Triple-Channel Digital Isolators

 ADuM1310/ADuM1311
FEATURES

Low power operation
5 V operation
1.7 mA per channel max @ 0 Mbps to 2 Mbps
4.0 mA per channel max @ 2 Mbps to 10 Mbps

3 V operation
1.0 mA per channel max @ 0 Mbps to 2 Mbps
2.1 mA per channel max @ 2 Mbps to 10 Mbps

Bidirectional communication
3 V/5 V level translation
Schmitt trigger inputs
High temperature operation: $105^{\circ} \mathrm{C}$
Up to 10 Mbps data rate (NRZ)
Programmable default output state
High common-mode transient immunity: > $\mathbf{2 5} \mathbf{~ k V} / \mu \mathrm{s}$
16-lead Pb-free SOIC wide body package
8.1 mm external creepage

Safety and regulatory approvals
UL recognition: $\mathbf{2 5 0 0}$ V rms for 1 minute per UL 1577
CSA Component Acceptance Notice \#5A
VDE certificate of conformity
DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01
DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000
$V_{\text {IORM }}=560$ V peak working voltage

APPLICATIONS

General-purpose multichannel isolation
SPI ${ }^{\oplus}$ interface/data converter isolation
RS-232/RS-422/RS-485 transceiver
Industrial field bus isolation

GENERAL DESCRIPTION

The ADuM131x ${ }^{1}$ are 3-channel digital isolators based on Analog Devices, Inc. iCoupler technology. Combining high speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to alternatives such as optocoupler devices.
By avoiding the use of LEDs and photodiodes, i Coupler devices remove the design difficulties commonly associated with optocouplers. The typical optocoupler concerns regarding uncertain current transfer ratios, maximum operating temperature, and lifetime effects are eliminated with the simple i Coupler digital interfaces and stable performance characteristics. The need for external drivers and other discrete components is eliminated with these i Coupler products. Furthermore, i Coupler devices consume one-tenth to one-sixth the power of optocouplers at comparable signal data rates. The iCoupler also offers higher

Rev. F

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Figure 2. ADuM1311
channel densities and more options for channel directionality.
The ADuM131x isolators provide three independent isolation channels in a variety of channel configurations and data rates up to 10 Mbps (see the Ordering Guide). All models operate with the supply voltage on either side ranging from 2.7 V to 5.5 V , providing compatibility with lower voltage systems as well as enabling voltage translation functionality across the isolation barrier. All products allow the user to predetermine the default output state in the absence of input $V_{\text {DDI }}$ power with a simple control pin. Unlike other optocoupler alternatives, the ADuM131x isolators have a patented refresh feature that ensures dc correctness in the absence of input logic transitions and during power-up/ power-down conditions.

[^0]
ADuM1310/ADuM1311

TABLE OF CONTENTS

Features 1
Applications 1
Functional Block Diagrams 1
General Description 1
Revision History 2
Specifications 3
Electrical Characteristics-5 V Operation 3
Electrical Characteristics-3 V Operation 5
Electrical Characteristics-Mixed 5 V/3 V or 3 V/5 V Operation 7
Package Characteristics 10
Regulatory Information 10
Insulation and Safety-Related Specifications 10
DIN EN 60747-5-2 (VDE 0884 Part 2) Insulation Characteristics 11
REVISION HISTORY
1/07—Rev. E to Rev. F
Added ADuM1311 Universal
Changes to Typical Performance Characteristics 16
Changes to Ordering Guide 20
10/06-Rev. D to Rev. E
Removed ADuM1410 Universal
Updated Format Universal
Change to Figure 3 10
Changes to Table 10 10
Changes to Application Information 12
Updated Outline Dimensions 18
Changes to Ordering Guide 18
Recommended Operating Conditions 11
Absolute Maximum Ratings 12
ESD Caution 12
Pin Configurations and Function Descriptions 13
Typical Performance Characteristics 16
Application Information 18
PC Board Layout 18
Propagation Delay Related Parameters 18
DC Correctness and Magnetic Field Immunity 18
Power Consumption 19
Outline Dimensions 20
Ordering Guide 20
3/06-Rev. C to Rev. D
Added Note 1 and Changes to Figure 2 1
Changes to Absolute Maximum Ratings 11
11/05—Rev. SpB to Rev. C
5/05-Rev. SpA to Rev. SpB
Changes to Table 6 9
10/04—Data Sheet Changed from Rev. Sp0 to Rev. SpA Changes to Table 5 9
6/04—Revision Sp0: Initial Version

ADuM1310/ADuM1311

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION ${ }^{1}$

$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all $\mathrm{min} / \mathrm{max}$ specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=5 \mathrm{~V}$.

