8-bit Microcontroller

CMOS

F²MC-8FX MB95160M Series

MB95F168M/F168N/F168J/FV100D-103

■ DESCRIPTION

The MB95160M series is general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers contain a variety of peripheral functions.

Note : F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURE

- F^{2} MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instruction
- Bit manipulation instructions etc.
- Clock
- Main clock
- Main PLL clock
- Sub clock
- Sub PLL clock
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]
MB95160M Series

(Continued)

- Timer
- 8/16-bit compound timer $\times 2$ channels

Can be used to interval timer, PWC timer, PWM timer and input capture.

- 8/16-bit PPG $\times 2$ channels
- 16 -bit PPG $\times 1$ channel
- Time-base timer $\times 1$ channel
- Watch prescaler $\times 1$ channel
- LIN-UART $\times 1$ channel
- LIN function, clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- Full duplex double buffer
- UART/SIO $\times 1$ channel
- Clock asynchronous (UART) or clock synchronous (SIO) serial data transfer capable
- Full duplex double buffer
- ${ }^{2} C^{*} \times 1$ channel

Built-in wake-up function

- External interrupt $\times 8$ channels
- Interrupt by edge detection (rising, falling, or both edges can be selected)
- Can be used to recover from low-power consumption (standby) modes.
- 8/10-bit A/D converter $\times 8$ channels

8 -bit or 10-bit resolution can be selected.

- LCD controller (LCDC)
- 32 SEG $\times 4$ COM (Max 128 pixels)
- With blinking function
- Low-power consumption (standby) mode
- Stop mode
- Sleep mode
- Watch mode
- Time-base timer mode
- I/O port
- The number of maximum ports : Max 53
- Port configuration
- General-purpose I/O ports (N-ch open drain) : 2 ports
- General-purpose I/O ports (CMOS) : 51 ports
- Programmable input voltage levels of port

Automotive input level / CMOS input level / hysteresis input level

- Flash memory security function

Protects the content of Flash memory

* : Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB95160M Series

■ PRODUCT LINEUP

(Continued)

MB95160M Series

(Continued)

*1 : MASK ROM products are currently under consideration.
*2 : For details of option, refer to "■ MASK OPTION".
Note : Part number of evaluation product in MB95160M series is MB95FV100D-103. When using it, the MCU board (MB2146-303A) is required.

■ OSCILLATION STABILIZATION WAIT TIME
The initial value of the main clock oscillation stabilization wait time is fixed to the maximum value. The maximum value is shown as follows.

Oscillation stabilization wait time	Remarks
$\left(2^{14}-2\right) / \mathrm{F}_{\mathrm{cH}}$	Approx. 4.10 ms (at main oscillation clock 4 MHz$)$

- PACKAGES AND CORRESPONDING PRODUCTS

Package \quad Part number	MB95F168M/F168N/F168J	MB95FV100D-103
FPT-64P-M23	\bigcirc	\times
FPT-64P-M24	\bigcirc	\times
BGA-224P-M08	\times	\bigcirc

\times : Unavailable

MB95160M Series

DIFFERENCES AMONG PRODUCTS AND NOTES ON SELECTING PRODUCTS

- Notes on Using Evaluation Products

The evaluation product has not only the functions of the MB95160M series but also those of other products to support software development for multiple series and models of the $\mathrm{F}^{2} \mathrm{MC}-8 \mathrm{FX}$ family. The I/O addresses for peripheral resources not used by the MB95160M series are therefore access-barred. Read/write access to these access-barred addresses may cause peripheral resources supposed to be unused to operate, resulting in unexpected malfunctions of hardware or software.
Particularly, do not use word access to odd numbered byte address in the prohibited areas (If these access are used, the address may be read or written unexpectedly).

Also, as the read values of prohibited addresses on the evaluation product are different to the values on the Flash memory products, do not use these values in the program.
The functions corresponding to certain bits in single-byte registers may not be supported on some Flash memory products. However, reading or writing to these bits will not cause malfunction of the hardware. Also, as the evaluation and Flash memory products are designed to have identical software operation, no particular precautions are required.

- Difference of Memory Spaces

If the amount of memory on the evaluation product is different from that of the Flash memory products, carefully check the difference in the amount of memory from the model to be actually used when developing software.
For details of memory space, refer to "■ CPU CORE".

- Current Consumption

For details of current consumption, refer to "■ ELECTRICAL CHARACTERISTICS".

- Package

For details of information on each package, refer to "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".

- Operating voltage

The operating voltage is different among the evaluation and Flash memory products.
For details of operating voltage, refer to "■ ELECTRICAL CHARACTERISTICS"

MB95160M Series

PIN ASSIGNMENT

MB95160M Series

PIN DESCRIPTION

| Pin no. | Pin name | I/O circuit
 type* | Function |
| :---: | :---: | :---: | :--- | :--- |
| 1 | AVcc | - | A/D converter power supply pin |
| 2 | AVR | - | A/D converter reference input pin |

(Continued)

