.ticom/automotive |
| Broadband | www.ti.com/broadband |
| Digital Control | www.ti.com/digitalcontrol |
| Medical | www.ti.com/medica |
| Military | www.ti.com/military |
| Optical Networking | www.ticom/opticalnetwork |
| Security | www.ti.com/security |
| Telephony | www.ti.com/telephony |
| Video \& Imaging | www.ticom/vided |
| Wireless | www.ti.com/wireless |

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated


[^0]:    Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
    SPI is a trademark of Motorola, Inc.
    All other trademarks are the property of their respective owners.