Table 1.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
ADuM1310, Total Supply Current, Three Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	IDD1 (0)		2.4	3.2	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD } 2}$ Supply Current	IDD2 (0)		1.2	1.6	mA	DC to 1 MHz logic signal frequency
10 Mbps (BRW Grade Only)						
$V_{\text {DD } 1}$ Supply Current	IDD1 (10)		6.6	9.0	mA	5 MHz logic signal frequency
$V_{\text {DD2 } 2}$ Supply Current	IDD2 (10)		2.1	3.0	mA	5 MHz logic signal frequency
ADuM1311, Total Supply Current, Three Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	$\mathrm{IDD1}$ (Q)		2.2	2.8	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}$ (Q)		1.8	2.4	mA	DC to 1 MHz logic signal frequency
10 Mbps (BRW Grade Only)						
$V_{\text {DD } 1}$ Supply Current	IDD1 (10)		4.5	5.7	mA	5 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	$\mathrm{ldD2}$ (10)		3.5	4.3	mA	5 MHz logic signal frequency
For All Models						
Input Currents	$I_{A A}, I_{B}, I_{1}, I_{c t r l} 1$, $\mathrm{I}_{\text {CTRL2 }}$ IDISABLE	-10	+0.01	+10	$\mu \mathrm{A}$	$0 \leq V_{I A}, V_{1 B}, V_{I C} \leq V_{D D 1}$ or $V_{D D 2}$, $0 \leq \mathrm{V}_{\mathrm{CTRL}}, \mathrm{V}_{\mathrm{CTRL2}} \leq \mathrm{V}_{\mathrm{DD} 1}$ or $\mathrm{V}_{\mathrm{DD} 2}$, $0 \leq V_{\text {DISABLE }} \leq V_{\text {DD } 1}$
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	2.0			V	
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.8	V	
Logic High Output Voltages	Vоан, $\mathrm{V}_{\text {овн, }}$	$V_{\text {DD1 }}, V_{\text {DD2 }}-0.1$	5.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
	Voch	$V_{D D 1}, V_{D D 2}-0.4$	4.8		V	$\mathrm{l}_{\text {ox }}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxH }}$
Logic Low Output Voltages	$\mathrm{V}_{\text {OAL }} \mathrm{V}_{\text {OBL, }} \mathrm{V}_{\text {OCL }}$		0.0	0.1	V	$\mathrm{l}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\text {lxL }}$
			0.2	0.4	V	$\mathrm{l}_{\mathrm{ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{\mathrm{IxL}}$
SWITCHING SPECIFICATIONS						
ADuM131xARW						
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$C_{L}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		1			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$	20		100	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, \|ttpl - tphl ${ }^{5}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{7}$	tPSkCD/OD			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM131xBRW						
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Maximum Data Rate ${ }^{4}$		10			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{5}$	$\mathrm{tPHL}^{\text {t }}$ PLH	20	30	50	ns	$\mathrm{C}_{L}=15 \mathrm{pF}$, CMOS signal levels
Pulse Width Distortion, \|tplh - tphl ${ }^{5}$	PWD			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			30	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	tPSKCD			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels	$\mathrm{t}_{\text {PSKOD }}$			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels

ADuM1310/ADuM1311

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
For All Models							
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\|CMH		25	35		kV/ $\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V},$ transient magnitude $=800 \mathrm{~V}$
Common-Mode Transient Immunity at Logic Low Output	\|CM ${ }_{\text {L }}$ \|	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Lx}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$	
Refresh Rate	fr_{r}		1.2		Mbps		
Input Enable Time ${ }^{9}$	$t_{\text {enable }}$			2.0	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}$	
Input Disable Time ${ }^{9}$	t disable			5.0	$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$	
Input Supply Current per Channel, Quiescent ${ }^{10}$	IDDI (Q)		0.50	0.73	mA		
Output Supply Current per Channel, Quiescent ${ }^{10}$	IDDO (Q)		0.38	0.53	mA		
Input Dynamic Supply Current per Channel ${ }^{11}$	l DII (D)		0.12		mA/ Mbps		
Output Dynamic Supply Current per Channel ${ }^{11}$	IDDO (D)		0.04		mA/ Mbps		

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ supply currents as a function of data rate for ADuM1310/ADuM1311 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 \times}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \times}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \times}$ signal.
${ }^{6} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $t_{\text {PHL }}$ or $t_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CMH}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CML is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Input enable time is the duration from when $V_{\text {DISABLE }}$ is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration, as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VDISABLE is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL2 logic state (see Table 12).
${ }^{10} I_{\text {DDx (O) }}$ is the quiescent current drawn from the corresponding supply by a single channel. To calculate the total quiescent current, an additional inaccessible channel in the same orientation as Channel A must be included to account for the total current consumed.
${ }^{11}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—3 V OPERATION ${ }^{1}$

$2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$; all min/max specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 2.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions	
DC SPECIFICATIONS							
ADuM1310, Total Supply Current, Three Channels ${ }^{2}$							
$V_{\text {DD } 1}$ Supply Current	ldD1 (Q)		1.2	1.6	mA	DC to 1 MHz logic signal frequency	
$V_{\text {DD2 } 2}$ Supply Current	ldD2 (Q)		0.8	1.0	mA	DC to 1 MHz logic signal frequency	
10 Mbps (BRW Grade Only)							
$V_{\text {DD1 }}$ Supply Current	IDD1 (10)		3.4	4.9	mA	5 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	IDD2 (10)		1.1	1.3	mA	5 MHz logic signal frequency	
ADuM1311, Total Supply Current, Three Channels ${ }^{2}$							
DC to 2 Mbps							
$\mathrm{V}_{\mathrm{DD1}}$ Supply Current	ldD1 (0)		1.0	1.6	mA	DC to 1 MHz logic signal frequency	
$V_{\text {DD2 } 2}$ Supply Current	ldD2 (0)		0.9	1.4		DC to 1 MHz logic signal frequency	
10 Mbps (BRW Grade Only)							
$\mathrm{V}_{\mathrm{DD} 1}$ Supply Current	IDD1 (10)		2.5	3.5	mA	5 MHz logic signal frequency	
$V_{\text {DD2 }}$ Supply Current	IDD2 (10)		1.9	2.6		5 MHz logic signal frequency	
For All Models							
Input Currents	$I_{I_{A}}, I_{1 B}, I_{I_{c}}, I_{\text {ctrll }}$, $\mathrm{I}_{\text {ctrL2, }}$ IDISABLE	-10	+0.01	+10	$\mu \mathrm{A}$	$\begin{aligned} & 0 \leq \mathrm{V}_{\mathrm{IA}}, \mathrm{~V}_{\mathrm{IB}}, \mathrm{~V}_{\mathrm{IC}} \leq \mathrm{V}_{\mathrm{DD} 1} \text { or } \mathrm{V}_{\mathrm{DD} 2,} \\ & 0 \leq \mathrm{V}_{\text {CTRL1 }} \mathrm{V}_{\text {CTRL2 }} \leq \mathrm{V}_{\mathrm{DD1}} \text { or } \mathrm{V}_{\mathrm{DD} 2}, \\ & 0 \leq \mathrm{V}_{\mathrm{DISABLE}} \leq \mathrm{V}_{\mathrm{DD1}} \end{aligned}$	
Logic High Input Threshold	$\mathrm{V}_{\text {IH }}$	1.6			V		
Logic Low Input Threshold	$\mathrm{V}_{\text {IL }}$			0.4	V		
Logic High Output Voltages	$\mathrm{V}_{\text {OAH, }} \mathrm{V}_{\text {ObH, }} \mathrm{V}_{\text {OCH }}$	$V_{D D 1}, V_{D D 2}-0.1$	3.0		V	$\mathrm{l}_{\mathrm{ox}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{lx}}=\mathrm{V}_{1 \mathrm{xH}}$	
		$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}-0.4$	2.8		V	$\mathrm{l}_{\text {ox }}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \times}=\mathrm{V}_{1 \times \mathrm{H}}$	
Logic Low Output Voltages	Voal, $\mathrm{V}_{\text {obl, }} \mathrm{V}$ Ocı		0.0	0.1	V	$\mathrm{loxx}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IxL }}$	
			0.2	0.4	V	$\mathrm{l}_{\mathrm{Ox}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{IxL}}$	
SWITCHING SPECIFICATIONS							
ADuM131xARW							
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Maximum Data Rate ${ }^{4}$		1			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{tPLH}$	20		100	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, $\mid t_{\text {PLH }}-\mathrm{t}_{\text {PHL }}{ }^{5}$	PWD			40	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	tpsk			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching ${ }^{7}$	tPskco/od			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
ADuM131xBRW							
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels	
Maximum Data Rate ${ }^{4}$		10			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay ${ }^{5}$	$\mathrm{t}_{\text {PHL, }} \mathrm{t}_{\text {PLH }}$	20	30	50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Pulse Width Distortion, \|tpLH - tprL	${ }^{5}$	PWD			5	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$, CMOS signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Propagation Delay Skew ${ }^{6}$	tpsk			30	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	$\mathrm{t}_{\text {PSKCD }}$			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{7}$	teskod			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels	

