8-bit Proprietary Microcontrollers

CMOS

F²MC-8FX MB95120 series

MB95F128D/F128E/FV100D-101/FV100D-102

DESCRIPTION

The MB95120 series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURE

- F²MC-8FX CPU core
 - Instruction set optimized for controllers
 - Multiplication and division instructions
 - 16-bit arithmetic operations
 - Bit test branch instruction
 - Bit manipulation instructions etc.
- Clock
 - Main clock
 - Main PLL clock
 - Sub clock
 - Sub PLL clock
- Timer
 - 8/16-bit compound timer × 2 channels
 - 16-bit reload timer
 - 8/16-bit PPG × 2 channels
 - 16-bit PPG × 2 channels
 - Timebase timer
 - Watch prescaler

(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page

URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

- LIN-UART
 - Full duplex double buffer
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- UART/SIO
 - Full duplex double buffer
 - Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- I²C*
 - Built-in wake-up function
- External interrupt
 - Interrupt by edge detection (rising, falling, or both edges can be selected)
 - Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter
 - 8-bit or 10-bit resolution can be selected
- LCD controller (LCDC)
 - 40 SEG $\times\,4$ COM (Max 160 pixels)
 - With blinking function
 - Built-in division resistance for LCD drive/booster : selected by mask option
- Low-power consumption (standby) mode
 - Stop mode
 - Sleep mode
 - Watch mode
 - Timebase timer mode
- I/O port
 - The number of maximum ports : Max 87
 - Port configuration
 - General-purpose I/O ports (N-ch open drain) : 2 ports
 - General-purpose I/O ports (CMOS)
 : 8
- : 85 ports
- Programmable input voltage levels of port
 - CMOS input level / hysteresis input level
- Dual operation Flash memory
 - Erase/write and read can be executed in the different bank (Upper Bank/Lower Bank) at the same time.
- Flash memory security function
 - Protects the content of Flash memory (Flash memory product only)
- * : Purchase of Fujitsu I²C components conveys a license under the Philips I²C Patent Rights to use, these components in an I²C system provided that the system conforms to the I²C Standard Specification as defined by Philips.

■ PRODUCT LINEUP

	Part number*1	MB95F128D	MB95F128E		
Pa	arameter	MB331 1200			
Тур	ре	Flash memory product			
RC	OM capacity	60 KI	bytes		
RA	M capacity	2 Kb	pytes		
Re	set output	N	lo		
n*2	Clock system	Dual	clock		
Option*2	Low voltage detection reset	Νο			
СР	PU functions	Data bit length : 1, 8, Minimum instruction execution time : 61.5 r	3 bytes and 16 bits		
	Ports (Max 87 ports)	General-purpose I/O port (N-ch open drain) : 2 ports General-purpose I/O port (CMOS) : 85 ports Programmable input voltage levels of port CMOS input level / hysteresis input level			
	Timebase timer	Interrupt cycle : 0.5 ms, 2.1 ms, 8.2 ms, 32.8 ms (at main oscillation clock 4 MHz)			
	Watchdog timer	Reset generated cycle At main oscillation clock 10 MHz At sub oscillation clock 32.768 kHz	: Min 105 ms : Min 250 ms		
	Wild register	Capable of replacing 3 bytes of ROM data			
Peripheral functions	l²C	Master/slave sending and receiving Bus error function and arbitration function Detecting transmitting direction function Start condition repeated generation and detection functions Built-in wake-up function			
Periph	UART/SIO	Data transfer capable in UART/SIO Full duplex double buffer Variable data length (5/6/7/8-bit), built-in baud rate generator NRZ type transfer format, error detected function LSB-first or MSB-first can be selected Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable			
	LIN-UART	Dedicated reload timer allowing a wide range of communication speeds to be set Full duplex double buffer Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable LIN functions available as the LIN master or LIN slave			
8/10-bit A/D converter (12 channels) 8-bit or 10-bit resolution can be selected					

(Continued)

MB95F128D	MB95F128E				
SEG output: 40LCD drive power supply (bias) pin: 440 SEG × 4 COM: 10Duty LCD mode: 10With blinking function: 10Division resistance for LCD drive/booster : : :	60 pixels can be displayed selected by mask option				
selected by mask option	Built-in booster circuit : selected by mask option				
Square wave form output Count clock : 7 internal clocks and external	Two clock modes and two counter operating modes can be selected Square wave form output Count clock : 7 internal clocks and external clock can be selected Counter operating mode : reload mode or one-shot mode can be selected				
Each channel of the timer can be used as "8-bit timer × 2 channels" or "16-bit timer × 1 channel" Built-in timer function, PWC function, PWM function, capture function and square wave form output Count clock : 7 internal clocks and external clock can be selected					
PWM mode or one-shot mode can be selected Counter operating clock : Eight selectable clock sources Support for external trigger start					
Each channel of the PPG can be used as "8-bit PPG × 2 channels" or "16-bit PPG × 1 channel" Counter operating clock : Eight selectable clock sources					
Count clock : Four selectable clock sources (125 ms, 250 ms, 500 ms, or 1 s) Counter value can be set from 0 to 63 (Capable of counting for 1 minute when selecting clock source 1 second and setting counter value to 60)					
4 selectable interval times (125 ms, 250 ms, 500 ms, or 1 s)					
Interrupt by edge detection (rising, falling, or both edges can be selected) Can be used to recover from standby modes					
Supports automatic programming, Embedded Algorithm ^{™ *3} Write/Erase/Erase-Suspend/Resume commands A flag indicating completion of the algorithm Number of write/erase cycles (Minimum) : 10000 times Data retention time : 20 years Erase can be performed on each block Block protection with external programming voltage Dual operation Flash memory Flash Security Feature for protecting the content of the Flash					
Sleep, stop, watch, and timebase timer					
	COM output : 4 SEG output : 40 LCD drive power supply (bias) pin : 4 40 SEG × 4 COM : 10 Duty LCD mode With blinking function Division resistance for LCD drive/booster : 3 Built-in internal division resistance : selected by mask option Two clock modes and two counter operating Square wave form output Count clock : 7 internal clocks and external Counter operating mode : reload mode or o Each channel of the timer can be used as " 1 channel" Built-in timer function, PWC function, PWM wave form output Count clock : 7 internal clocks and external PWM mode or one-shot mode can be select Counter operating clock : Eight selectable of Support for external trigger start Each channel of the PPG can be used as " 1 channel" Counter operating clock : Eight selectable of Support for external trigger start Each channel of the PPG can be used as " 1 channel" Counter operating clock : Eight selectable of Support for external trigger start Each channel of the PPG can be used as " 1 channel" Counter operating clock : Eight selectable of Count clock : Four selectable clock sources Counter value can be set from 0 to 63 (Capa clock source 1 second and setting counter of 4 selectable interval times (125 ms, 250 ms Interrupt by edge detection (rising, falling, of Can be used to recover from standby mode Supports automatic programming, Embedd Write/Erase/Erase-Suspend/Resume comm A flag indicating completion of the algorithm Number of write/erase cycles (Minimum) : 1 Data retention time : 20 years Erase can be performed on each block Block protection with external programming Dual operation Flash memory Flash Security Feature for protecting the co				

*1 : MASK ROM products are currently under consideration.

*2 : For details of option, refer to "MASK OPTION".

*3 : Embedded Algorithm is a trade mark of Advanced Micro Devices Inc.

Note : Part number of evaluation product in MB95120 series is MB95FV100D-101 (internal division resistance included) or MB95FV100D-102 (LCD booster circuit included) . When using it, the MCU board (MB2146-301A or MB2146-302A) is required.

■ OSCILLATION STABILIZATION WAIT TIME

The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum value is shown as follows.

Oscillation stabilization wait time	Remarks	
(214–2) /Гсн	Approx. 4.10 ms (at main oscillation clock 4 MHz)	

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95F128D/F128E	MB95FV100D-101/102
FPT-100P-M20	0	×
FPT-100P-M06	0	×
BGA-224P-M08	×	0

 \bigcirc : Available

 \times : Unavailable

■ DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

Notes on Using Evaluation Products

The Evaluation product has not only the functions of the MB95120 series but also those of other products to support software development for multiple series and models of the F²MC-8FX family. The I/O addresses for peripheral resources not used by the MB95120 series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.

Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Also, as the read values of prohibited addresses on the evaluation product are different to the values on the Flash memory and mask ROM products, do not use these values in the program.

The functions corresponding to certain bits in single-byte registers may not be supported on Flash memory products. However, reading or writing to these bits will not cause malfunction of the hardware. Also, as the evaluation and Flash memory products are designed to have identical software operation, no particular precautions are required.

• Difference of Memory Spaces

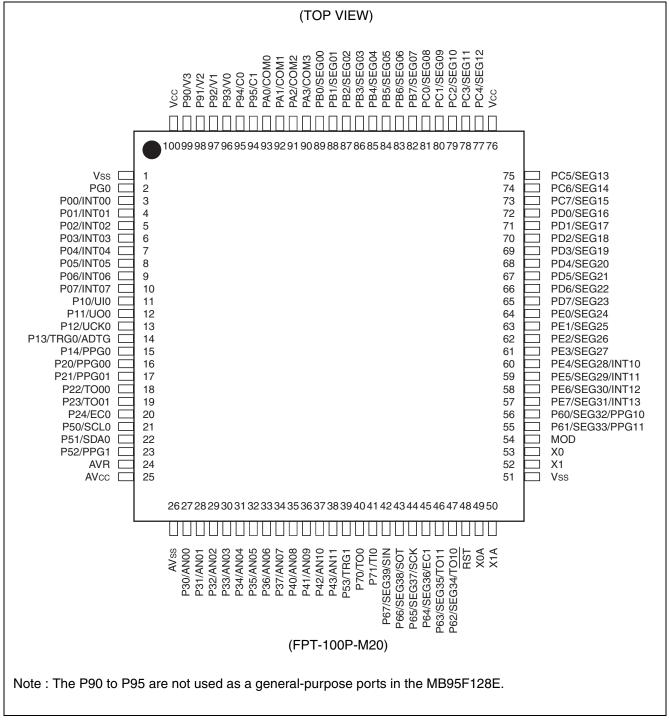
If the amount of memory on the Evaluation product is different from that of the Flash memory product, carefully check the difference in the amount of memory from the model to be actually used when developing software.

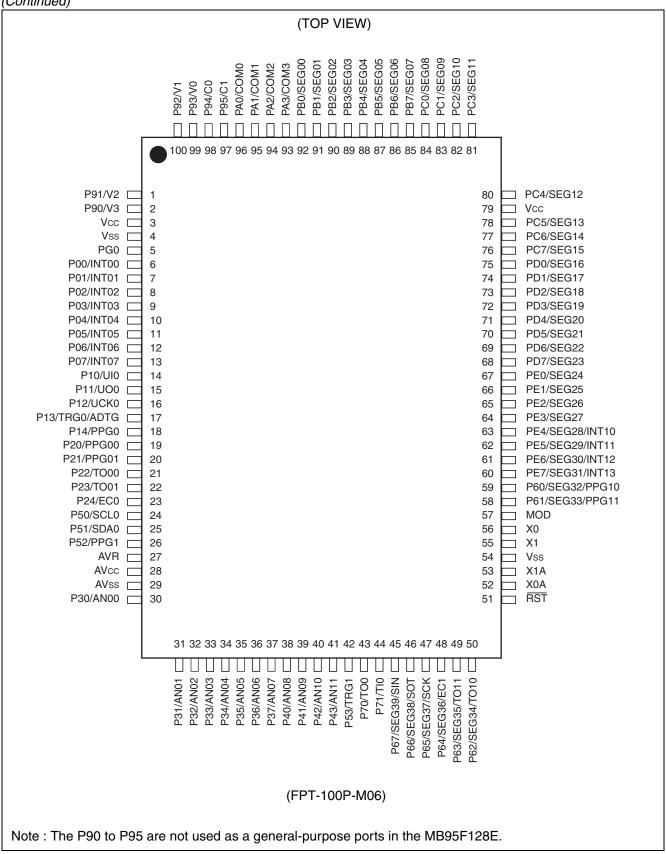
For details of memory space, refer to "■ CPU CORE".

• Current Consumption

For details of current consumption, refer to "■ ELECTRICAL CHARACTERISTICS".

Package


For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".


Operating voltage

The operating voltage are different between the Evaluation and Flash memory products.

For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS".

