February 1996

DS3667 TRI-STATE Bidirectional Transceiver

National Semiconductor

The DS3667 is a high-speed Schottky 8-channel bidirection-

al transceiver designed for digital information and communi-

cation systems. Pin selectable totem-pole/open collector

outputs are provided at all driver outputs. This feature, to-

gether with the Dumb Mode which puts both driver and re-

ceiver outputs in TRI-STATE at the same time, means high-

er flexibility of system design. PNP inputs are used at all

driver inputs for minimum loading, and hysteresis is provid-

ed at all receiver inputs for added noise margin. A power

up/down protection circuit is included at all outputs to pro-

vide glitch-free operation during $V_{\mbox{CC}}$ power up or down.

DS3667 TRI-STATE® Bidirectional Transceiver

General Description

Features

- 8-channel bidirectional non-inverting transceivers
- Bidirectional control implemented with TRI-STATE output design
- High speed Schottky design
- Low power consumption
- High impedance PNP inputs (drivers)
- Pin selectable totem-pole/open collector outputs (drivers)
- 500 mV (typ) input hysteresis (receivers)
- Power up/down protection (glitch-free)
- Dumb Mode capability

Connection Diagram

© 1996 National Semiconductor Corporation TL/F/5245

RRD-B30M36/Printed in U. S. A.

http://www.national.com

Functional Truth Table Control Input Level Data Transceivers PE Terminal Port ТΕ Mode **Bus Port** н Н Т Totem-Pole Input Output L Open Input Н т Collector Output Output L н R Input

TRI-STATE

D

TRI-STATE

L L H: High Level Input

L: Low Level Input

T: Transmitting Mode

R: Receiving Mode

D: Dumb Mode

http://www.national.com

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage (V _{CC})	7.0V
Input Voltage	5.5V
Storage Temperature Range	-65°C to +150°C
Maximum Power Dissipation* at 25°C	
Molded Package	1832 mW
Lead Temperature (Soldering, 4 seconds)	260°C
*Derate molded package 14.7 mW/°C above 25°C	

Operating Conditions

	Min	Max	Units
V _{CC} , Supply Voltage	4.75	5.25	V
T _A , Ambient Temperature	0	70	°C
I _{OL} , Output Low Current		40	
Bus		48	mA
Terminal		16	mA

Electrical Characteristics (Notes 2 and 3)

Symbol	Parameter		Conditions		Тур	Max	Units	
VIH	High Level Input Voltage			2			V	
VIL	Low Level Input Voltage					0.8	V	
V _{IK}	Input Clamp Voltage		$I_I = -18 \text{ mA}$		-0.8	-1.5	V	
V _{HYS}	Input Hysteresis	Bus		400	500		mV	
V _{OH} High Level Output Voltage	High Level	Terminal	$I_{OH} = -800 \ \mu A$	2.7	3.5		v	
	Output Voltage	Bus	$I_{OH} = -5.2 \text{ mA}$	2.5	3.4			
V _{OL}	V _{OL} Low Level	Terminal	$I_{OL} = 16 \text{ mA}$		0.3	0.5		
Output Voltage	Bus	$I_{OL} = 48 \text{ mA}$		0.4	0.5			
IIH	High Level	TE, PE	$V_{I} = 5.5V$		0.2	100		
Input Current		$V_{I} = 2.7V$		0.1	20			
		Terminal and Bus	$V_{ } = 4V$			200	μΑ	
IIL	Low Level Input Current	Terminal and TE, PE	$V_{I} = 0.5V$		-10	-100	μΑ	
		Bus			-0.4	-1.0	mA	
I _{OS} Short Circuit Output Current	Short Circuit	Terminal	V _I = 2V, V _O = 0V (Note 4)	-15	-35	-75		
	Output Current	Bus		-50	-120	-200	mA	
I _{CC} Supply Cu	Supply Current		Transmit, TE = 2V, PE = 2V, $V_{I} = 0.8V$		75	100	mA	
			$\label{eq:Receive} \begin{tabular}{lllllllllllllllllllllllllllllllllll$		65	90		
C _{IN}	Bus-Port Capacitance	Bus	$\label{eq:VCC} \begin{split} V_{CC} &= 0V, V_I = 0V, \\ f &= 10 \text{kHz} (\text{Note 5}) \end{split}$		20	30	pF	

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. They are not meant to imply that the device should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operations.