ADuM1310/ADuM1311

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
For All Models						
Output Rise/Fall Time (10\% to 90\%)	$\mathrm{t}_{\mathrm{R}} / \mathrm{t}_{\mathrm{F}}$		2.5		ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\|CM ${ }_{\text {H }}$ \|	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	$\|C M\|$	25	35		$\mathrm{kV} / \mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Lx}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}		1.1		Mbps	
Input Enable Time ${ }^{9}$	$\mathrm{t}_{\text {ENABLE }}$		2.0		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$
Input Disable Time ${ }^{9}$	$\mathrm{t}_{\text {DISABLE }}$		5.0		$\mu \mathrm{s}$	$\mathrm{V}_{\mathrm{IA}}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {IC }}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}$
Input Supply Current per Channel, Quiescent ${ }^{10}$	l DII (Q)		0.25	0.38	mA	
Output Supply Current per Channel, Quiescent ${ }^{10}$	IDDO (Q)		0.19	0.33	mA	
Input Dynamic Supply Current per Channel ${ }^{11}$	l DDI (D)		0.07		mA/ Mbps	
Output Dynamic Supply Current per Channel ${ }^{11}$	IDDO (D)		0.02		mA/ Mbps	

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1310/ADuM1311 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{I x}$ signal to the 50% level of the falling edge of the $V_{O x}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $V_{l x}$ signal to the 50% level of the rising edge of the $V_{0 x}$ signal.
${ }^{6}$ tpsk is the magnitude of the worst-case difference in tphl 2 or tpLH that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Input enable time is the duration from when $\mathrm{V}_{\text {DISABLE }}$ is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration, as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when $\mathrm{V}_{\text {DISABLE }}$ is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL2 logic state (See Table 12),
${ }^{10} I_{\mathrm{DDx}(\mathrm{O})}$ is the quiescent current drawn from the corresponding supply by a single channel. To calculate the total quiescent current, an additional inaccessible channel in the same orientation as Channel A must be included to account for the total current consumed.
${ }^{11}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ELECTRICAL CHARACTERISTICS—MIXED 5 V/3 V OR 3 V/5 V OPERATION ${ }^{1}$

$5 \mathrm{~V} / 3 \mathrm{~V}$ operation: $4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 5.5 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V} ; 3 \mathrm{~V} / 5 \mathrm{~V}$ operation: $2.7 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1} \leq 3.6 \mathrm{~V}, 4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$; all min/max specifications apply over the entire recommended operation range, unless otherwise noted; all typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{DD} 1}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD} 2}=3.0 \mathrm{~V}$.

Table 3.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
DC SPECIFICATIONS						
ADuM1310, Total Supply Current, Three Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD } 1 ~ S u p p l y ~ C u r r e n t ~}^{\text {S }}$	IDD1 (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.4	3.2	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	ldD2 (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.8	1.0	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.2	1.6	mA	DC to 1 MHz logic signal frequency
10 Mbps (BRW Grade Only)						
$V_{\text {DD } 1}$ Supply Current	IDD1 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			6.5	8.2	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.4	4.9	mA	5 MHz logic signal frequency
$V_{\text {DD2 }}$ Supply Current	IDD2 (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.1	1.3	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.9	2.2	mA	5 MHz logic signal frequency
ADuM1311, Total Supply Current, Three Channels ${ }^{2}$						
DC to 2 Mbps						
$V_{\text {DD } 1}$ Supply Current	$\mathrm{IDD1}$ (0)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.2	2.8	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.0	1.6	mA	DC to 1 MHz logic signal frequency
$\mathrm{V}_{\text {DD } 2}$ Supply Current	ldD2 (Q)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			0.9	1.4	mA	DC to 1 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.8	2.4	mA	DC to 1 MHz logic signal frequency
$V_{\text {DD } 1}$ Supply Current	$\operatorname{ldD1}(10)$					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			4.5	5.7	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5	3.5	mA	5 MHz logic signal frequency
$\mathrm{V}_{\text {DD2 }}$ Supply Current	$\operatorname{ldD2}$ (10)					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.9	2.6	mA	5 MHz logic signal frequency
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			3.5	4.3	mA	5 MHz logic signal frequency
For All Models						
Input Currents	IIa, lib, lic, Ictrli, $I_{\text {ctrl2, }}$ I lisable	-10	+0.01	+10	$\mu \mathrm{A}$	
Logic High Input Threshold	$\mathrm{V}_{1 H}$					
$V_{\text {DDx }}=5 \mathrm{~V}$ Operation		2.0			V	
$\mathrm{V}_{\mathrm{DDX}}=3 \mathrm{~V}$ Operation		1.6			V	
Logic Low Input Threshold	VIL					
$V_{\text {DDx }}=5 \mathrm{~V}$ Operation				0.8	V	
$V_{\text {DDx }}=3 \mathrm{~V}$ Operation				0.4	V	
Logic High Output Voltages	$\mathrm{V}_{\text {оан }}, \mathrm{V}_{\text {ObH }}, \mathrm{V}_{\text {OCH }}$	$V_{D D 1}, V_{D D 2}-0.1$	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$		V	$\mathrm{l}_{\text {ox }}=-20 \mu \mathrm{~A}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{1 \times \mathrm{H}}$
		$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}-0.4$	$V_{D D 1}, V_{D D 2}-0.2$		V	$\mathrm{l}_{\text {ox }}=-4 \mathrm{~mA}, \mathrm{~V}_{1 \mathrm{x}}=\mathrm{V}_{\text {IXH }}$
Logic Low Output Voltages	Voal, Vobl, Vocl		0.0	0.1	V	$\mathrm{l}_{\mathrm{Ox}}=20 \mu \mathrm{~A}, \mathrm{~V}_{1 \times}=\mathrm{V}_{\text {IXL }}$
			0.2	0.4	V	