PIN ASSIGNMENT

■ PIN DESCRIPTION

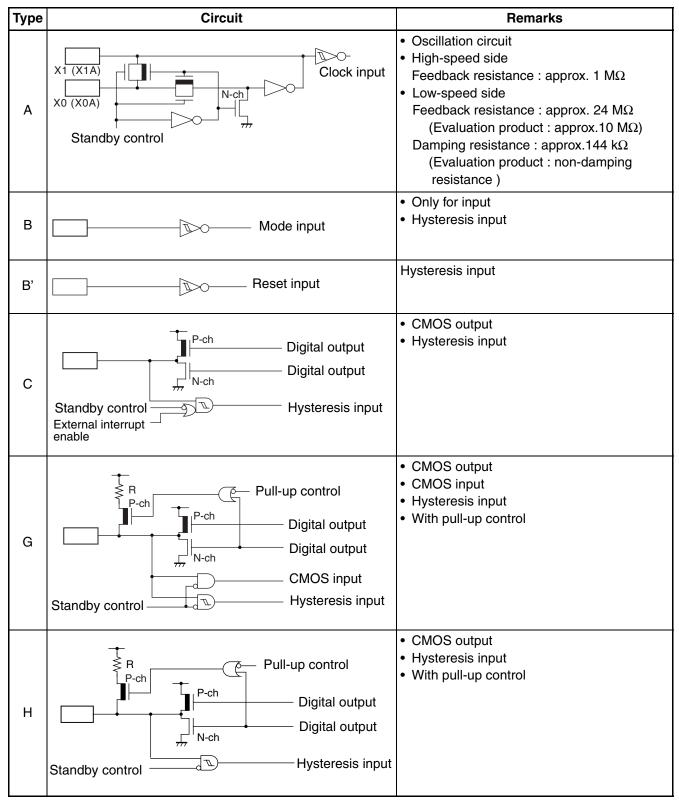
Pin no.			I/O		
LQFP *1	QFP *2	Pin name	circuit type* ³	Function	
1	4	Vss		Power supply pin (GND)	
2	5	PG0	Н	General-purpose I/O port	
3	6	P00/INT00			
4	7	P01/INT01	-		
5	8	P02/INT02			
6	9	P03/INT03	с	General-purpose I/O port The pins are shared with external interrupt input. Large	
7	10	P04/INT04		current port.	
8	11	P05/INT05			
9	12	P06/INT06			
10	13	P07/INT07			
11	14	P10/UI0	G	General-purpose I/O port The pin is shared with UART/SIO ch.0 data input.	
12	15	P11/UO0		General-purpose I/O port The pin is shared with UART/SIO ch.0 data output.	
13	16	P12/UCK0		General-purpose I/O port The pin is shared with UART/SIO ch.0 clock I/O.	
14	17	P13/TRG0/ ADTG	н	General-purpose I/O port The pin is shared with 16-bit PPG ch.0 trigger input (TRG0) and A/D converter trigger input (ADTG).	
15	18	P14/PPG0		General-purpose I/O port The pin is shared with 16-bit PPG ch.0 output.	
16	19	P20/PPG00		General-purpose I/O port	
17	20	P21/PPG01		The pins are shared with 8/16-bit PPG ch.0 output.	
18	21	P22/TO00		General-purpose I/O port	
19	22	P23/TO01	н	The pins are shared with 8/16-bit compound timer ch.0 output.	
20	23	P24/EC0		General-purpose I/O port The pin is shared with 8/16-bit compound timer ch.0 clock input.	
21	24	P50/SCL0		General-purpose I/O port The pin is shared with I ² C ch.0 clock I/O.	
22	25	P51/SDA0		General-purpose I/O port The pin is shared with I ² C ch.0 data I/O.	
23	26	P52/PPG1	H General-purpose I/O port The pin is shared with 16-bit PPG ch.1 output.		
24	27	AVR		A/D converter reference input pin	
25	28	AVcc		A/D converter power supply pin	

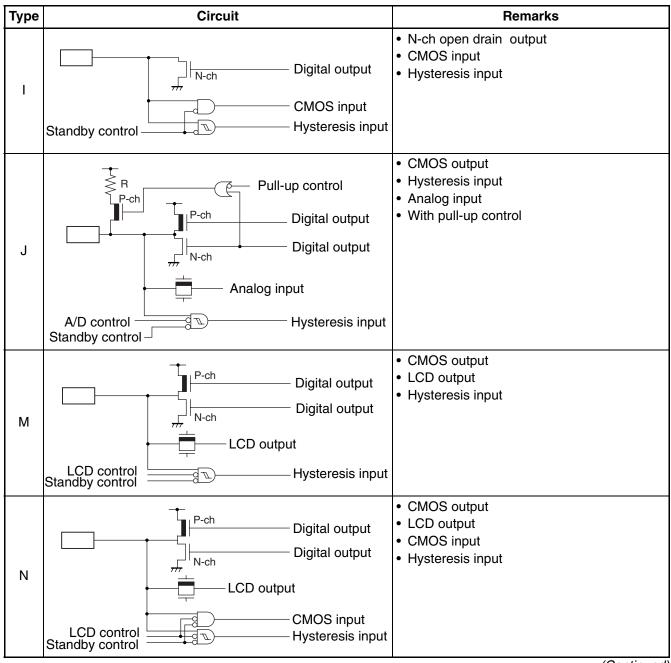
Pin no.		I/O			
LQFP *1	QFP *2	Pin name	circuit type*³	Function	
26	29	AVss		A/D converter power supply pin (GND)	
27	30	P30/AN00			
28	31	P31/AN01			
29	32	P32/AN02			
30	33	P33/AN03	J	General-purpose I/O port	
31	34	P34/AN04	0	The pins are shared with A/D converter analog input.	
32	35	P35/AN05			
33	36	P36/AN06			
34	37	P37/AN07			
35	38	P40/AN08			
36	39	P41/AN09	J	General-purpose I/O port	
37	40	P42/AN10	J	The pins are shared with A/D converter analog input.	
38	41	P43/AN11			
39	42	P53/TRG1	н	General-purpose I/O port The pin is shared with 16-bit PPG ch.1 trigger input.	
40	43	P70/TO0	General-purpose I/O port The pin is shared with 16-bit reload timer ch.0 output.		
41	44	P71/TI0	Н	General-purpose I/O port The pin is shared with 16-bit reload timer ch.0 input.	
42	45	P67/SEG39/ SIN	General-purpose I/O port N The pin is shared with LIN-UART data input (SIN) and LCDC SEG output (SEG39) .		
43	46	P66/SEG38/ SOT		General-purpose I/O port The pin is shared with LIN-UART data output (SOT) and LCDC SEG output (SEG38) .	
44	47	P65/SEG37/ SCK		General-purpose I/O port The pin is shared with LIN-UART clock I/O (SCK) and LCDC SEG output (SEG37) .	
45	48	P64/SEG36/ EC1	М	General-purpose I/O port The pin is shared with 8/16-bit compound timer ch.1 clock input (EC1) and LCDC SEG output (SEG36).	
46	49	P63/SEG35/ TO11		General-purpose I/O port The pins are shared with 8/16-bit compound timer ch.1	
47	50	P62/SEG34/ TO10		output (TO10, TO11) and LCDC SEG output (SEG34, SEG35) .	
48	51	RST	B' Reset pin		
49	52	X0A	A Sub clock appillation pine (22 kHz)	Sub clock oscillation nine (32 kHz)	
50	53	X1A	A	Sub clock oscillation pins (32 kHz)	
51	54	Vss		Power supply pin (GND)	

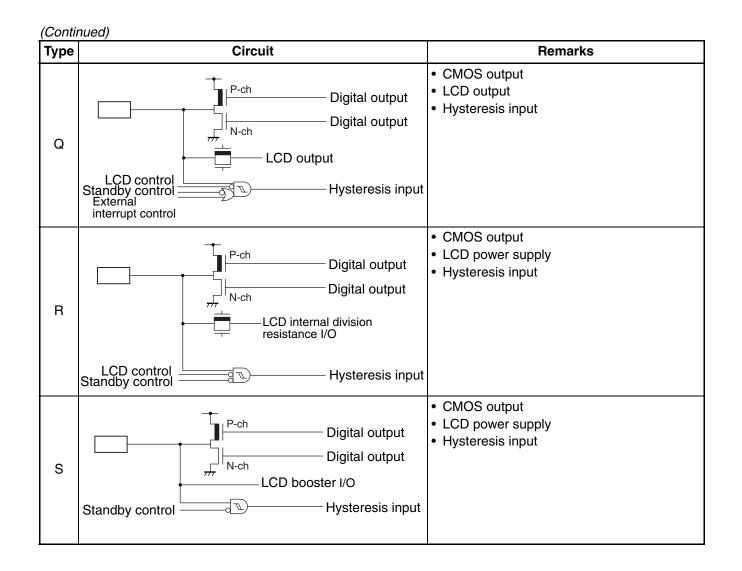
Pin no.		I/O			
LQFP *1	QFP *2	Pin name	circuit type* ³	Function	
52	55	X1	А	Main clock oscillation pins	
53	56	X0			
54	57	MOD	В	An operating mode designation pin	
55	58	P61/SEG33/ PPG11	м	General-purpose I/O port The pins are shared with 8/16-bit PPG ch.1 output (PPG10,	
56	59	P60/SEG32/ PPG10	IVI	PPG11) and LCDC SEG output (SEG32, SEG33).	
57	60	PE7/SEG31/ INT13			
58	61	PE6/SEG30/ INT12	Q	General-purpose I/O port The pins are shared with external interrupt input (INT10 to	
59	62	PE5/SEG29/ INT11		INT13) and LCDC SEG output (SEG28 to SEG31).	
60	63	PE4/SEG28/ INT10			
61	64	PE3/SEG27			
62	65	PE2/SEG26	М	General-purpose I/O port	
63	66	PE1/SEG25		The pins are shared with LCDC SEG output.	
64	67	PE0/SEG24			
65	68	PD7/SEG23			
66	69	PD6/SEG22			
67	70	PD5/SEG21			
68	71	PD4/SEG20	М	General-purpose I/O port	
69	72	PD3/SEG19		The pins are shared with LCDC SEG output.	
70	73	PD2/SEG18			
71	74	PD1/SEG17			
72	75	PD0/SEG16			
73	76	PC7/SEG15			
74	77	PC6/SEG14	М	General-purpose I/O port The pins are shared with LCDC SEG output.	
75	78	PC5/SEG13			
76	79	Vcc		— Power supply pin	

(Continued)

Pin no.			I/O		
LQFP *1	QFP *2	Pin name	circuit type* ³	Function	
77	80	PC4/SEG12			
78	81	PC3/SEG11]		
79	82	PC2/SEG10	М	General-purpose I/O port The pins are shared with LCDC SEG output.	
80	83	PC1/SEG09]		
81	84	PC0/SEG08			
82	85	PB7/SEG07			
83	86	PB6/SEG06			
84	87	PB5/SEG05	1		
85	88	PB4/SEG04	- м	General-purpose I/O port	
86	89	PB3/SEG03		The pins are shared with LCDC SEG output.	
87	90	PB2/SEG02	1		
88	91	PB1/SEG01	1		
89	92	PB0/SEG00	1		
90	93	PA3/COM3			
91	94	PA2/COM2		General-purpose I/O port	
92	95	PA1/COM1	M	The pins are shared with LCDC COM output.	
93	96	PA0/COM0	1		
94	97	P95*4/C1			
95	98	P94*4/C0	S	General-purpose I/O port	
96	99	P93*4/V0			
97	100	P92*4/V1	1	General-purpose I/O port	
98	1	P91*4/V2	R	The pins are shared with power supply pins for LCDC drive.	
99	2	P90*4/V3	1		
100	3	Vcc	— Power supply pin		


*1 : FPT-100P-M20


*2 : FPT-100P-M06


*3 : For the I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

*4 : The P90 to P95 are not used as a general-purpose ports in the MB95F128E.

■ I/O CIRCUIT TYPE

HANDLING DEVICES

Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.

Latch-up may occur on CMOS ICs if voltage higher than V_{cc} or lower than V_{ss} is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between V_{cc} pin and V_{ss} pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements.

Also, take care to prevent the analog power supply voltage (AVcc , AVR) and analog input voltage from exceeding the digital power supply voltage (Vcc) when the analog system power supply is turned on or off.

• Stable Supply Voltage

Supply voltage should be stabilized.

A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in V_{CC} ripple (p-p value) in a commercial frequency range (50/60 Hz) not to exceed 10% of the standard V_{CC} value and suppress the voltage variation so that the transient variation rate does not exceed 0.1 V/ms during a momentary change such as when the power supply is switched.

• Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

PIN CONNECTION

• Treatment of Unused Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage.

Unused input pins should always be pulled up or down through resistance of at least 2 k Ω . Any unused input/ output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it open.

• Treatment of Power Supply Pins on A/D Converter

Connect to be $AV_{CC} = V_{CC}$ and $AV_{SS} = AVR = V_{SS}$ even if the A/D converter is not in use.

Noise riding on the AV_{CC} pin may cause accuracy degradation. So, connect approx. 0.1 μ F ceramic capacitor as a bypass capacitor between AV_{CC} and AV_{ss} pins in the vicinity of this device.

Power Supply Pins

In products with multiple V_{cc} or V_{ss} pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the Vcc and Vss pins of this device at the low impedance.

It is also advisable to connect a ceramic bypass capacitor of approximately 0.1 μF between Vcc and Vss near this device.

• Mode Pin (MOD)

Connect the MOD pin directly to Vcc or Vss pins.

To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to V_{CC} or V_{SS} pins and to provide a low-impedance connection.

Analog Power Supply

Always set the same potential to AVcc and Vcc pins. When Vcc > AVcc, the current may flow through the AN00 to AN11 pins.

PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

• Supported Parallel Programmers and Adapters

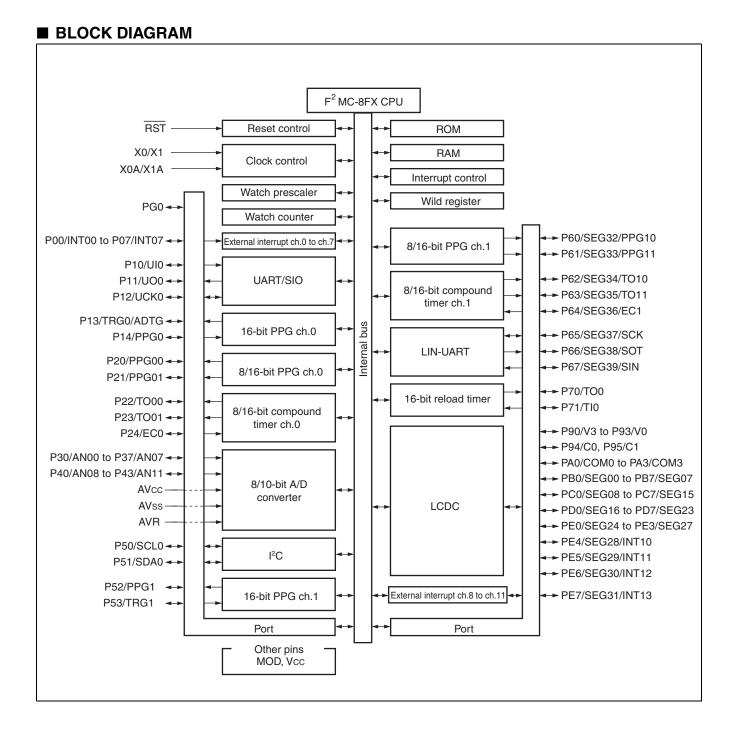
The following table lists supported parallel programmers and adapters.