Note 2: Unless otherwise specified, min/max limits apply across the 0°C to +70°C temperature range and the 4.75V to 5.25V power supply range. All typical values are for T_A = 25°C and V_{CC} = 5.0V.

Note 3: All currents into device pins are shown as positive; all currents out of device pins are shown as negative; all voltages are referenced to ground, unless otherwise specified. All values shown as max or min are so classified on absolute value basis.

Note 4: Only one output at a time should be shorted.

Note 5: This parameter is guaranteed by design. It is not a tested parameter.

Symbol	Parameter	From	То	Conditions	Min	Тур	Max	Units
t _{PLH}	Propagation Delay Time, Low to High Level Output	- Terminal Bus C	$V_L = 2.3V$ $R_L = 38.3\Omega$		10	20	ns	
t _{PHL}	Propagation Delay Time, High to Low Level Output		Bus	C _L = 30 pF <i>(Figure 1)</i>		14	20	ns
t _{PLH}	Propagation Delay Time, Low to High Level Output	Bus	Terminal	$V_{L} = 5.0V$ $R_{L} = 240\Omega$ $C_{L} = 30 \text{ pF}$ (Figure 2)		15	20	ns
t _{PHL}	Propagation Delay Time, High to Low Level Output					10	20	ns
t _{PZH}	Output Enable Time to High Level	TE (Notes 2 and 3)	Bus	$V_{I} = 3.0V$ $V_{L} = 0V$ $R_{L} = 480\Omega$ $C_{L} = 15 \text{ pF}$ <i>(Figure 1)</i>		19	30	ns
t _{PHZ}	Output Disable Time to High Level					15	20	ns
t _{PZL}	Output Enable Time to Low Level			$V_{I} = 0V$ $V_{L} = 2.3V$ $R_{L} = 38.3\Omega$ $C_{L} = 15 \text{ pF}$ <i>(Figure 1)</i>		24	40	ns
t _{PLZ}	Output Disable Time to Low Level					17	30	ns
t _{PZH}	Output Enable Time to High Level	TE, PE (Notes 2 and 3)		$V_{I} = 3.0V$ $V_{L} = 0V$ $R_{L} = 3 k\Omega$ $C_{L} = 15 pF$ <i>(Figure 1)</i>		19	35	ns
t _{PHZ}	Output Disable Time to High Level		Terminal			17	25	ns
t _{PZL}	Output Enable Time to Low Level)	$V_{I} = 0V$ $V_{L} = 5V$ $R_{L} = 280\Omega$ $C_{L} = 15 \text{ pF}$ (Figure 1)		27	40	ns
t _{PLZ}	Output Disable Time to Low Level					17	30	ns
t _{PZH}	Output Pull-Up Enable Time	PE (Notes 2 and 3)	Bus	$V_{I} = 3V$ $V_{L} = 0V$ $R_{L} = 480\Omega$ $C_{L} = 15 \text{ pF}$ (Figure 1)		10	20	ns
t _{PHZ}	Output Pull-Up Disable Time					10	20	ns

Note 1: All typical values are for $T_A\,=\,25^\circ\text{C},\,V_{CC}\,=\,5\text{V}.$

Note 2: Refer to Functional Truth Table for control input definition.

Note 3: Test configuration should be connected to only one transceiver at a time due to the high current stress caused by the V_1 voltage source when the output connected to that input becomes active.

http://www.national.com

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

DS3667 TRI-STATE Bidirectional Transceiver