ADuM1310/ADuM1311

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
SWITCHING SPECIFICATIONS						
ADuM131xARW						
Minimum Pulse Width ${ }^{3}$	PW			1000	ns	$C_{L}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		1			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{5}$	tPHL, tPLH	25		100	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, \mid tpLH $-\left.\mathrm{t}_{\text {PHLL }}\right\|^{5}$	PWD			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			50	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching ${ }^{7}$	tPskco/od			50	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
ADuM131xBRW						
Minimum Pulse Width ${ }^{3}$	PW			100	ns	$C_{L}=15 \mathrm{pF}$, CMOS signal levels
Maximum Data Rate ${ }^{4}$		10			Mbps	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay ${ }^{5}$	tPHL, ${ }_{\text {PLLH }}$	20		60	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PLH }}-\mathrm{t}_{\text {PHL }}\right\|^{5}$	PWD			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Change vs. Temperature			5		$\mathrm{ps} /{ }^{\circ} \mathrm{C}$	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Propagation Delay Skew ${ }^{6}$	tpsk			30	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Codirectional Channels ${ }^{7}$	tPskco			5	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
Channel-to-Channel Matching, Opposing-Directional Channels ${ }^{7}$	tpskod			6	ns	$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
For All Models						
Output Rise/Fall Time (10\% to 90\%)	t_{R} / t_{F}					$C_{L}=15 \mathrm{pF}, \mathrm{CMOS}$ signal levels
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			2.5		ns	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			2.5		ns	
Common-Mode Transient Immunity at Logic High Output ${ }^{8}$	\|CM ${ }_{\text {H }}$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=\mathrm{V}_{\mathrm{DD} 1} / \mathrm{V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Common-Mode Transient Immunity at Logic Low Output ${ }^{8}$	$\mid C M L$	25	35		kV/ $\mu \mathrm{s}$	$\begin{aligned} & \mathrm{V}_{\mathrm{Ix}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \\ & \text { transient magnitude }=800 \mathrm{~V} \end{aligned}$
Refresh Rate	fr_{r}					
$5 \mathrm{~V} / 3 \mathrm{~V}$ Operation			1.2		Mbps	
$3 \mathrm{~V} / 5 \mathrm{~V}$ Operation			1.1		Mbps	
Input Enable Time ${ }^{9}$	$\mathrm{t}_{\text {enable }}$			2.0	$\mu \mathrm{s}$	$\mathrm{V}_{1 A}, \mathrm{~V}_{13}, \mathrm{~V}_{16}, \mathrm{~V}_{\text {ID }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$
Input Disable Time ${ }^{9}$	tisable			5.0	$\mu \mathrm{s}$	$\mathrm{V}_{1 A}, \mathrm{~V}_{\text {IB }}, \mathrm{V}_{1 C}, \mathrm{~V}_{\text {ID }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DD } 1}$
Input Supply Current per Channel, Quiescent ${ }^{10}$						
$V_{\text {DDx }}=5 \mathrm{~V}$ Operation	IDDI (0)		0.50	0.73	mA	
$\mathrm{V}_{\mathrm{DDx}}=3 \mathrm{~V}$ Operation	IDDI(0)		0.25	0.38	mA	
Output Supply Current per Channel, Quiescent ${ }^{10}$						
$\mathrm{V}_{\mathrm{DDx}}=5 \mathrm{~V}$ Operation	IDDo (0)		0.38	0.53	mA	
$\mathrm{V}_{\mathrm{DDx}}=3 \mathrm{~V}$ Operation	IdDo (0)		0.19	0.33	mA	
Input Dynamic Supply Current per Channel ${ }^{11}$	$\mathrm{IDDI}(\mathrm{D})$					
$\mathrm{V}_{\mathrm{DDx}}=5 \mathrm{~V}$ Operation			0.12		mA/ Mbps	
$\mathrm{V}_{\mathrm{DDx}}=3 \mathrm{~V}$ Operation			0.07		mA/ Mbps	

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Output Dynamic Supply Current per Channel	IDDI (D)					
$V_{D D x}=5 \mathrm{~V} \text { Operation }$			0.04		mA/ Mbps	
$\mathrm{V}_{\mathrm{DDx}}=3 \mathrm{~V}$ Operation			0.02		mA/ Mbps	