¥11		
Package	Applicable adapter model	Parallel programmers
FPT-100P-M20	TEF110-95F128HSPFV	AF9708 (Ver 02.35G or more) AF9709/B (Ver 02.35G or more)
FPT-100P-M06	TEF110-95F128HSPF	AF9723+AF9834 (Ver 02.08E or more)

Note : For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

Sector Configuration

The individual sectors of Flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

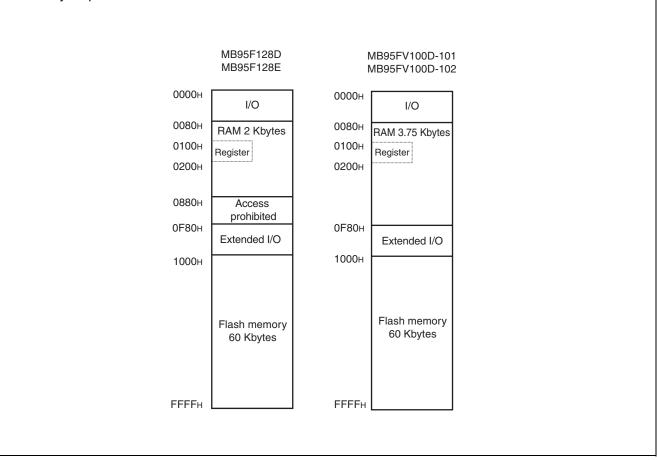

• MB95F128D/F128E (6	30 Kbytes)		
Flash memory	CPU address	Programmer address*	
SA1 (4 Kbytes)	<u> </u>	71 <u>000</u> н	
	1FFFH	71FFFн	¥
SA2 (4 Kbytes)	2000H	72000 _H	Lower bank
	2FFFн	72FFFн	
SA3 (4 Kbytes)	<u> </u>	73000 _H	
	3FFFH	73FFFн	
SA4 (16 Kbytes)	4000н	74000H	
	7 <u>FFF</u> +	7 <u>7FFF</u> н	
SA5 (16 Kbytes)	8000H	78000 _H	
	BFFFH	7BFFFH	
SA6 (4 Kbytes)	С000н	7 <u>C000</u> ⊣	Х Ж
	C <u>F</u> F <u>F</u> H	7 <u>CFFF</u> +	
SA7 (4 Kbytes)	D000н	7D000H	Upper bank
	DFFFH	7DFFF+	
SA8 (4 Kbytes)	E000H	7E000 _H	
	EFFFH	7EFFFH	
SA9 (4 Kbytes)	F000H	7F000 _H	
	F <u>F</u> F <u>F</u> H	7 <u>F</u> FF _{FH_}	

*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into Flash memory. These programmer addresses are used for the parallel programmer to program or erase data in Flash

memory.

• Programming Method

- 1) Set the type code of the parallel programmer to 17222.
- 2) Load program data to programmer addresses 71000_H to 7FFFFH.
- 3) Programmed by parallel programmer

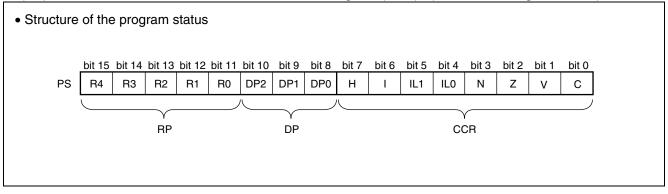


■ CPU CORE

1. Memory space

Memory space of the MB95120 series is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special - purpose areas such as the general - purpose registers and vector table. Memory map of the MB95120 series is shown below.

• Memory Map


2. Register

The MB95120 series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as follows:

Program counter (PC)	: A 16-bit register to indicate locations where instructions are stored.
Accumulator (A)	: A 16-bit register for temporary storage of arithmetic operations. In the case of an 8-bit data processing instruction, the lower 1 byte is used.
Temporary accumulator (T)	: A 16-bit register which performs arithmetic operations with the accumulator. In the case of an 8-bit data processing instruction, the lower 1 byte is used.
Index register (IX)	: A 16-bit register for index modification
Extra pointer (EP)	: A 16-bit pointer to point to a memory address.
Stack pointer (SP)	: A 16-bit register to indicate a stack area.
Program status (PS)	: A 16-bit register for storing a register bank pointer, a direct bank pointer, and a condition code register

 16-bit⊾		Initial Value
PC	: Program counter	FFFDH
A	: Accumulator	0000н
Т	: Temporary accumulator	0000н
IX	: Index register	0000н
EP	: Extra pointer	0000н
SP	: Stack pointer	0000н
PS	: Program status	0030н

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (Refer to the diagram below.)

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

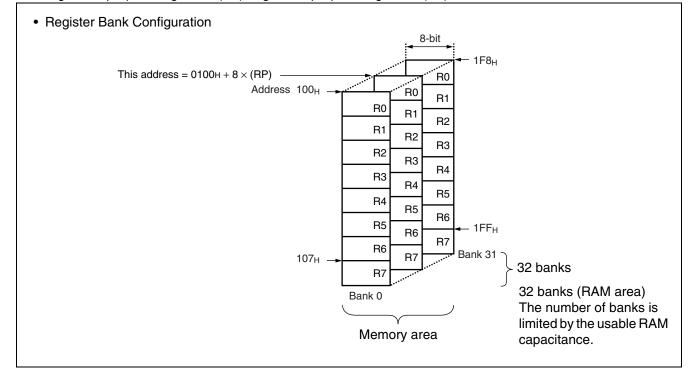
Rule for Conversion of Actual Addresses in the General-purpose Register Area																
										RP	uppe	r	С	P co	ode lo	ower
	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
	¥	¥	¥	¥	¥	¥	¥	¥	+	¥	¥	¥	+	¥	¥	+
Generated address	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080^H to 00FF^H.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area		
XXX _B (no effect to mapping)	0000н to 007Fн	0000н to 007Fн (without mapping)		
000 _B (initial value)		0080н to 00FFн (without mapping)		
001в		0100н to 017Fн		
010в		0180н to 01FFн		
011в	0080н to 00FFн	0200н to 027Fн		
100в		0280н to 02FFн		
101в		0300н to 037Fн		
110 _B		0380н to 03FFн		
111 _B		0400н to 047Fн		

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

- H flag : Set to "1" when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. This flag is for decimal adjustment instructions.
- I flag : Interrupt is enabled when this flag is set to "1". Interrupt is disabled when this flag is set to "0". The flag is cleared to "0" when reset.
- IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.


IL1	IL0	Interrupt level	Priority
0	0	0	High
0	1	1	i f I
1	0	2	
1	1	3	Low = no interruption

- N flag : Set to "1" if the MSB is set to "1" as the result of an arithmetic operation. Cleared to "0" when the bit is set to "0".
- Z flag : Set to "1" when an arithmetic operation results in "0". Cleared to "0" otherwise.
- V flag : Set to "1" if the complement on 2 overflows as a result of an arithmetic operation. Cleared to "0" otherwise.
- C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

The following general-purpose registers are provided:

General-purpose registers: 8-bit data storage registers

The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8-register. Up to a total of 32 banks can be used on the MB95120 series. The bank currently in use is indicated by the register bank pointer (RP).8-register. Up to a total of 32 banks can be used on the MB95120 series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

23

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н		(Disabled)		_
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	0000000в
0007н	SYCC	System clock control register	R/W	1010X011в
0008н	STBC	Standby control register	R/W	0000000в
0009н	RSRR	Reset source register	R	XXXXXXXXB
000Ан	TBTC	Timebase timer control register	R/W	0000000в
000Вн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	0000000в
000Dн		(Disabled)		
000Eн	PDR2	Port 2 data register	R/W	0000000в
000Fн	DDR2	Port 2 direction register	R/W	0000000в
0010н	PDR3	Port 3 data register	R/W	0000000в
0011 н	DDR3	Port 3 direction register	R/W	0000000в
0012н	PDR4	Port 4 data register	R/W	0000000в
0013н	DDR4	Port 4 direction register	R/W	0000000в
0014н	PDR5	Port 5 data register	R/W	0000000в
0015 н	DDR5	Port 5 direction register	R/W	0000000в
0016н	PDR6	Port 6 data register	R/W	0000000в
0017 н	DDR6	Port 6 direction register	R/W	0000000в
0018 н	PDR7	Port 7 data register	R/W	0000000в
0019 н	DDR7	Port 7 direction register	R/W	0000000в
001Ан, 001Вн		(Disabled)	_	_
001С н	PDR9	Port 9 data register	R/W	0000000в
001D н	DDR9	Port 9 direction register	R/W	0000000в
001Eн	PDRA	Port A data register	R/W	0000000в
001Fн	DDRA	Port A direction register	R/W	0000000в
0020н	PDRB	Port B data register	R/W	0000000в
0021 н	DDRB	Port B direction register	R/W	0000000в
0022н	PDRC	Port C data register	R/W	0000000в
0023н	DDRC	Port C direction register	R/W	0000000в

Address	Register abbreviation	Register name	R/W	Initial value
0024н	PDRD	Port D data register	R/W	0000000в
0025н	DDRD	Port D direction register	R/W	0000000в
0026н	PDRE	Port E data register	R/W	0000000в
0027н	DDRE	Port E direction register	R/W	0000000в
0028н, 0029н		(Disabled)		
002Ан	PDRG	Port G data register	R/W	0000000в
002Вн	DDRG	Port G direction register	R/W	0000000в
002Сн		(Disabled)		
002Dн	PUL1	Port 1 pull-up register	R/W	0000000в
002Е н	PUL2	Port 2 pull-up register	R/W	0000000в
002F н	PUL3	Port 3 pull-up register	R/W	0000000в
0030н	PUL4	Port 4 pull-up register	R/W	0000000в
0031 н	PUL5	Port 5 pull-up register	R/W	0000000в
0032н	PUL7	Port 7 pull-up register	R/W	0000000в
0033н, 0034н	_	(Disabled)	_	—
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch.0	R/W	0000000в
0037н	T00CR1	8/16-bit compound timer 00 control status register 1 ch.0	R/W	0000000в
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch.1	R/W	0000000в
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch.1	R/W	0000000в
003Ан	PC01	8/16-bit PPG1 control register ch.0	R/W	0000000в
003Вн	PC00	8/16-bit PPG0 control register ch.0	R/W	0000000в
003Сн	PC11	8/16-bit PPG1 control register ch.1	R/W	0000000в
003Dн	PC10	8/16-bit PPG0 control register ch.1	R/W	0000000в
003Е н	TMCSRH0	16-bit reload timer control status register (upper byte) ch.0	R/W	0000000в
003F н	TMCSRL0	16-bit reload timer control status register (lower byte) ch.0	R/W	0000000в
0040н, 0041н		(Disabled)		—
0042н	PCNTH0	16-bit PPG status control register (upper byte) ch.0	R/W	0000000в
0043н	PCNTL0	16-bit PPG status control register (lower byte) ch.0	R/W	0000000в
0044н	PCNTH1	16-bit PPG status control register (upper byte) ch.1	R/W	0000000в
0045н	PCNTL1	16-bit PPG status control register (lower byte) ch.1	R/W	0000000в
0046н, 0047н		(Disabled)		—
0048н	EIC00	External interrupt circuit control register ch.0/ch.1	R/W	0000000в
0049 н	EIC10	External interrupt circuit control register ch.2/ch.3	R/W	0000000в

Address	Register abbreviation	Register Register name			
004Aн	EIC20	External interrupt circuit control register ch.4/ch.5	R/W	0000000в	
004Bн	EIC30	External interrupt circuit control register ch.6/ch.7	R/W	0000000в	
004Сн	EIC01	External interrupt circuit control register ch.8/ch.9	R/W	0000000в	
004Dн	EIC11	External interrupt circuit control register ch.10/ch.11	R/W	0000000в	
004Ен, 004Fн		(Disabled)	_	_	
0050н	SCR	LIN-UART serial control register	R/W	0000000в	
0051 н	SMR	LIN-UART serial mode register	R/W	0000000в	
0052н	SSR	LIN-UART serial status register	R/W	00001000в	
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	0000000в	
0054 н	ESCR	LIN-UART extended status control register	R/W	00000100в	
0055 н	ECCR	LIN-UART extended communication control register	R/W	000000XX _B	
0056н	SMC10	UART/SIO serial mode control register 1 ch.0	R/W	0000000в	
0057 н	SMC20	UART/SIO serial mode control register 2 ch.0	R/W	00100000в	
0058 н	SSR0	UART/SIO serial status register ch.0	R/W	0000001в	
0059н	TDR0	UART/SIO serial output data register ch.0	R/W	0000000в	
005А н	RDR0	UART/SIO serial input data register ch.0	R	0000000в	
005Вн to 005Fн		(Disabled)	_	_	
0060н	IBCR00	I ² C bus control register 0 ch.0	R/W	0000000в	
0061 н	IBCR10	l ² C bus control register 1 ch.0	R/W	0000000в	
0062н	IBSR0	I ² C bus status register ch.0	R	0000000в	
0063н	IDDR0	I ² C data register ch.0	R/W	0000000в	
0064н	IAAR0	I ² C address register ch.0	R/W	0000000в	
0065н	ICCR0	I ² C clock control register ch.0	R/W	0000000в	
0066н to 006Вн		(Disabled)		_	
006Сн	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в	
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в	
006Е н	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	0000000в	
006Fн	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	0000000в	
0070н	WCSR	Watch counter status register	R/W	0000000в	
0071 н		(Disabled)	<u> </u>		
0072н	FSR	Flash memory status register	R/W	000Х0000в	

