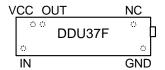
MECHANICALLY VARIABLE TTL DELAY LINE **SERIES DDU37F)**

FEATURES PACKAGES


- Ideal for "Set and Forget" applications
- Multi-turn adjustment screw (approx. 40 turns)
- Input & output fully TTL interfaced & buffered (10 T²L fan-out capability)

Resolution: As low as 0.12ns Minimum delay (T_{D0}) : 6ns typical

Output rise time: 2ns typical Min. input pulse width: 20% of maximum delay Power dissipation: 230mW maximum Operating temperature: 0° to 70°C (Commercial)

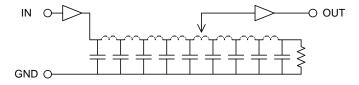
-55° to 125°C (Military)

Temperature coefficient: 100 PPM/°C

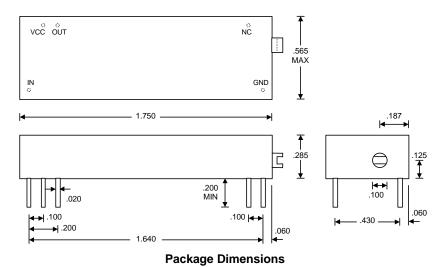
DDU37F-xx (Commercial) DDU37F-xxM (Military) xx = Dash number

FUNCTIONAL DESCRIPTION

The DDU37F-series device is a mechanically variable, FAST-TTL interfaced delay line. The signal input (IN) is reproduced at the tap output (OUT), shifted by an amount which can be adjusted between T_{D0} and T_{D0}+ T_{DVAR}, where T_{DVAR} is given by the device dash number (See Table). The device operates from a single 5V supply and is TTL interfaced, capable of driving up to 10 TTL loads.


PIN DESCRIPTIONS

Signal Input OUT **Fixed Output**


VCC +5V **GND** Ground

NC No connection

SERIES SPECIFICATIONS

Functional Diagram

DASH NUMBER SPECIFICATIONS

Part Number	T _{DVAR} (ns)		
	` ,		
DDU37F-25	15		
DDU37F-30	20		
DDU37F-40	30		
DDU37F-50	40		
DDU37F-60	50		
DDU37F-70	60		
DDU37F-80	70		
DDU37F-100	90		
DDU37F-120	100		
DDU37F-150	130		
DDU37F-200	180		

Note: Other delay times available on request

©2001 Data Delay Devices

APPLICATION NOTES

HIGH FREQUENCY RESPONSE

The DDU37F tolerances are guaranteed for input pulse widths and periods greater than those specified in the test conditions. Although the device will function properly for pulse widths as small as 20% of the total delay and periods as small as 40% of the total delay (for a symmetric input), the delays may deviate from their values at low frequency. However, for a given input condition, the deviation will be repeatable from pulse to pulse. Contact technical support at Data

Delay Devices if your application requires device testing at a specific input condition.

POWER SUPPLY BYPASSING

The DDU37F relies on a stable power supply to produce repeatable delays within the stated tolerances. A 0.1uf capacitor from VCC to GND, located as close as possible to the VCC pin, is recommended. A wide VCC trace and a clean ground plane should be used.

DEVICE SPECIFICATIONS

TABLE 1: ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNITS	NOTES
DC Supply Voltage	V _{cc}	-0.3	7.0	V	
Input Pin Voltage	V_{IN}	-0.3	V _{DD} +0.3	V	
Storage Temperature	T_{STRG}	-55	150	С	
Lead Temperature	T_{LEAD}		300	С	10 sec

TABLE 2: DC ELECTRICAL CHARACTERISTICS

(0C to 70C, 4.75V to 5.25V)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
High Level Output Voltage	V _{OH}	2.5	3.4		V	$V_{CC} = MIN, I_{OH} = MAX$
						$V_{IH} = MIN, V_{IL} = MAX$
Low Level Output Voltage	V_{OL}		0.35	0.5	V	$V_{CC} = MIN, I_{OL} = MAX$
						$V_{IH} = MIN, V_{IL} = MAX$
High Level Output Current	I _{OH}			-1.0	mA	
Low Level Output Current	I_{OL}			20.0	mA	
High Level Input Voltage	V_{IH}	2.0			V	
Low Level Input Voltage	V_{IL}			0.8	V	
Input Clamp Voltage	V_{IK}			-1.2	V	$V_{CC} = MIN, I_I = I_{IK}$
Input Current at Maximum	I_{IHH}			0.1	mA	$V_{CC} = MAX, V_I = 7.0V$
Input Voltage						
High Level Input Current	I _{IH}			20	μΑ	$V_{CC} = MAX, V_1 = 2.7V$
Low Level Input Current	I _{IL}			-0.6	mA	$V_{CC} = MAX, V_I = 0.5V$
Short-circuit Output Current	I _{os}	-60		-150	mA	$V_{CC} = MAX$
Output High Fan-out				25	Unit	
Output Low Fan-out				12.5	Load	

DELAY LINE AUTOMATED TESTING

TEST CONDITIONS

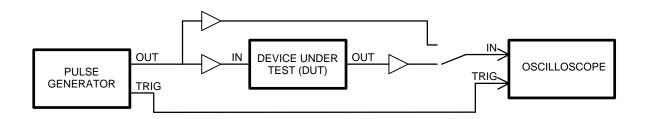
INPUT: OUTPUT:

Ambient Temperature: $25^{\circ}\text{C} \pm 3^{\circ}\text{C}$ **Load:** 1 FAST-TTL Gate

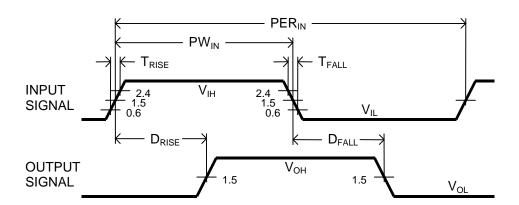
Supply Voltage (Vcc): $5.0V \pm 0.1V$ C_{load}: $5pf \pm 10\%$

Input Pulse: High = $3.0V \pm 0.1V$ Threshold: 1.5V (Rising & Falling)

 $Low = 0.0V \pm 0.1V$


Source Impedance: 50Ω Max.

Rise/Fall Time: 3.0 ns Max. (measured


between 0.6V and 2.4V)

Pulse Width: $PW_{IN} = 1.5 \times Total Delay$ Period: $PER_{IN} = 10 \times Total Delay$

NOTE: The above conditions are for test only and do not in any way restrict the operation of the device.

Test Setup

Timing Diagram For Testing