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2}$ The supply current values for all four channels are combined when running at identical data rates. Output supply current values are specified with no output load present. The supply current associated with an individual channel operating at a given data rate can be calculated as described in the Power Consumption section. See Figure 6 through Figure 8 for information on per-channel supply current as a function of data rate for unloaded and loaded conditions. See Figure 9 through Figure 12 for total $V_{D D 1}$ and $V_{D D 2}$ supply currents as a function of data rate for ADuM1310/ADuM1311 channel configurations.
${ }^{3}$ The minimum pulse width is the shortest pulse width at which the specified pulse width distortion is guaranteed.
${ }^{4}$ The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
${ }^{5} t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the $V_{1 x}$ signal to the 50% level of the falling edge of the $V_{\text {Ox }}$ signal. $t_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the $\mathrm{V}_{1 \mathrm{x}}$ signal to the 50% level of the rising edge of the $\mathrm{V}_{0 \mathrm{x}}$ signal.
${ }^{6} t_{\text {PSK }}$ is the magnitude of the worst-case difference in $\mathrm{t}_{\text {PHL }}$ or $\mathrm{t}_{\text {PLH }}$ that is measured between units at the same operating temperature, supply voltages, and output load within the recommended operating conditions.
${ }^{7}$ Codirectional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on the same side of the isolation barrier. Opposing-directional channel-to-channel matching is the absolute value of the difference in propagation delays between any two channels with inputs on opposing sides of the isolation barrier.
${ }^{8} \mathrm{CM}_{H}$ is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2}$. CM_{L} is the maximum common-mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{0}<0.8 \mathrm{~V}$. The common-mode voltage slew rates apply to both rising and falling common-mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
${ }^{9}$ Input enable time is the duration from when V VISABLE is set low until the output states are guaranteed to match the input states in the absence of any input data logic transitions. If an input data logic transition within a given channel does occur within this time interval, the output of that channel reaches the correct state within the much shorter duration, as determined by the propagation delay specifications within this data sheet. Input disable time is the duration from when VoIsable is set high until the output states are guaranteed to reach their programmed output levels, as determined by the CTRL 2 logic state (See Table 12).
${ }^{10} I_{D D x}(0)$ is the quiescent current drawn from the corresponding supply by a single channel. To calculate the total quiescent current, an additional inaccessible channel in the same orientation as Channel A must be included to account for the total current consumed.
${ }^{11}$ Dynamic supply current is the incremental amount of supply current required for a 1 Mbps increase in signal data rate. See Figure 6 through Figure 8 for information on per-channel supply current for unloaded and loaded conditions. See the Power Consumption section for guidance on calculating the per-channel supply current for a given data rate.

ADuM1310/ADuM1311

PACKAGE CHARACTERISTICS

Table 4.

Parameter	Symbol	Min	Typ	Max	Unit	Test Conditions
Resistance (Input-to-Output) ${ }^{1}$	R-O		10^{12}		Ω	
Capacitance (Input-to-Output) ${ }^{1}$	$\mathrm{Cl}_{1-\mathrm{O}}$		2.2		pF	$\mathrm{f}=1 \mathrm{MHz}$
Input Capacitance ${ }^{2}$	C_{1}		4.0		pF	
IC Junction-to-Case Thermal Resistance						Thermocouple located at center of package underside
Side 1	$\theta_{\text {נсı }}$		33		${ }^{\circ} \mathrm{C} / \mathrm{W}$	
Side 2	$\theta_{\text {лсо }}$		28		${ }^{\circ} \mathrm{C} / \mathrm{W}$	

${ }^{1}$ Device considered a 2-terminal device; Pin 1, Pin 2, Pin 3, Pin 4, Pin 5, Pin 6, Pin 7, and Pin 8 shorted together and Pin 9, Pin 10, Pin 11, Pin 12, Pin 13, Pin 14, Pin 15, and
Pin 16 shorted together.
${ }^{2}$ Input capacitance is from any input data pin to ground.

REGULATORY INFORMATION

The ADuM131x have been approved by the organizations listed in Table 5.
Table 5.

UL$^{\mathbf{1}}$	CSA	VDE $^{\mathbf{2}}$
Recognized under 1577 component	Approved under CSA Component	Certified according to DIN EN 60747-5-2
recognition program	Acceptance Notice \#5A	(VDE 0884 Part 2): 2003-01
Single/basic insulation,	Reinforced insulation per CSA 60950-1-	Basic insulation, 560 V peak
2500 V rms isolation voltage	03 and IEC 60950-1,	
	400 V rms maximum working voltage	
		Complies with DIN EN 60747-5-2 (VDE 0884 Part 2): 2003-01,
		DIN EN 60950 (VDE 0805): 2001-12; EN 60950: 2000
		Reinforced insulation, 560 V peak
File E214100	File 205078	File 2471900-4880-0001

${ }^{1}$ In accordance with UL 1577 , each ADuM131x is proof tested by applying an insulation test voltage $\geq 3000 \mathrm{~V}$ rms for 1 sec (current leakage detection limit $=5 \mu \mathrm{~A}$).
${ }^{2}$ In accordance with DIN EN 60747-5-2, each ADuM131x is proof tested by applying an insulation test voltage $\geq 1050 \mathrm{~V}$ peak for 1 sec (partial discharge detection limit $=5 \mathrm{pC}$). The * marking branded on the component designates DIN EN 60747-5-2 approval.

INSULATION AND SAFETY-RELATED SPECIFICATIONS

Table 6.

Parameter	Symbol	Value	Unit	Conditions
Rated Dielectric Insulation Voltage	L(I01)	2500	7.7 min	mm
Minimum External Air Gap (Clearance)	1 minute duration Measured from input terminals to output terminals, shortest distance through air			
Minimum External Tracking (Creepage)	8.1 min	mm	Measured from input terminals to output terminals, shortest distance path along body	
Minimum Internal Gap (Internal Clearance)	CTI	0.017 min	mm	Insulation distance through insulation DIN IEC 112/VDE 0303 Part 1
Tracking Resistance (Comparative Tracking Index) Isolation Group	V	DIIa	Material Group (DIN VDE 0110, 1/89, Table 1)	

DIN EN 60747-5-2 (VDE 0884 PART 2) INSULATION CHARACTERISTICS

The ADuM131x isolators are suitable for basic electrical isolation only within the safety limit data. Maintenance of the safety data is ensured by protective circuits. The * marking on packages denotes DIN EN 60747-5-2 approval.
Table 7.