Address	Register abbreviation	Register name	R/W	Initial value
0073н	SWRE0	Flash memory sector writing control register 0	R/W	0000000в
0074н	SWRE1	Flash memory sector writing control register 1	R/W	0000000в
0075н		(Disabled)	_	
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078 н		Register bank pointer (RP) , Mirror of direct bank pointer (DP)		
0079 н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111B
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111B
007Е н	ILR5	Interrupt level setting register 5	R/W	11111111B
007F н		(Disabled)	_	
0F80н	WRARH0	Wild register address setting register (upper byte) ch.0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (lower byte) ch.0	R/W	0000000в
0F82н	WRDR0	Wild register data setting register ch.0		0000000в
0F83н	WRARH1	Wild register address setting register (upper byte) ch.1	R/W	0000000в
0F84н	WRARL1	Wild register address setting register (lower byte) ch.1	R/W	0000000в
0F85н	WRDR1	Wild register data setting register ch.1	R/W	0000000в
0F86н	WRARH2	Wild register address setting register (upper byte) ch.2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (lower byte) ch.2	R/W	0000000в
0F88н	WRDR2	Wild register data setting register ch.2	R/W	0000000в
0F89⊦ to 0F91⊦		(Disabled)		_
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch.0	R/W	0000000в
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch.0	R/W	0000000в
0F94н	T01DR	8/16-bit compound timer 01 data register ch.0	R/W	0000000в
0F95н	T00DR	8/16-bit compound timer 00 data register ch.0	R/W	0000000в
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch.0	R/W	0000000в
0F97н	T11CR0	8/16-bit compound timer 11 control status register 0 ch.1	R/W	0000000в
0F98⊦	T10CR0	8/16-bit compound timer 10 control status register 0 ch.1	R/W	0000000в
0F99н	T11DR	8/16-bit compound timer 11 data register ch.1	R/W	0000000в
0F9Ан	T10DR	8/16-bit compound timer 10 data register ch.1	R/W	0000000в

Address	Register abbreviation	Register name	R/W	Initial value
0F9B⊦	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch.1	R/W	0000000в
0F9CH	PPS01	8/16-bit PPG1 cycle setting buffer register ch.0	R/W	11111111в
0F9Dн	PPS00	8/16-bit PPG0 cycle setting buffer register ch.0	R/W	11111111B
0F9Eн	PDS01	8/16-bit PPG1 duty setting buffer register ch.0	R/W	11111111B
0F9Fн	PDS00	8/16-bit PPG0 duty setting buffer register ch.0	R/W	11111111B
0FA0H	PPS11	8/16-bit PPG1 cycle setting buffer register ch.1	R/W	11111111в
0FA1н	PPS10	8/16-bit PPG0 cycle setting buffer register ch.1	R/W	11111111в
0FA2н	PDS11	8/16-bit PPG1 duty setting buffer register ch.1	R/W	11111111в
0FA3⊦	PDS10	8/16-bit PPG0 duty setting buffer register ch.1	R/W	11111111в
0FA4 _H	PPGS	8/16-bit PPG start register	R/W	0000000в
0FA5⊦	REVC	8/16-bit PPG output inversion register	R/W	0000000в
0FA6н	TMRH0/ TMRLRH0	16-bit reload timer/reload register (upper byte) ch.0	R/W	0000000в
0FA7н	TMRL0/ TMRLRL0	16-bit reload timer/reload register (lower byte) ch.0	R/W	0000000в
0FA8н, 0FA9н		(Disabled)		
0FAAH	PDCRH0	16-bit PPG down counter register (upper byte) ch.0	R	0000000в
0FABн	PDCRL0	16-bit PPG down counter register (lower byte) ch.0	R	0000000в
0FACH	PCSRH0	16-bit PPG cycle setting buffer register (upper byte) ch.0	R/W	11111111в
0FADH	PCSRL0	16-bit PPG cycle setting buffer register (lower byte) ch.0	R/W	11111111в
0FAEH	PDUTH0	16-bit PPG duty setting buffer register (upper byte) ch.0	R/W	11111111
0FAFH	PDUTL0	16-bit PPG duty setting buffer register (lower byte) ch.0	R/W	11111111в
0FB0н	PDCRH1	16-bit PPG down counter register (upper byte) ch.1	R	0000000в
0FB1н	PDCRL1	16-bit PPG down counter register (lower byte) ch.1	R	0000000в
0FB2н	PCSRH1	16-bit PPG cycle setting buffer register (upper byte) ch.1	R/W	11111111в
0FB3н	PCSRL1	16-bit PPG cycle setting buffer register (lower byte) ch.1	R/W	11111111в
0FB4н	PDUTH1	16-bit PPG duty setting buffer register (upper byte) ch.1	R/W	11111111в
0FB5н	PDUTL1	16-bit PPG duty setting buffer register (lower byte) ch.1	R/W	11111111в
0FB6н to 0FBBн		(Disabled)		_
0FBCH	BGR1	LIN-UART baud rate generator register 1	R/W	0000000в
0FBDH	BGR0	LIN-UART baud rate generator register 0	R/W	0000000в
0FBEH	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch.0	R/W	0000000в

Address	Register abbreviation	Register name	R/W	Initial value
0FBF⊦	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch.0	R/W	0000000в
0FC0н, 0FC1н	—	(Disabled)		
0FC2H	AIDRH	A/D input disable register (upper byte)	R/W	0000000в
0FC3н	AIDRL	A/D input disable register (lower byte)	R/W	0000000в
0FC4н	LCDCC	LCDC control register	R/W	00010000в
0FC5н	LCDCE1	LCDC enable register 1	R/W	00110000в
0FC6н	LCDCE2	LCDC enable register 2	R/W	0000000в
0FC7н	LCDCE3	LCDC enable register 3	R/W	0000000в
0FC8н	LCDCE4	LCDC enable register 4	R/W	0000000в
0FC9н	LCDCE5	LCDC enable register 5	R/W	0000000в
0FCAн	LCDCE6	LCDC enable register 6	R/W	0000000в
0FCBH	LCDCB1	LCDC blinking setting register 1	R/W	0000000в
0FCCH	LCDCB2	LCDC blinking setting register 2	R/W	0000000в
0FCD⊦ to 0FE0⊦	LCDRAM	LCDC display RAM	R/W	0000000в
0FE1н, 0FE2н	—	(Disabled)		—
0FE3н	WCDR	Watch counter data register	R/W	00111111в
0FE4⊦ to 0FED⊦	_	(Disabled)	_	_
0FEEH	ILSR	Input level select register	R/W	0000000в
0FEFH	WICR	Interrupt pin select circuit control register	R/W	0100000в
0FF0⊦ to 0FFF⊦		(Disabled)	_	_

• R/W access symbols

R/W : Readable/Writable

R : Read only

W : Write only

• Initial value symbols

0 : The initial value of this bit is "0".

1 : The initial value of this bit is "1".

X : The initial value of this bit is undefined.

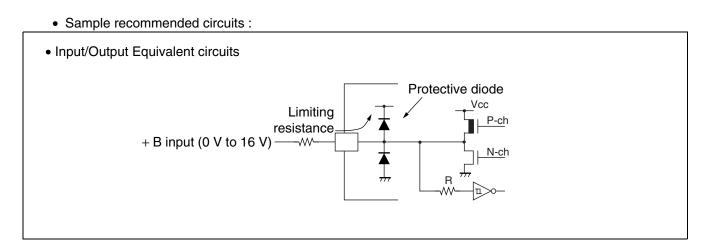
Note : Do not write to the " (Disabled) ". Reading the " (Disabled) " returns an undefined value.

■ INTERRUPT SOURCE TABLE

	Interrupt	Vector tab	le address	Bit name of	Same level	
Interrupt source	request number			interrupt level setting register	priority order (atsimultaneous occurrence)	
External interrupt ch.0	IRQ0	FFFA _H	FFFB _H	L00 [1 : 0]	High	
External interrupt ch.4	INQU	FFFAH	FFFDH		A	
External interrupt ch.1	IRQ1	FFF8 _H	FFF9⊦	L01 [1 : 0]		
External interrupt ch.5	INGI	ГГГОН	ГГГЭН			
External interrupt ch.2	IRQ2	FFF6H	FFF7H	1 00 [1 : 0]		
External interrupt ch.6	IRQ2	ГГГОН		L02 [1 : 0]		
External interrupt ch.3			FFFF	1 00 [1 : 0]		
External interrupt ch.7	IRQ3	FFF4 _H	FFF5H	L03 [1 : 0]		
UART/SIO ch.0	IRQ4	FFF2H	FFF3H	L04 [1 : 0]		
8/16-bit compound timer ch.0 (Lower)	IRQ5	FFF0H	FFF1⊦	L05 [1 : 0]		
8/16-bit compound timer ch.0 (Upper)	IRQ6	FFEEH	FFEFH	L06 [1 : 0]		
LIN-UART (reception)	IRQ7	FFECH	FFEDH	L07 [1 : 0]		
LIN-UART (transmission)	IRQ8	FFEA H	FFEB H	L08 [1 : 0]		
8/16-bit PPG ch.1 (Lower)	IRQ9	FFE8H	FFE9H	L09 [1 : 0]		
8/16-bit PPG ch.1 (Upper)	IRQ10	FFE6H	FFE7н	L10 [1 : 0]		
16-bit reload timer ch.0	IRQ11	FFE4 _H	FFE5H	L11 [1 : 0]		
8/16-bit PPG ch.0 (Upper)	IRQ12	FFE2H	FFE3H	L12 [1 : 0]		
8/16-bit PPG ch.0 (Lower)	IRQ13	FFE0H	FFE1H	L13 [1 : 0]		
8/16-bit compound timer ch.1 (Upper)	IRQ14	FFDEH	FFDFH	L14 [1 : 0]		
16-bit PPG ch.0	IRQ15	FFDC _H	FFDDH	L15 [1 : 0]		
I ² C ch.0	IRQ16	FFDA H	FFDB H	L16 [1 : 0]		
16-bit PPG ch.1	IRQ17	FFD8H	FFD9н	L17 [1 : 0]		
8/10-bit A/D converter	IRQ18	FFD6н	FFD7н	L18 [1 : 0]		
Timebase timer	IRQ19	FFD4 _H	FFD5H	L19 [1 : 0]		
Watch prescaler/watch counter	IRQ20	FFD2H	FFD3H	L20 [1 : 0]		
External interrupt ch.8						
External interrupt ch.9		FEDA				
External interrupt ch.10	IRQ21	FFD0H	FFD1⊦	L21 [1 : 0]		
External interrupt ch.11						
8/16-bit compound timer ch.1 (Lower)	IRQ22	FFCEH	FFCFH	L22 [1 : 0]	▼	
Flash memory	IRQ23	FFCC _H	FFCD H	L23 [1 : 0]	Low	

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings


Devemeter	Symbol	Rat	ing	Unit	Remarks		
Parameter	Symbol	Min	Max	Unit	nemarks		
Power supply voltage*1	Vcc AVcc	Vss - 0.3	Vss + 4.0	v	*2		
	AVR	Vss – 0.3	Vss + 4.0		*2		
	V0 to V3	Vss - 0.3	Vss + 4.0		Products with LCD internal division resistance*3		
	V0	Vss - 0.3	Vss + 2.0				
Power supply voltage for LCD	V1	Vss - 0.3	Vss + 2.0	v			
LCD	V2	Vss - 0.3	Vss + 4.0		Products with booster circuit* ³		
	V3	Vss – 0.3	Vss + 6.0				
	C0, C1	Vss - 0.3	Vss + 6.0				
lanut valta sa*1	VI1	Vss – 0.3	Vss + 4.0	v	Other than P50, P51*4		
Input voltage*1	V _{I2}	Vss – 0.3	Vss + 6.0	v	P50, P51		
Output voltage*1	Vo	Vss – 0.3	Vss + 4.0	V	*4		
Maximum clamp current		- 2.0	+ 2.0	mA	Applicable to pins*5		
Total maximum clamp current	Σ CLAMP		20	mA	Applicable to pins*5		
"L" level maximum			15	mA	Other than P00 to P07		
output current	OL2		15	mA	P00 to P07		
"L" level average	Iolav1		4	mA	Other than P00 to P07 Average output current = operating current × operating ratio (1 pin)		
current	Iolav2		12		P00 to P07 Average output current = operating current × operating ratio (1 pin)		
"L" level total maximum output current	ΣΙοι		100	mA			
"L" level total average output current	ΣΙοίαν		50	mA	Total average output current = operating current × operating ratio (Total of pins)		
"H" level maximum	Іон1		– 15	m A	Other than P00 to P07		
output current	Он2		– 15	mA	P00 to P07		

(Continued)

Parameter	Symbol	Rating		Unit	Remarks
Farameter	Symbol	Min	Min Max		nemarks
"H" level average current	Iohav1		- 4	mA	Other than P00 to P07 Average output current = operating current × operating ratio (1 pin)
	Iohav2		- 8		P00 to P07 Average output current = operating current × operating ratio (1 pin)
"H" level total maximum output current	ΣІон		- 100	mA	
"H" level total average output current	ΣΙοήαν		- 50	mA	Total average output current = operating current × operating ratio (Total of pins)
Power consumption	Pd		320	mW	
Operating temperature	TA	- 40	+ 85	°C	
Storage temperature	Tstg	- 55	+ 150	°C	

*1 : The parameter is based on $AV_{SS} = V_{SS} = 0.0 V.$

- *2 : Apply equal potential to AVcc and Vcc. AVR should not exceed AVcc + 0.3 V.
- *3 : V0 to V3 should not exceed Vcc + 0.3 V.
- *4 : V₁₁ and Vo should not exceed V_{CC} + 0.3 V. V₁₁ must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the I_{CLAMP} rating supersedes the V₁₁ rating.
- *5 : Applicable to pins : P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P52, P53
 - Use within recommended operating conditions.
 - Use at DC voltage (current).
 - +B signal is an input signal that exceeds Vcc voltage. The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
 - The value of the limiting resistance should be set so that when the + B signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
 - Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects other devices.
 - Note that if the + B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
 - Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
 - Care must be taken not to leave the + B input pin open.
 - Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept +B signal input.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(AVss = Vss = 0.0 V)

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks	
				Min	Max	Unit	nemarks	
Power supply voltage	Vcc, AVcc			1.8*	3.3	V	At normal operation, Flash memory product, $T_A = -10 \ ^\circ C$ to +85 $^\circ C$	
				2.0*	3.3		At normal operation, Flash memory product, $T_A = -40 \ ^\circ C$ to +85 $^\circ C$	
				2.6	3.6		Evaluation product T _A = +5 °C to +35 °C	
				1.5	3.3		Holds condition in stop mode, Flash memory product	
Power supply voltage for LCD	V0 to V3	_	_	Vss	Vcc	v	The range of liquid crystal power supply: without up-conversion (The optimal value depends on liquid crystal display elements used.)	
A/D converter reference input voltage	AVR			1.8	AVcc	v		
Operating temperature	TA		_	- 40	+ 85	°C		

*: The values vary with the operating frequency, machine clock or analog guarantee range.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

3. DC Characteristics

Devenueter	Currente e l	Dia some	Condi- tions		Value	1	11	Demovies	
Parameter	Symbol	Pin name		Min	Тур	Мах	Unit	Remarks	
"H" level input voltage	VIH1	P10 (selectable at UI0), P67 (selectable at SIN)	_	0.7 Vcc	_	Vcc+0.3	V	When selecting CMOS input level (Hysteresis input)	
	VIH2	P50, P51 (selectable at I ² C)	_	0.7 Vcc	—	Vss + 5.5	۷		
	VIHS1	P00 to P07, P10 to P14, P20 to P24, P30 to P37, P40 to P43, P50 to P53, P60 to P67, P70, P71, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7, PD0 to PD7, PE0 to PE7		0.8 Vcc		Vcc+0.3	V	Hysteresis input	
	VIHS2	P50, P51		0.8 Vcc		$V_{\text{SS}} + 5.5$	V		
	VIHM	RST, MOD		0.8 Vcc		Vcc + 0.3	V	Hysteresis input	
"L" level input voltage	VIL	P10 (selectable at UI0), P50, P51 (selectable at I ² C) P67 (selectable at SIN)		Vss - 0.3		0.3 Vcc	V	When selecting CMOS input level (Hysteresis input)	
"L" level input voltage	Vils	P00 to P07 P10 to P14, P20 to P24, P30 to P37, P40 to P43, P50 to P53, P60 to P67, P70, P71, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7, PD0 to PD7, PE0 to PE7		Vss – 0.3		0.2 Vcc	V	Hysteresis input	
	VILM	RST, MOD		$V_{\text{SS}} - 0.3$		0.2 Vcc	V	Hysteresis input	
Open-drain output application voltage	V _{D1}	P50, P51		Vss - 0.3		Vss + 5.5	V		

Parameter	Symbol	Pin name	Conditions	Value			Unit	Demerike
Parameter			Conditions	Min	Тур	Max	Unit	Remarks
"H" level output voltage	Vон1	Output pin other than P00 to P07	$I_{OH} = -4.0 \text{ mA}$	2.4	_		V	
	V _{OH2}	P00 to P07	$I_{OH} = -8.0 \text{ mA}$	2.4		_	V	
"L" level output voltage	V _{OL1}	Output pin other than P00 to P07, RST	IoL = 4.0 mA			0.4	V	
	Vol2	P00 to P07	IoL = 12 mA			0.4	V	
Input leakage current (Hi-Z output leakage current)	Lu	Port other than P50, P51	0.0 V < Vı < Vcc	- 5	_	+ 5	μA	When the pull-up prohibition setting
Open-drain output leakage current		P50, P51	0.0 V < V1 < Vss + 5.5 V			5	μΑ	
Pull-up resistor	Rpull	P10 to P14, P20 to P24, P30 to P37, P40 to P43, P52, P53, P70, P71	VI = 0.0 V	25	50	100	kΩ	When the pull-up permission setting
Input capacitance	Cin	Other than AVcc, AVss, AVR, Vcc, Vss	f = 1 MHz		5	15	pF	

(Vcc = AVcc = 3.3 V, AVss = Vss = 0.0 V, T_A = $-40~^\circ C$ to $+85~^\circ C)$

B	Sym-	Diaman			Value			Demode
Parameter	bol	Pin name	Conditions	Min	Тур	Мах	Unit	Remarks
			Fсн = 20 MHz FмP = 10 MHz Main clock mode	_	11.0	14.0	mA	At other than Flash memory writing and erasing
	lcc		(divided by 2)	_	30.0	35.0	mA	At Flash memory writing and erasing
			Fcн = 32 MHz Fмp = 16 MHz Main clock mode		17.6	22.4	mA	At other than Flash memory writing and erasing
			Main clock mode (divided by 2)	_	38.1	44.9	mA	At Flash memory writing and erasing
lccs		$\label{eq:Fch} \begin{array}{l} F_{CH} = 20 \mbox{ MHz} \\ F_{MP} = 10 \mbox{ MHz} \\ \mbox{Main Sleep mode} \\ \mbox{(divided by 2)} \end{array}$		4.5	6.0	mA		
Power supply current*		Vcc (External clock operation)	$\label{eq:Fch} \begin{array}{l} F_{CH} = 32 \ MHz \\ F_{MP} = 16 \ MHz \\ Main \ Sleep \ mode \\ (divided \ by \ 2) \end{array}$	_	7.2	9.6	mA	
	lcc∟		$\label{eq:Fcl} \begin{array}{l} F_{CL} = 32 \ kHz \\ F_{MPL} = 16 \ kHz \\ Sub \ clock \ mode \\ (divided by 2) \end{array}$		25	35	μA	
	Iccls		$\label{eq:Fcl} \begin{array}{l} F_{CL} = 32 \ kHz \\ F_{MPL} = 16 \ kHz \\ Sub \ sleep \ mode \\ (divided by 2) \end{array}$		7	15	μA	
	Ісст		$F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25 \text{ °C}$		2	10	μA	
lcc	ICCMPLL		$\label{eq:Fch} \begin{array}{l} F_{CH} = 4 \ MHz \\ F_{MP} = 10 \ MHz \\ Main \ PLL \ mode \\ (multiplied \ by \ 2.5) \end{array}$		10	14	mA	
			$F_{CH} = 6.4 \text{ MHz}$ $F_{MP} = 16 \text{ MHz}$ Main PLL mode (multiplied by 2.5)		16.0	22.4	mA	

(Vcc = AVcc = 3.3 V, AVss = Vss = 0.0 V, T_A = $-40~^\circ C$ to $+85~^\circ C)$

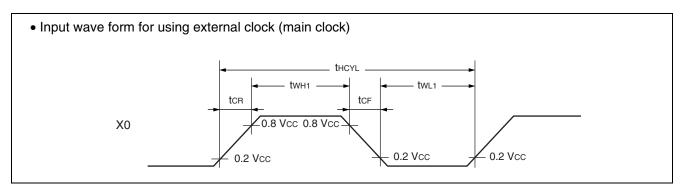
(Continued)

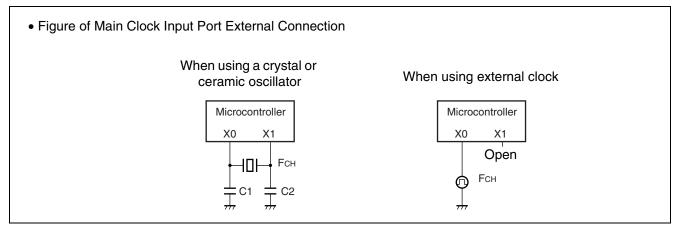
(Continued)

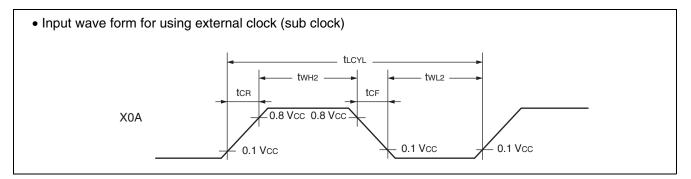
, , , , , , , , , , , , , , , , , , ,			(Vcc = AVcc = 3.3 V)	, AVss =	= Vss = ().0 V, Ta	. = _ 4	40 °C to + 85 °C
Parameter	Sym-	Pin name	Conditions		Value		Unit	Remarks
Farameter	bol	Pin name	Conditions	Min	Тур	Max	Unit	nemarks
	ICCSPLL	Vcc	$\label{eq:Fcl} \begin{split} F_{CL} &= 32 \text{ kHz} \\ F_{MPL} &= 128 \text{ kHz} \\ Sub \text{ PLL mode} \\ (multiplied by 4) , \\ T_A &= +25 \ ^\circ C \end{split}$		190	250	μA	
	Істѕ	(External clock operation)	$F_{CH} = 10 \text{ MHz}$ Timebase timer mode $T_A = +25 \text{ °C}$		0.4	0.5	mA	
Power supply current*	Іссн		Sub stop mode $T_A = +25 \ ^{\circ}C$		1	5	μA	
	IA		Fсн = 16 MHz At operating of A/D conversion		1.3	2.2	mA	
	Іан	AVcc	$F_{CH} = 16 \text{ MHz}$ At stopping of A/D conversion $T_A = +25 \text{ °C}$		1	5	μΑ	
LCD internal division resistance	RLCD		Between V3 and Vss — 300 —		kΩ	Products with LCD internal division resistance only		
LCD leakage current	ILCDL	V0 to V3, COM0 to COM3 SEG00 to SEG39	_			±1	μA	
Output voltage	Vv3	V3	V1 = 1.5 V	4.3	4.5	4.7	V	
for LCD boost	Vv2	V2	V1 = 1.5 V	2.9	3.0	3.1	V	
Reference voltage for LCD boost	Vv1	V1	lin = 0.0 μA	1.4	1.5	1.7	v	Products with booster circuit only
Reference voltage input impedance	RRIN	V1	_	8.5	9.8	11	kΩ	
COM0 to COM3 output impedance	Rvсом	COM0 to COM3	V1 to V3 = 3.6 V		_	5	kΩ	
SEG00 to SEG39 output impedance	Rvseg	SEG00 to SEG39	_			7	kΩ	
LCD leak current	Ilcol	V0 to V3, COM0 to COM3 SEG00 to SEG39	_	- 1		+ 1	μA	

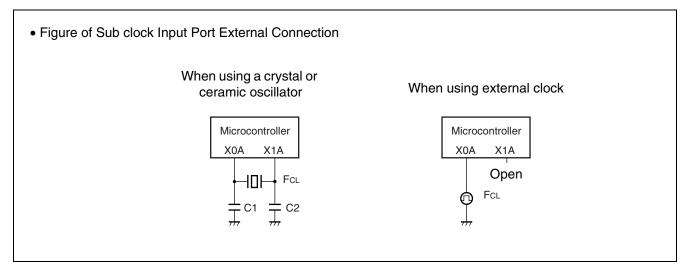
* : The power-supply current is determined by the external clock.

• Refer to "4. AC characteristics (1) Clock Timing" for FCH and FCL.

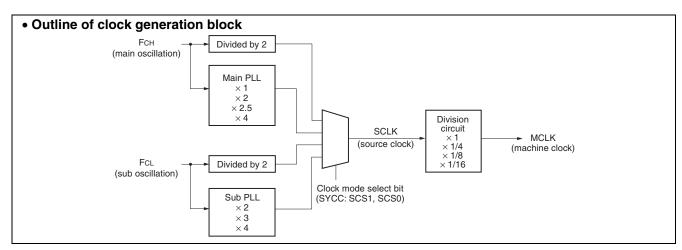

• Refer to "4. AC characteristics (2) Source Clock/Machine Clock" for FMP and FMPL.