Description	Conditions	Symbol	Characteristic	Unit
Installation Classification per DIN VDE 0110				
For Rated Mains Voltage $\leq 150 \mathrm{~V}$ rms			I to IV	
For Rated Mains Voltage $\leq 300 \mathrm{~V}$ rms			I to III	
For Rated Mains Voltage $\leq 400 \mathrm{~V}$ rms			I to II	
Climatic Classification			40/105/21	
Pollution Degree (DIN VDE 0110, Table 1)				
Maximum Working Insulation Voltage		Viorm	560	\checkmark peak
Input-to-Output Test Voltage, Method B1	$\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR},}, 100 \%$ production test, $\mathrm{t}_{\mathrm{m}}=1 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{\text {PR }}$	1050	\checkmark peak
Input-to-Output Test Voltage, Method A	$\mathrm{V}_{\text {IORM }} \times 1.6=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$	$V_{P R}$		
After Environmental Tests Subgroup 1			896	\checkmark peak
After Input and/or Safety Test Subgroup 2 and Subgroup 3	$\mathrm{V}_{\text {IORM }} \times 1.2=\mathrm{V}_{\text {PR, }}, \mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, partial discharge $<5 \mathrm{pC}$		672	\checkmark peak
Highest Allowable Overvoltage	Transient overvoltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$	$V_{\text {TR }}$	4000	\checkmark peak
Safety-Limiting Values	Maximum value allowed in the event of a failure; see Figure 5			
Case Temperature		Ts	150	${ }^{\circ} \mathrm{C}$
Side 1 Current		I_{51}	265	mA
Side 2 Current		I_{5}	335	mA
Insulation Resistance at T_{s}	$\mathrm{V}_{10}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

RECOMMENDED OPERATING CONDITIONS

Table 8.

Parameter	Symbol	Min	Max	Unit
Operating Temperature	T_{A}	-40	+105	${ }^{\circ} \mathrm{C}$
Supply Voltages ${ }^{1}$	$\mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}$	2.7	5.5	V
Input Signal Rise and Fall Times			1.0	ms

[^1]
ADuM1310/ADuM1311

ABSOLUTE MAXIMUM RATINGS

Ambient temperature $=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 9.

Parameter	Rating
Storage Temperature (T_{st})	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Operating Temperature $\left(T_{A}\right)$	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$
Supply Voltages ($\left.\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}\right)^{1}$	-0.5 V to +7.0 V
Input Voltage $\left(\mathrm{V}_{\text {IA }}, \mathrm{V}_{\text {IB }}, \mathrm{V}_{\text {II, }} \mathrm{V}_{\text {DISABLE }}, \mathrm{V}_{\text {CTRLI }}, \mathrm{V}_{\text {CTRLL }}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\text {DII }}+0.5 \mathrm{~V}$
Output Voltage ($\left.\mathrm{V}_{\mathrm{OA}}, \mathrm{V}_{\mathrm{OB}}, \mathrm{V}_{\mathrm{OC}}\right)^{1,2}$	-0.5 V to $\mathrm{V}_{\mathrm{DDO}}+0.5 \mathrm{~V}$
Average Output Current per Pin ${ }^{3}$	
Side 1 (loı)	-18 mA to +18 mA
Side 2 (loz)	-22 mA to +22 mA
Common-Mode Transients ${ }^{4}$	$\begin{aligned} & -100 \mathrm{kV} / \mathrm{\mu s} \text { to }+100 \\ & \mathrm{kV} / \mu \mathrm{s} \end{aligned}$

${ }^{1}$ All voltages are relative to their respective ground.
${ }^{2} V_{D D I}$ and $V_{D D O}$ refer to the supply voltages on the input and output sides of a given channel, respectively. See the PC Board Layout section.
${ }^{3}$ See Figure 5 for maximum rated current values for various temperatures.
${ }^{4}$ Refers to common-mode transients across the insulation barrier. Commonmode transients exceeding the Absolute Maximum Ratings may cause latchup or permanent damage.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

*Pin 2 and Pin 8 are internally connected, and connecting both to GND_{1} is recommended.
Pin 9 and Pin 15 are internally connected, and connecting both to GND_{2} is recommended.
Figure 3. ADuM1310 Pin Configuration
Table 10. ADuM1310 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VD1	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND_{1}	Ground 1. Ground reference for isolator Side 1.
3	$\mathrm{V}_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	VIC	Logic Input C.
6	NC	No Connection.
7	DISABLE	Input Disable. Disables the isolator inputs and halts the dc refresh circuits. Outputs take on the logic state determined by CTRL2.
8	GND_{1}	Ground 1. Ground reference for isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for isolator Side 2.
10	CTRL2	Default Output Control. Controls the logic state the outputs take on when the input power is off. $V_{O A}, V_{O B}$, and $V_{O C}$ outputs are high when CTRL $_{2}$ is high or disconnected and $V_{D D 1}$ is off. $V_{\text {OA }}, V_{\text {OB, }}$, and $V_{\text {Oc }}$ outputs are low when $C T R L_{2}$ is low and $V_{D D 1}$ is off. When $V_{D D 1}$ power is on, this pin has no effect.
11	NC	No Connection.
12	Voc	Logic Output C.
13	$\mathrm{V}_{\text {OB }}$	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

ADuM1310/ADuM1311

*Pin 2 and Pin 8 are internally connected, and connecting both to GND_{1} is recommended. Pin 9 and Pin 15 are internally connected, and connecting both to GND_{2} is recommended.

Figure 4. ADuM1311 Pin Configuration
Table 11. ADuM1311 Pin Function Descriptions

Pin No.	Mnemonic	Description
1	VDD1	Supply Voltage for Isolator Side 1, 2.7 V to 5.5 V.
2	GND_{1}	Ground 1. Ground reference for isolator Side 1.
3	$V_{\text {IA }}$	Logic Input A.
4	$V_{\text {IB }}$	Logic Input B.
5	Voc	Logic Output C.
6	NC	No Connection.
7	CTRL ${ }_{1}$	Default Output Control. Controls the logic state the outputs take on when the input power is off. Voc output is high when CTRL_{1} is high or disconnected and $\mathrm{V}_{\mathrm{DD} 2}$ is off. $\mathrm{V}_{\text {oc }}$ output is low when CTRL_{1} is low and $\mathrm{V}_{\mathrm{DD} 2}$ is off. When $\mathrm{V}_{\mathrm{DD} 2}$ power is on, this pin has no effect.
8	GND_{1}	Ground 1. Ground reference for isolator Side 1.
9	GND_{2}	Ground 2. Ground reference for isolator Side 2.
10	CTRL2	Default Output Control. Controls the logic state the outputs take on when the input power is off. $V_{\text {OA }}$ and $V_{\text {OB }}$ outputs are high when $C_{R L}$ is high or disconnected and $V_{D D 1}$ is off. $V_{O A}$ and $V_{O B}$ outputs are low when $C_{R L}$ is low and $V_{D D 1}$ is off. When $V_{D D 1}$ power is on, this pin has no effect.
11	NC	No Connection.
12	VIC	Logic Input C.
13	$\mathrm{V}_{\text {ов }}$	Logic Output B.
14	VoA	Logic Output A.
15	GND_{2}	Ground 2. Ground reference for isolator Side 2.
16	$\mathrm{V}_{\mathrm{DD} 2}$	Supply Voltage for Isolator Side 2, 2.7 V to 5.5 V.