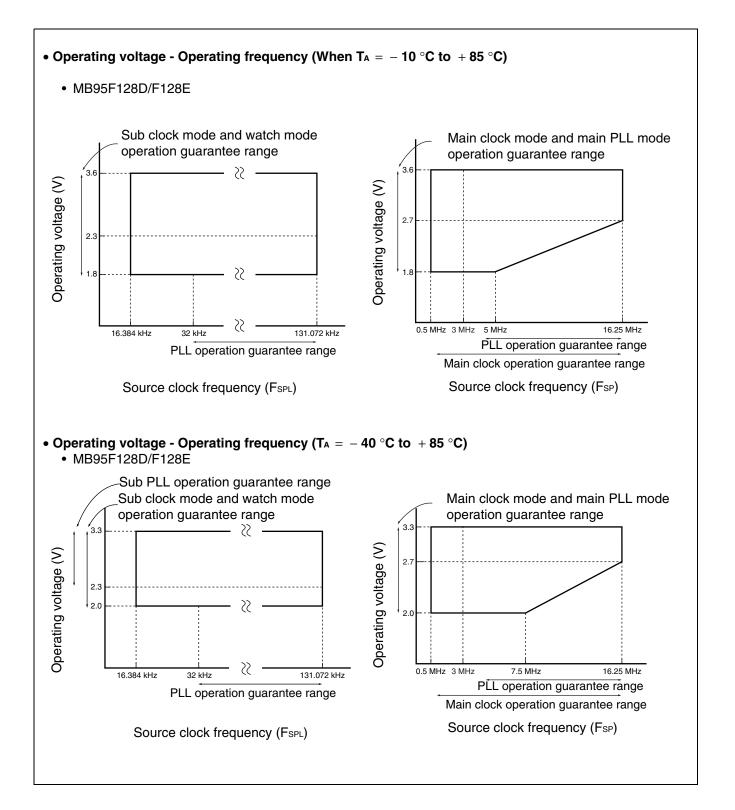

4. AC Characteristics

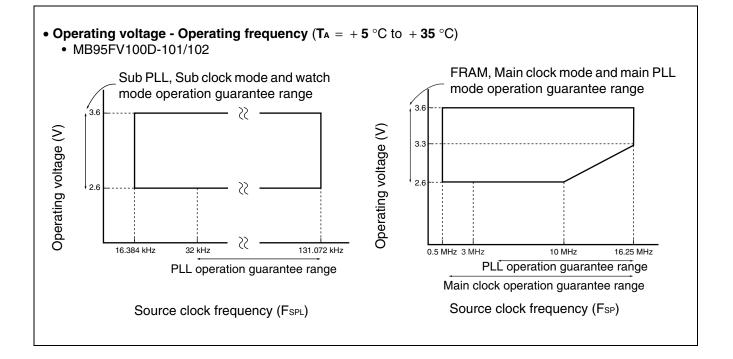

(1) Clock Timing

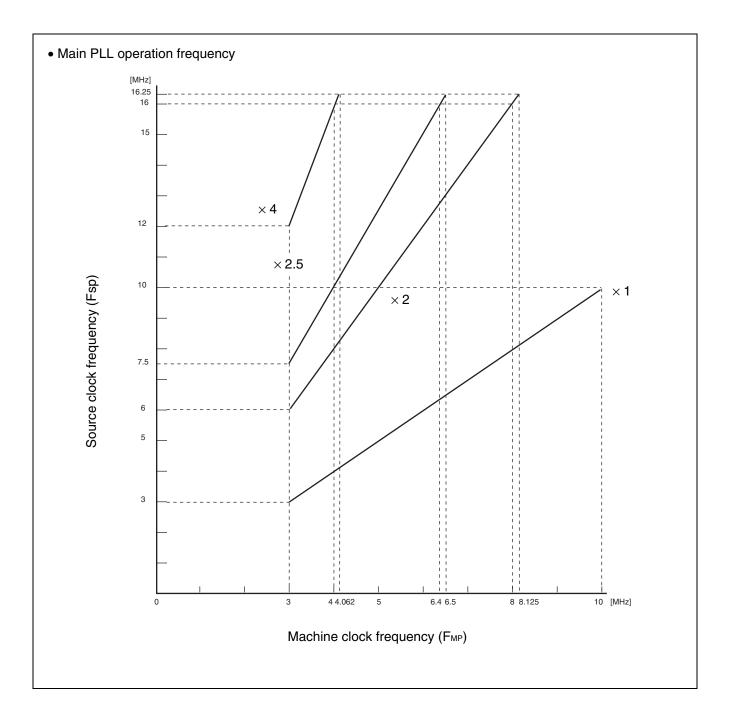

	Sym-				Value			
Parameter	bol	Pin name	tions	Min	Тур	Max	Unit	Remarks
				1.00		16.25	MHz	When using main oscillation circuit
				1.00		32.50	MHz	When using external clock
	Fсн	X0, X1		3.00		10.00	MHz	Main PLL multiplied by 1
				3.00		8.13	MHz	Main PLL multiplied by 2
Clock frequency				3.00		6.50	MHz	Main PLL multiplied by 2.5
				3.00		4.06	MHz	Main PLL multiplied by 4
	Fc∟	X0A, X1A			32.768		kHz	When using sub oscillation circuit
					32.768		kHz	When using sub PLL $V_{CC} = 2.3 V$ to 3.3 V
	t HCYL	X0, X1		61.5		1000	ns	When using main oscillation circuit
Clock cycle time				30.8		1000	ns	When using external clock
	t LCYL	X0A, X1A			30.5		μs	When using sub oscillation circuit
	tw⊦ı tw∟ı	X0		61.5			ns	When using external clock
Input clock pulse width	tw⊦₂ tw∟₂	X0A			15.2		μs	Duty ratio is about 30% to 70%.
Input clock rise time and fall time	tcr tc⊧	X0, X0A				5	ns	When using external clock

$$(V_{CC} = 3.3 \text{ V}, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$$




(2) Source Clock/Machine Clock


$(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$									
Parameter	Sym-	Pin		Value			Remarks		
Falameter	bol	name	Min	Тур	Max	Unit	nelliaika		
Source clock cycle time*1	tsc∟ĸ		61.5		2000	ns	When using main clock Min : $F_{CH} = 16.25$ MHz, PLL multiplied by 1 Max : $F_{CH} = 1$ MHz, divided by 2		
(Clock before setting division)	ISCLK		7.6	_	61.0	μs	When using sub clock Min : $F_{CL} = 32 \text{ kHz}$, PLL multiplied by 4 Max : $F_{CL} = 32 \text{ kHz}$, divided by 2		
Source clock frequency	Fsp		0.50		16.25	MHz	When using main clock		
Source clock frequency	FSPL		16.384		131.072	kHz	When using sub clock		
Machine clock cycle time*2	tuour		61.5		32000	ns	When using main clock Min : $F_{SP} = 16.25$ MHz, no division Max : $F_{SP} = 0.5$ MHz, divided by 16		
(Minimum instruction execution time)	tмс∟к		7.6		976.5	μs	When using sub clock Min : $F_{SPL} = 131$ kHz, no division Max : $F_{SPL} = 16$ kHz, divided by 16		
Machine clock frequency	Fмp		0.031		16.250	MHz	When using main clock		
Machine Clock nequelicy	FMPL		1.024		131.072	kHz	When using sub clock		


*1: Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0). This source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.

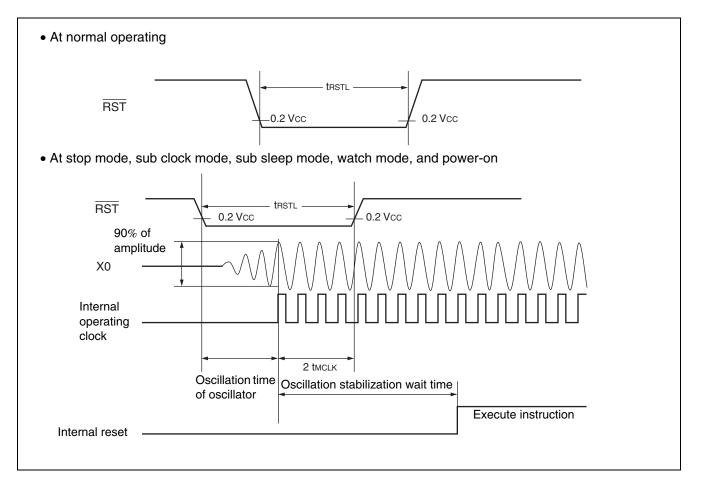
- Main clock divided by 2
- PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)
- *2: Operation clock of the microcontroller. Machine clock can be selected as follows.
 - Source clock (no division)
 - Source clock divided by 4
 - Source clock divided by 8
 - Source clock divided by 16

40 00 to . 05 00)

(3) External Reset

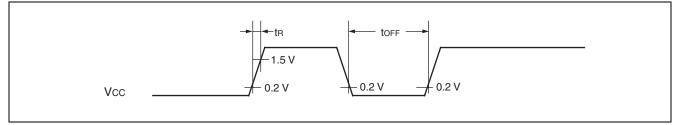
	$(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ I}_{A} = -40 \text{ °C to } +85 \text{ °C}$										
Parameter Symb	Symbol	Value			Remarks						
	Symbol	Min	Max	Unit	neillaiks						
RST "L" level pulse width	t RSTL	2 tmclk*1	—	ns	At normal operating						
		Oscillation time of oscillator*2 + 2 tmclk		μs	At stop mode, sub clock mode, sub sleep mode, and watch mode						

****\\

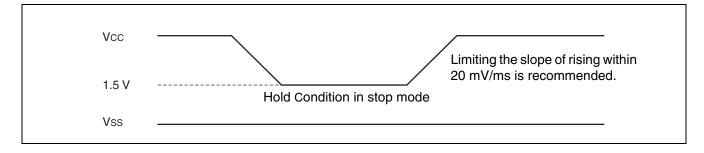

0 0 1/ 11/

٠,

~ ~ \/ T


*1 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

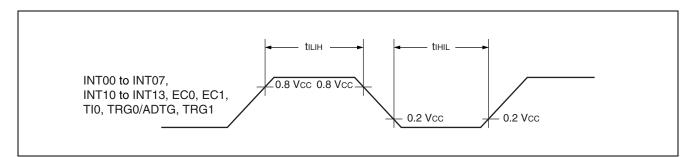
*2 : Oscillation start time of oscillator is the time that the amplitude reaches 90 %. In the crystal oscillator, the oscillation time is between several ms and tens of ms. In ceramic oscillators, the oscillation time is between hundreds of μs and several ms. In the external clock, the oscillation time is 0 ms.



(4) Power-on Reset

$(AV_{SS} = V_{SS} = 0.0 \text{ V}, T_{A} = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$										
Parameter	Symbol	Conditions	Va	lue	Unit	Remarks				
	Symbol	Conditions	Min	Max	Unit					
Power supply rising time	tR			36	ms					
Power supply cutoff time	toff		1		ms	Waiting time until power-on				

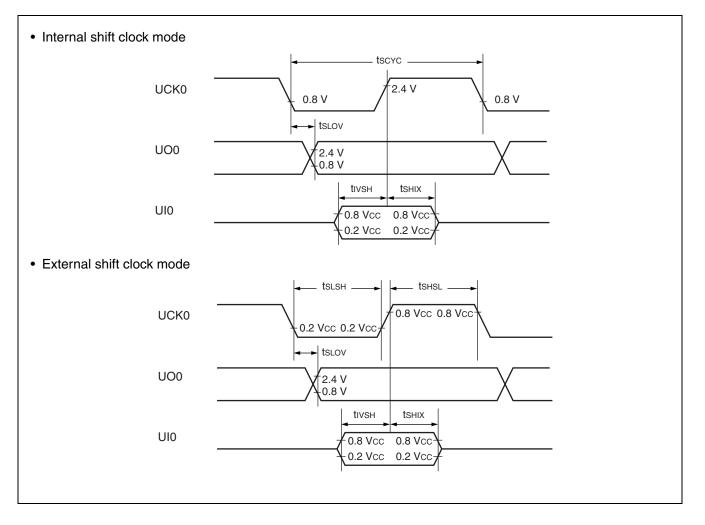
Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within 30 mV/ms as shown below.



(5) Peripheral Input Timing

 $(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ } \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } +85 \text{ }^{\circ}\text{C})$

Parameter	Symbol	Symbol Pin name Value Min Ma		Value		
Falameter	Symbol			Мах	Unit	
Peripheral input "H" pulse width	tılıн	INT00 to INT07, INT10 to INT13,	2 t MCLK*	_	ns	
Peripheral input "L" pulse width	tını∟	EC0, EC1, TI0, TRG0/ADTG, TRG1	2 t мськ*		ns	

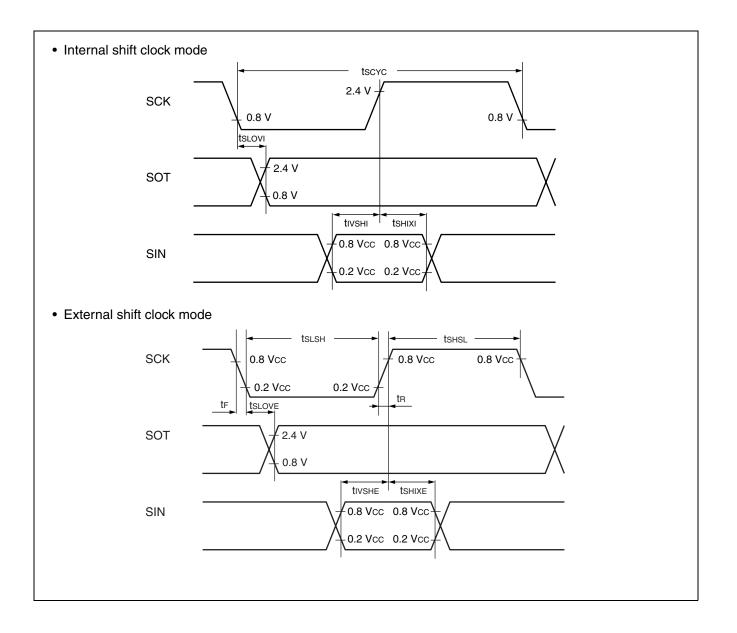

*: Refer to "(2) Source Clock/Machine Clock" for tmclk.

(6) UART/SIO, Serial I/O Timing

()	5	($V_{CC} = 3.3 V$, $AV_{SS} = V_{SS} = 0$	$0.0 \text{ V}, \text{ T}_{\text{A}} = -$	– 40 °C to	+ 85 °C)	
Parameter	Symbol	Pin name	Conditions	Val	Unit		
Farameter	Symbol	Fininame	Conditions	Min	Max		
Serial clock cycle time	tscyc	UCK0		4 t мськ*		ns	
$UCK \downarrow \rightarrow UO$ time	tslov	UCK0, UO0	Internal clock operation output pin :	- 190	+190	ns	
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK0, UI0	$C_{L} = 80 \text{ pF} + 1\text{TTL}.$	2 t мськ*	_	ns	
UCK $\uparrow \rightarrow$ valid UI hold time	tsнix	UCK0, UI0		2 t мськ*	_	ns	
Serial clock "H" pulse width	tshsl	UCK0		4 t мськ*	_	ns	
Serial clock "L" pulse width	tslsh	UCK0	External clock	4 t мськ*		ns	
$UCK \downarrow \rightarrow UO$ time	tslov	UCK0, UO0	operation output pin :	0	190	ns	
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK0, UI0	C∟ = 80 pF + 1TTL.	2 t мськ*		ns	
$UCK \uparrow \rightarrow valid UI hold time$	tsнıx	UCK0, UI0		2 t мськ*		ns	

* : Refer to " (2) Source Clock/Machine Clock" for tmclk.

(7) LIN-UART Timing


Sampling at the rising edge of sampling clock^{*1} and prohibited serial clock delay^{*2} (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 0) $(V_{CC} = 3.3 \text{ V}, \text{AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

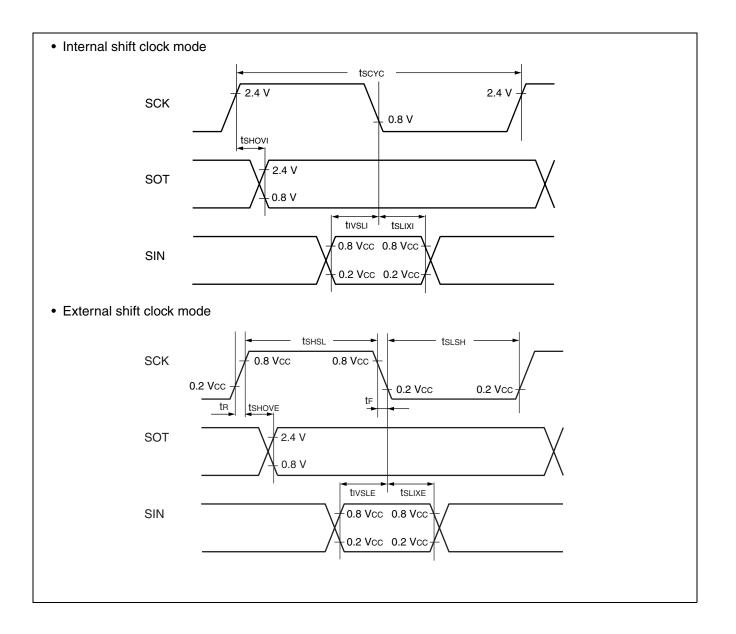
Devemeter	Sym-	Din nomo	Conditions	Va	lue	Unit
Parameter	bol	Pin name	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³		ns
$SCK \downarrow \to SOT$ delay time	tslovi	SCK, SOT	Internal clock	-95	+95	ns
$Valid\;SIN\toSCK\;\uparrow$	tivshi	SCK, SIN	operation output pin : C∟ = 80 pF + 1 TTL.	tмськ*3 + 190		ns
$SCK \uparrow \to valid \ SIN \ hold \ time$	tshixi	SCK, SIN		0		ns
Serial clock "L" pulse width	t slsh	SCK		$3 t$ мськ $^{*3} - t$ в		ns
Serial clock "H" pulse width	t s∺s∟	SCK		tмськ*3 + 95		ns
$SCK \downarrow \to SOT$ delay time	t SLOVE	SCK, SOT	External clock		2 t мськ* ³ + 95	ns
$Valid\;SIN\toSCK\;\uparrow$	tivshe	SCK, SIN	operation output pin :	190		ns
$SCK \uparrow \to valid \ SIN \ hold \ time$	tshixe	SCK, SIN	C∟ = 80 pF + 1 TTL.	tмськ* ³ + 95		ns
SCK fall time	t⊧	SCK			10	ns
SCK rise time	tĸ	SCK			10	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for tMCLK.

Sampling at the falling edge of sampling $clock^{*1}$ and prohibited serial $clock delay^{*2}$ (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

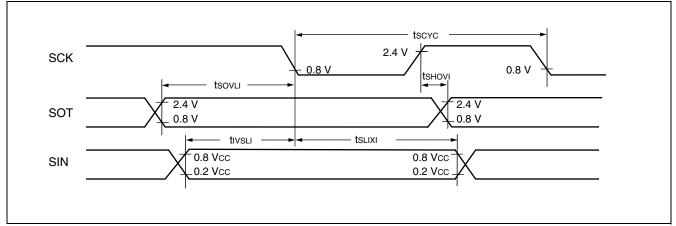

 $(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

Parameter	Sym-	Pin name	Conditions	Va	lue	Unit
Farameter	bol	Fin name	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³		ns
$SCK \uparrow \to SOT \text{ delay time}$	t shovi	SCK, SOT	Internal clock operation output pin :	-95	+95	ns
$Valid\:SIN\toSCK\:\downarrow$	tivsli	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	tмськ* ³ + 190		ns
$SCK \downarrow \to valid \ SIN \ hold \ time$	ts∟ıxı	SCK, SIN		0		ns
Serial clock "H" pulse width	t s∺s∟	SCK		3 tmclk*3 – tr		ns
Serial clock "L" pulse width	t s∟sн	SCK		tмс∟к ^{*3} + 95	_	ns
$SCK \uparrow \to SOT$ delay time	t shove	SCK, SOT	External clock		2 tмськ*3 + 95	ns
$Valid\:SIN\toSCK\downarrow$	tivsle	SCK, SIN	operation output pin :	190		ns
$SCK \downarrow \to valid \ SIN \ hold \ time$	t SLIXE	SCK, SIN	C∟ = 80 pF + 1 TTL.	tмськ*3 + 95		ns
SCK fall time	t⊧	SCK			10	ns
SCK rise time	tR	SCK			10	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2: Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3 : Refer to " (2) Source Clock/Machine Clock" for tmclk.


Sampling at the rising edge of sampling $clock^{*1}$ and enabled serial $clock delay^{*2}$ (ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

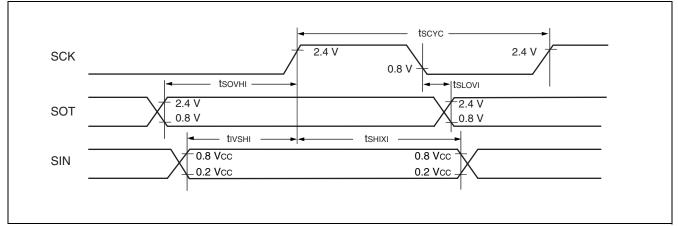
	-	Ū	(Vcc = 3.3 V, AVss =	= Vss = 0.0 V, T/	$a = -40 ^{\circ}\text{C}$ to	+ 85 °C)
Parameter	Sym- bol	Pin name	Conditions	Valu	Unit	
Farameter			Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	_	ns
$SCK \uparrow \to SOT \text{ delay time}$	tshovi	SCK, SOT	Internal clock	-95	+95	ns
$Valid\:SIN\toSCK\downarrow$	tivsli	SCK, SIN	operation output pin :	t мськ*3 + 190	_	ns
$SCK \downarrow \to valid\ SIN\ hold\ time$	tslixi	SCK, SIN	C∟ = 80 pF + 1 TTL.	0		ns
$SOT \to SCK \downarrow delay time$	tsovu	SCK, SOT			4 t мськ* ³	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3: Refer to "(2) Source Clock/Machine Clock" for tmclk.

Sampling at the falling edge of sampling $clock^{*1}$ and enabled serial $clock delay^{*2}$ (ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)

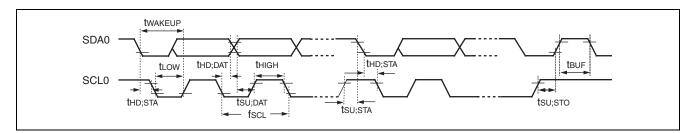

 $(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

Parameter	Sym- Bin nam		Conditions	Valu	Unit	
Farameter	bol	Pin name	Conditions	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t MCLK ^{*3}		ns
$SCK \downarrow \to SOT \text{ delay time}$	tslovi	SCK, SOT	Internal clock	-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivshi	SCK, SIN	operating output pin :	t мськ*3 + 190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}.$	0		ns
$SOT \to SCK \uparrow delay time$	tsovнi	SCK, SOT			4 t MCLK* ³	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.

*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.

*3: Refer to " (2) Source Clock/Machine Clock" for tmclk.


(8) I²C Timing

			(Vcc = 3.3 V, A)	Vss = Vss	s = 0.0 V,	$T_A = -40$	o°Cto +	· 85 °C)
	Symbol	Pin name		Value				
Parameter			Conditions	Standar	rd-mode	Fast-mode		Unit
				Min	Max	Min	Max	
SCL clock frequency	fsc∟	SCL0		0	100	0	400	kHz
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd;sta	SCL0 SDA0		4.0		0.6		μs
SCL clock "L" width	t∟ow	SCL0		4.7		1.3		μs
SCL clock "H" width	tніgн	SCL0		4.0	—	0.6		μs
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL0 SDA0	R = 1.7 kΩ,	4.7		0.6	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thd;dat	SCL0 SDA0	$C = 50 \text{ pF}^{*1}$	0	3.45* ²	0	0.9*3	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;dat	SCL0 SDA0		0.25		0.1	_	μs
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	SCL0 SDA0		4.0		0.6	_	μs
Bus free time between stop condition and start condition	tbur	SCL0 SDA0		4.7		1.3		μs

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

*2 : The maximum the; DAT have only to be met if the device dose not stretch the "L" width (tLOW) of the SCL signal.

*3 : A fast-mode l²C-bus device can be used in a standard-mode l²C-bus system, but the requirement $t_{SU;DAT} \ge 250$ ns must then be met.

Parameter	Sym-	Pin	Condi-	Value* ²		Unit	it Remarks	
Parameter	bol	name	tions	Min	Max	Unit	Remarks	
SCL clock "L" width	tLOW	SCL0		(2 + nm / 2) tмськ – 20		ns	Master mode	
SCL clock "H" width	tніgн	SCL0		(nm / 2) tмськ – 20	(nm / 2) t _{MCLK} + 20	ns	Master mode	
Start condition hold time	thd;sta	SCL0 SDA0		(-1 + nm / 2) tмськ - 20	(–1 + nm) tмськ + 20	ns	Master mode Maximum value is applied when m, n = 1, 8. Otherwise, the minimum value is applied.	
Stop condition setup time	tsu;sto	SCL0 SDA0		(1 + nm / 2) tмськ – 20	(1 + nm / 2) tмськ + 20	ns	Master mode	
Start condition setup time	tsu;sta	SCL0 SDA0		(1 + nm / 2) tмськ – 20	(1 + nm / 2) tмськ + 20	ns	Master mode	
Bus free time between stop condition and start condition	tb∪F	SCL0 SDA0		(2 nm + 4) t _{мськ} – 20	_	ns		
Data hold time	thd;dat	SCL0 SDA0		3 tмськ – 20	_	ns	Master mode	
Data setup time	tsu;dat	SCL0 SDA0	R = 1.7 kΩ, C = 50 pF*1	(—2 + nm / 2) tмськ — 20	(−1 + nm / 2) t _{MCLK} + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.	
Setup time between clearing interrupt and SCL rising	tsu;int	SCL0		(nm / 2) t _{MCLK} – 20	(1 + nm / 2) tмсік + 20	ns	Minimum value is applied to interrupt at 9th SCL \downarrow . Maximum value is applied to interrupt at 8th SCL \downarrow .	
SCL clock "L" width	t∟ow	SCL0		4 tmclk – 20		ns	At reception	
SCL clock "H" width	tніgн	SCL0		4 tmclk - 20		ns	At reception	
Start condition detection	t hd;sta	SCL0 SDA0		2 t _{MCLK} – 20		ns	Undetected when 1 tMCLK is used at reception	

(Vcc = 3.3 V, AVss = Vss = 0.0 V, T_A = -40 ~C to ~+ 85 ~C)

(Continued)

(Continued)

$(v_{CC} = 3.3 v, Av_{SS} = v_{SS} = 0.0 v, I_A = -40 + 0.10 + 65$								
Parameter	Sym-	Pin	Condi-		Value* ²		Remarks	
Farameter	bol	name	tions	Min	Max	Unit	nemarks	
Stop condition detection	tsu;sto	SCL0 SDA0		2 tмськ – 20	_	ns	Undetected when 1 t _{MCLK} is used at reception	
Restart condition detection condition	tsu;sta	SCL0 SDA0		2 tмськ – 20	_	ns	Undetected when 1 t _{MCLK} is used at reception	
Bus free time	tBUF	SCL0 SDA0		2 тмськ – 20		ns	At reception	
Data hold time	thd;dat	SCL0 SDA0	R = 1.7 kΩ,	2 тмсік — 20	_	ns	At slave transmission mode	
Data setup time	tsu;dat	SCL0 SDA0	C = 50 pF*1	$t_{\text{LOW}} - 3 t_{\text{MCLK}} - 20$	_	ns	At slave transmission mode	
Data hold time	t hd;dat	SCL0 SDA0		0	_	ns	At reception	
Data setup time	tsu;dat	SCL0 SDA0		tмськ — 20	_	ns	At reception	
SDA↓→SCL↑ (at wakeup function)	twake- UP	SCL0 SDA0		Oscillation stabilization wait time + 2 t _{MCLK} – 20		ns		

 $(V_{CC} = 3.3 \text{ V}, \text{ AV}_{SS} = V_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40 \text{ }^{\circ}\text{C} \text{ to } + 85 \text{ }^{\circ}\text{C})$

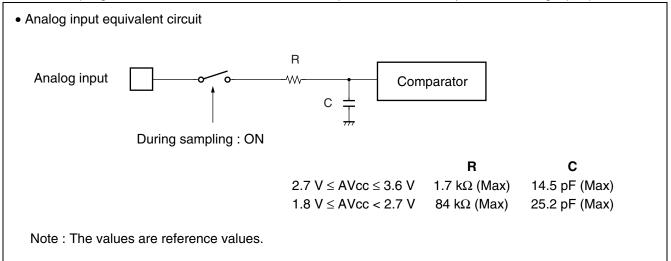
*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.