ADuM1310/ADuM1311

Table 12. Truth Table (Positive Logic)

\mathbf{V}_{IX} Input ${ }^{1}$	CTRL $_{\mathrm{x}}$ Input ${ }^{2}$	Visable State ${ }^{3}$	VDI State ${ }^{4}$	$V_{\text {DDO }}$ State ${ }^{5}$	Vox Output	Notes
H	X	L or NC	Powered	Powered	H	Normal operation, data is high.
L	X	L or NC	Powered	Powered	L	Normal operation, data is low.
X	H or NC	H	X	Powered	H	Inputs disabled. Outputs are in the default state as determined by CTRL.
X	L	H	X	Powered	L	Inputs disabled. Outputs are in the default state as determined by CTRL.
X	H or NC	X	Unpowered	Powered	H	Input unpowered. Outputs are in the default state as determined by CTRLx. Outputs return to input state within 1μ s of $V_{\text {DDI }}$ power restoration. See the pin function tables (Table 10 and Table 11) for more details.
X	L	X	Unpowered	Powered	L	Input unpowered. Outputs are in the default state as determined by CTRLx. Outputs return to input state within $1 \mu \mathrm{~s}$ of $V_{\text {DDI }}$ power restoration. See the pin function tables (Table 10 and Table 11) for more details.
X	X	X	Powered	Unpowered	Z	Output unpowered. Output pins are in high impedance state. Outputs return to input state within $1 \mu \mathrm{~s}$ of $\mathrm{V}_{\mathrm{DDO}}$ power restoration. See the pin function tables (Table 10 and Table 11) for more details.

[^2]
ADuM1310/ADuM1311

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 5. Thermal Derating Curve, Dependence of Safety-Limiting Values with Case Temperature per DIN EN 60747-5-2

Figure 6. Typical Supply Current per Input Channel vs. Data Rate for 5 V and 3 V Operation

Figure 7. Typical Supply Current per Output Channel vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 8. Typical Supply Current per Output Channel vs. Data Rate for 5 V and 3 V Operation (15 pF Output Load)

Figure 9. Typical ADuM1310 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation

Figure 10. Typical ADuM1310 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 11. Typical ADuM1311 VDD1 Supply Current vs. Data Rate for 5 V and 3 V Operation (No Output Load)

Figure 12. Typical ADuM1311 VDD2 Supply Current vs. Data Rate for 5 V and 3 V Operation (No Output Load)

ADuM1310/ADuM1311

APPLICATION INFORMATION

PC BOARD LAYOUT

The ADuM131x digital isolator requires no external interface circuitry for the logic interfaces. Power supply bypassing is strongly recommended at the input and output supply pins (see Figure 13). Bypass capacitors are most conveniently connected between Pin 1 and Pin 2 for $V_{D D 1}$ and between Pin 15 and Pin 16 for $\mathrm{V}_{\mathrm{DD} 2}$. The capacitor value should be between $0.01 \mu \mathrm{~F}$ and $0.1 \mu \mathrm{~F}$. The total lead length between both ends of the capacitor and the input power supply pin should not exceed 20 mm . Bypassing between Pin 1 and Pin 8 and between Pin 9 and Pin 16 should be considered, unless both of the ground pins on each package are connected together close to the package.

Figure 13. Recommended Printed Circuit Board Layout
In applications involving high common-mode transients, care should be taken to ensure that board coupling across the isolation barrier is minimized. Furthermore, the board layout should be designed such that any coupling that does occur equally affects all pins on a given component side. Failure to ensure this can cause voltage differentials between pins exceeding the device's absolute maximum ratings, thereby leading to latch-up or permanent damage.

PROPAGATION DELAY RELATED PARAMETERS

Propagation delay is a parameter that describes the time it takes a logic signal to propagate through a component. The input-tooutput propagation delay time for a high-to-low transition may differ from the propagation delay time of a low-to-high transition.

Figure 14. Propagation Delay Parameters
Pulse width distortion is the maximum difference between these two propagation delay values and is an indication of how accurately the input signal's timing is preserved.

Channel-to-channel matching refers to the maximum amount the propagation delay differs between channels within a single ADuM131x component.
Propagation delay skew refers to the maximum amount the propagation delay differs between multiple ADuM131x components operating under the same conditions.

DC CORRECTNESS AND MAGNETIC FIELD IMMUNITY

Positive and negative logic transitions at the isolator input cause narrow ($\sim 1 \mathrm{~ns}$) pulses to be sent to the decoder via the transformer. The decoder is bistable and is therefore either set or reset by the pulses, indicating input logic transitions. In the absence of logic transitions at the input for more than $2 \mu \mathrm{~s}$, a periodic set of refresh pulses indicative of the correct input state are sent to ensure dc correctness at the output. If the decoder receives no internal pulses of more than about $5 \mu \mathrm{~s}$, the input side is assumed to be unpowered or nonfunctional, in which case the isolator output is forced to a default state (see Table 12) by the watchdog timer circuit.
The magnetic field immunity of the ADuM131x is determined by the changing magnetic field, which induces a voltage in the transformer's receiving coil large enough to either falsely set or reset the decoder. The following analysis defines the conditions under which this can occur. The 3 V operating condition of the ADuM131x is examined because it represents the most susceptible mode of operation.
The pulses at the transformer output have an amplitude greater than 1.0 V . The decoder has a sensing threshold at about 0.5 V , thus establishing a 0.5 V margin in which induced voltages can be tolerated. The voltage induced across the receiving coil is given by

$$
V=(-d \beta / d t) \sum \pi r_{n}^{2} ; n=1,2, \ldots, N
$$

where:
β is magnetic flux density (gauss).
N is the number of turns in the receiving coil. r_{n} is the radius of the $\mathrm{n}^{\text {th }}$ turn in the receiving coil (cm).
Given the geometry of the receiving coil in the ADuM131x and an imposed requirement that the induced voltage be, at most, 50% of the 0.5 V margin at the decoder, a maximum allowable magnetic field at a given frequency can be calculated. The result is shown in Figure 15.