*2 : • Refer to " (2) Source Clock/Machine Clock" for tmclk.

- m is CS4 bit and CS3 bit (bit 4 and bit 3) of I²C clock control register (ICCR) .
- n is CS2 bit to CS0 bit (bit 2 to bit 0) of I²C clock control register (ICCR) .
- Actual timing of I²C is determined by m and n values set by the machine clock (t_{MCLK}) and CS4 to CS0 of ICCR0 register.
- Standard-mode :

m and n can be set at the range : $0.9 \text{ MHz} < t_{MCLK}$ (machine clock) < 10 MHz. Setting of m and n determines the machine clock that can be used below.

5. A/D Converter


(1) A/D Converter Electrical Characteristics (A)/cc = Vc

_			Value				
Parameter	Symbol	Min	Тур	Max	Unit	Remarks	
Resolution				10	bit		
Total error		- 3.0		+ 3.0	LSB		
Linearity error		- 2.5		+ 2.5	LSB		
Differential linear error	-	– 1.9		+ 1.9	LSB		
Zere transition voltage	Vот	AVss – 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	2.7 V ≤ AVcc ≤ 3.3 V	
Zero transition voltage	VOT	AVss – 0.5 LSB	AVss + 1.5 LSB	AVss + 3.5 LSB	V	1.8 V ≤ AVcc < 2.7 V	
Full-scale transition	V _{FST}	AVR – 3.5 LSB	AVR – 1.5 LSB	AVR + 0.5 LSB	V	2.7 V ≤ AVcc ≤ 3.3 V	
voltage	VFSI	AVR – 2.5 LSB	AVR – 0.5 LSB	 - 1.5 LSB AVR + 0.5 LSB - 0.5 LSB AVR + 1.5 LSB - 140 	V	1.8 V ≤ AVcc < 2.7 V	
0		0.6		140	μs	2.7 V ≤ AVcc ≤ 3.3 V	
Compare time		20		140	μs	1.8 V ≤ AVcc < 2.7 V	
		0.4	_	×	μs	$2.7 V \le AVcc \le$ 3.3 V, At external impedance < 1.8 k	
Sampling time		30		œ	μs	$1.8 V \le AVcc < 2.7 V,$ At external impedance < 14.8 k Ω	
Analog input current	Iain	-0.3	—	+0.3	μA		
Analog input voltage	VAIN	AVss		AVR	V		
Reference voltage		AVss + 1.8		AVcc	V	AVR pin	
Reference voltage	IR		400	600	μA	AVR pin, During A/D operation	
supply current	Івн			5	μA	AVR pin, At stop mode	

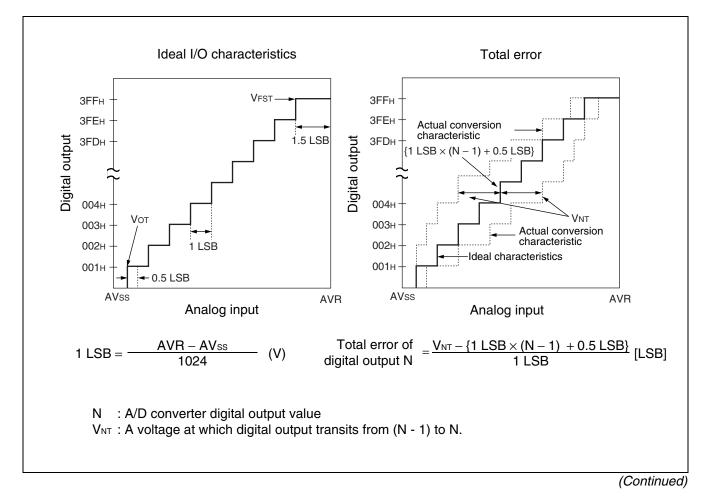
(2) Notes on Using A/D Converter

• About the external impedance of analog input and its sampling time

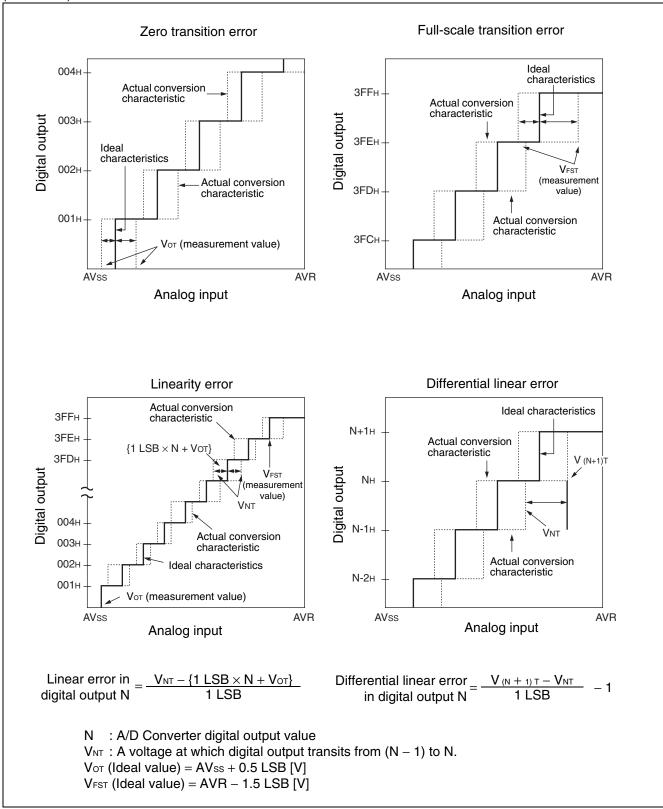
A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/D conversion precision. Therefore to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about 0.1 μ F to the analog input pin.

About errors

As IAVR - AVssI becomes smaller, values of relative errors grow larger.


(3) Definition of A/D Converter Terms

 Resolution The level of analog variation that can be distinguished by the A/D converter. When the number of bits is 10, analog voltage can be divided into 2¹⁰ = 1024.


- Linearity error (unit : LSB) The deviation between the value along a straight line connecting the zero transition point ("00 0000 0000" ← → "00 0000 0001") of a device and the full-scale transition point ("11 1111 1111" ← → "11 1111 1110") compared with the actual conversion values obtained.
- Differential linear error (Unit : LSB) Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

• Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

Parameter		Value		Unit	Remarks
Falailletei	Min	Тур	Max	Unit	nelliaiks
Sector erase time (4 Kbytes sector)	—	0.2*1	3.0 * ²	S	Excludes 00H programming prior erasure.
Sector erase time (16 Kbytes sector)		0.5* ¹	12.0* ²	S	Excludes 00H programming prior erasure.
Byte programming time		32	3600	μs	Excludes system-level overhead.
Program/erase cycle	10000	_		cycle	
Power supply voltage at program/erase	2.7		3.3	V	
Flash memory data retention time	20* ³			year	Average T _A = +85 °C

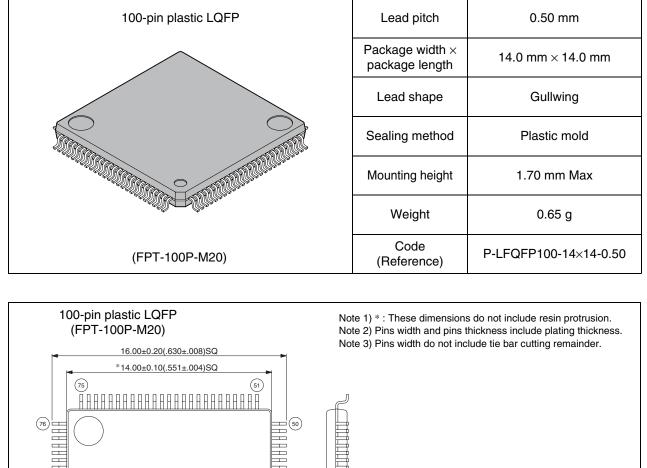
6. Flash Memory Program/Erase Characteristics

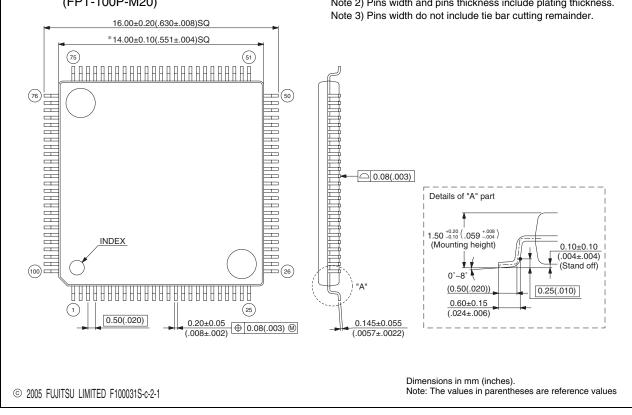
*1 : $T_{\text{A}}=$ + 25 °C, Vcc = 3.0 V, 10000 cycles

*2 : $T_{\text{A}}=$ + 85 °C, Vcc = 2.7 V, 10000 cycles

*3 : This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at +85 °C) .

■ MASK OPTION

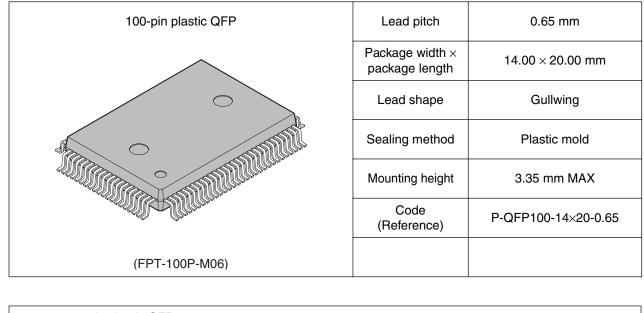

	Part number	MB95F128D	MB95F128E	MB95FV100D-101	MB95FV100D-102
No.	Specifying procedure	Setting disabled		Setting disabled	Setting disabled
1	Clock mode select • Single-system clock mode • Dual-system clock mode	Dual-system clock mode		Changing by the switch on MCU board	
2	LCDC Booster circuit select • Internal division resistance • Booster circuit	internal division resistance	Booster circuit	internal division resistance	Booster circuit
3	Low voltage detection reset* With low voltage detection reset Without low voltage detection reset 	No		Ν	lo
4	Clock supervisor* • With clock supervisor • Without clock supervisor	No		No	
5	Oscillation stabilization wait time	Fixed to oscillation stabilization wait time of (2 ¹⁴ –2) /F _{CH}		Fixed to oscillation time of (214-2) /Fc	

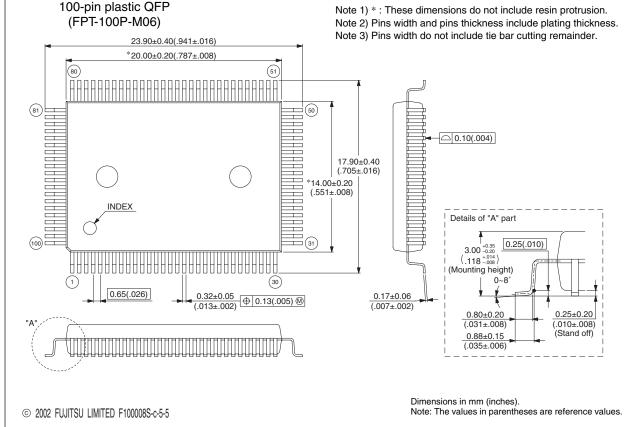

*: Low voltage detection reset and clock supervisor are options of 5-V products.

■ ORDERING INFORMATION

Part number	Package	Remarks
MB95F128DPMC MB95F128EPMC	100-pin plastic LQFP (FPT-100P-M20)	
MB95F128DPF MB95F128EPF	100-pin plastic QFP (FPT-100P-M06)	
MB2146-301A (MB95FV100D-101PBT)	MCU board 224-pin plastic PFBGA	Included LCDC internal division resistance
MB2146-302A (MB95FV100D-102PBT)	(BGA-224P-M08)	Included LCDC booster

PACKAGE DIMENSIONS





Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

(Continued)

(Continued)

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

The information for microcontroller supports is shown in the following homepage. http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.