ADuM1310/ADuM1311

Figure 15. Maximum Allowable External Magnetic Flux Density
For example, at a magnetic field frequency of 1 MHz , the maximum allowable magnetic field of 0.2 kgauss induces a voltage of 0.25 V at the receiving coil. This is about 50% of the sensing threshold and does not cause a faulty output transition. Similarly, if such an event were to occur during a transmitted pulse (and was of the worst-case polarity), it would reduce the received pulse from $>1.0 \mathrm{~V}$ to 0.75 V -still well above the 0.5 V sensing threshold of the decoder.
The preceding magnetic flux density values correspond to specific current magnitudes at given distances from the ADuM131x transformers. Figure 16 expresses these allowable current magnitudes as a function of frequency for selected distances. As shown, the ADuM131x is extremely immune and can be affected only by extremely large currents operated at high frequency very close to the component. For the 1 MHz example noted, one would have to place a 0.5 kA current 5 mm away from the ADuM131x to affect the component's operation.

Figure 16. Maximum Allowable Current

for Various Current-to-ADuM131x Spacings

Note that at combinations of strong magnetic field and high frequency, any loops formed by printed circuit board traces can induce error voltages sufficient to trigger succeeding circuitry. Care should be taken in the layout of such traces to avoid this possibility.

POWER CONSUMPTION

The supply current at a given channel of the ADuM131x isolator is a function of the supply voltage, the channel's data rate, and the channel's output load.
For each input channel, the supply current is given by

$$
\begin{array}{ll}
I_{D D I}=I_{D D I(Q)} & f \leq 0.5 f_{r} \\
I_{D D I}=I_{D D I(D)} \times\left(2 f-f_{r}\right)+I_{D D I(Q)} & f>0.5 f_{r}
\end{array}
$$

For each output channel, the supply current is given by

$$
\begin{array}{rl}
I_{D D O}=I_{D D O(Q)} & f \leq 0.5 f_{r} \\
I_{D D O}=\left(I_{D D O(D)}+\left(0.5 \times 10^{-3}\right) \times C_{L} \times V_{D D O}\right) \times\left(2 f-f_{r}\right)+I_{D D O(Q)} \\
f & f 0.5 f_{r}
\end{array}
$$

where:
$I_{D D I(D)}, I_{D D O(D)}$ are the input and output dynamic supply currents per channel (mA/Mbps).
C_{L} is the output load capacitance (pF).
$V_{D D O}$ is the output supply voltage (V).
f is the input logic signal frequency (MHz); it is half of the input data rate expressed in units of Mbps.
f_{r} is the input stage refresh rate (Mbps).
$I_{D D I(Q)}, I_{D D O(Q)}$ are the specified input and output quiescent supply currents (mA).

To calculate the total $V_{D D 1}$ and $V_{D D 2}$ supply current, the supply currents for each input and output channel corresponding to $V_{D D 1}$ and $V_{\text {DD } 2}$ are calculated and totaled. The ADuM131x contains an internal data channel that is not available to the user. This channel is in the same orientation as Channel A and consumes quiescent current. The contribution of this channel must be included in the total quiescent current calculation for each supply. Figure 6 and Figure 7 provide per-channel supply currents as a function of data rate for an unloaded output condition. Figure 8 provides per-channel supply current as a function of data rate for a 15 pF output condition. Figure 9 through Figure 12 provide total $V_{\text {DD1 }}$ and $V_{\text {DD2 }}$ supply current as a function of data rate for ADuM1310/ADuM1311 channel configurations.

ADuM1310/ADuM1311

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-013-AA
CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 17. 16-Lead Standard Small Outline Package [SOIC_W] Wide Body (RW-16)
Dimension shown in millimeters and (inches)

ORDERING GUIDE

Model	Number of Inputs, $V_{\text {DD } 1}$ Side	Number of Inputs, $V_{D D 2}$ Side	Maximum Data Rate (Mbps)	Maximum Propagation Delay, 5 V (ns)	Maximum Pulse Width Distortion (ns)	Temperature Range	Package Description	Package Option
ADuM1310ARWZ ${ }^{1}$	3	0	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM1310ARWZ-RL ${ }^{1}$	3	0	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W, 13"Reel	RW-16
ADuM1310BRWZ ${ }^{1}$	3	0	10	50	5	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM1310BRWZ-RL ${ }^{1}$	3	0	10	50	5	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W, 13" Reel	RW-16
ADuM1311ARWZ ${ }^{1}$	2	1	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM1311ARWZ-RL'	2	1	1	100	40	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W, 13"Reel	RW-16
ADuM1311BRWZ ${ }^{1}$	2	1	10	50	5	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W	RW-16
ADuM1311BRWZ-RL ${ }^{1}$	2	1	10	50	5	$-40^{\circ} \mathrm{C}$ to $+105^{\circ} \mathrm{C}$	16-Lead SOIC_W, 13"Reel	RW-16

[^3]
[^0]: ${ }^{1}$ Protected by U.S. Patents 5,952,849; 6,873,065; and 7,075 329. Other patents pending.

[^1]: ${ }^{1}$ All voltages are relative to their respective ground. See the DC Correctness and Magnetic Field Immunity section for information on immunity to external magnetic fields.

[^2]: ${ }^{1} V_{1 x}$ and $V_{0 x}$ refer to the input and output signals of a given channel (A, B, or C).
 ${ }^{2}$ CTRL ${ }_{x}$ refers to the default output control signal on the input side of a given channel (A, B, or C).
 ${ }^{3}$ Available only on the ADuM1310.
 ${ }^{4} \mathrm{~V}_{\text {DDI }}$ refers to the power supply on the input side of a given channel (A, B, or C).
 ${ }^{5} V_{D D O}$ refers to the power supply on the output side of a given channel (A, B, or C).

[^3]: ${ }^{1} \mathrm{Z}=\mathrm{Pb}$-free part.