MB95160M Series

Pin no.	Pin name	I/O circuit type*	Function
26	P94	S	General-purpose I/O port.
27	P95		
28	PA0/COM0	M	General-purpose I/O port. The pins are shared with LCDC COM output (COMO to COM3).
29	PA1/COM1		
30	PA2/COM2		
31	PA3/COM3		
32	PB0/SEG00	M	General-purpose I/O port. The pins are shared with LCDC SEG output (SEG00 to SEG07).
33	PB1/SEG01		
34	PB2/SEG02		
35	PB3/SEG03		
36	PB4/SEG04		
37	PB5/SEG05		
38	PB6/SEG06		
39	PB7/SEG07		
40	PC0/SEG08	M	General-purpose I/O port. The pins are shared with LCDC SEG output (SEG08 to SEG15).
41	PC1/SEG09		
42	PC2/SEG10		
43	PC3/SEG11		
44	PC4/SEG12		
45	PC5/SEG13		
46	PC6/SEG14		
47	PC7/SEG15		
48	$\begin{gathered} \text { P60/SEG16/ } \\ \text { PPG10 } \end{gathered}$	M	General-purpose I/O port. The pins are shared with LCDC SEG output (SEG16, SEG17) and 8/16-bit PPG ch. 1 output (PPG10, PPG11) .
49	$\begin{aligned} & \text { P61/SEG17/ } \\ & \text { PPG11 } \end{aligned}$		
50	$\begin{gathered} \text { P62/SEG18/ } \\ \text { TO10 } \end{gathered}$		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG18) and 8/16-bit compound timer ch. 1 output (TO10) .

(Continued)

MB95160M Series

(Continued)

Pin no.	Pin name	I/O circuit type*	Function
51	P63/SEG19/ TO11	M	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG19) and 8/16-bit compound timer ch. 1 output (TO11).
52	$\begin{aligned} & \text { P64/SEG20/ } \\ & \text { EC1 } \end{aligned}$		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG20) and 8/16-bit compound timer ch. 1 clock input (EC1).
53	P65/SEG21/ SCK		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG21) and LIN-UART clock I/O (SCK) .
54	P66/SEG22/ SOT		General-purpose I/O port. The pin is shared with LCDC SEG output (SEG22) and LIN-UART data output (SOT).
55	P67/SEG23/ SIN	N	General-purpose I/O port. The pin is shared with LCDC SEG output (SEG23) and LIN-UART data input (SIN) .
56	P07/INT07/ AN07/SEG24	F	General-purpose I/O port. The pins are shared with external interrupt input (INT00 to INT07), A/D analog input (ANOO to ANO7) and LCDC SEG output (SEG24 to SEG31).
57	P06/INT06/ AN06/SEG25		
58	$\begin{aligned} & \text { P05/INT05/ } \\ & \text { AN05/SEG66 } \end{aligned}$		
59	P04/INT04/ AN04/SEG27		
60	P03/INT03/ ANO3/SEG28		
61	P02/INT02/ AN02/SEG29		
62	$\begin{gathered} \hline \text { P01/INT01/ } \\ \text { AN01/SEG30 } \end{gathered}$		
63	P00/INT00/ AN00/SEG31		
64	$\mathrm{AV}_{\text {ss }}$	-	Power supply pin (GND) of A/D converter

* : Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.

MB95160M Series

I/O CIRCUIT TYPE

Type	Circuit	Remarks
A		- Oscillation circuit - High-speed side Feedback resistance : approx. $1 \mathrm{M} \Omega$ - Low-speed side Feedback resistance : approx. $10 \mathrm{M} \Omega$
B		- Only for input - Hysteresis input
B'		- Hysteresis input - Reset output
F		- CMOS output - LCD output - Hysteresis input - Analog input - Automotive input
G		- CMOS output - CMOS input - Hysteresis input - With pull-up control - Automotive input

(Continued)

MB95160M Series

Type	Circuit	Remarks
H		- CMOS output - Hysteresis input - With pull-up control - Automotive input
I		- N-ch open drain output - CMOS input - Hysteresis input - Automotive input
M		- CMOS output - LCD output - Hysteresis input - Automotive input
N		- CMOS output - LCD output - CMOS input - Hysteresis input - Automotive input

(Continued)
(Continued)

Type	Circuit	Remarks
R		- CMOS output - LCD power supply - Hysteresis input - Automotive input
S		- CMOS output - LCD power supply - Hysteresis input - Automotive input

MB95160M Series

- HANDLING DEVICES

- Preventing Latch-up

Care must be taken to ensure that maximum voltage ratings are not exceeded when they are used.
Latch-up may occur on CMOS ICs if voltage higher than Vcc or lower than Vss is applied to input and output pins other than medium- and high-withstand voltage pins or if higher than the rating voltage is applied between Vcc pin and Vss pin.

When latch-up occurs, power supply current increases rapidly and might thermally damage elements.

- Stable Supply Voltage

Supply voltage should be stabilized.
A sudden change in power-supply voltage may cause a malfunction even within the guaranteed operating range of the Vcc power-supply voltage.

For stabilization, in principle, keep the variation in Vcc ripple ($p-p$ value) in a commercial frequency range $(50 / 60 \mathrm{~Hz})$ not to exceed 10% of the standard Vcc value and suppress the voltage variation so that the transient variation rate does not exceed $0.1 \mathrm{~V} / \mathrm{ms}$ during a momentary change such as when the power supply is switched.

- Precautions for Use of External Clock

Even when an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from sub clock mode or stop mode.

PIN CONNECTION

- Treatment of Unused Pin

Leaving unused input pins unconnected can cause abnormal operation or latch-up, leaving to permanent damage. Unused input pins should always be pulled up or down through resistance of at least $2 \mathrm{k} \Omega$. Any unused input/output pins may be set to output mode and left open, or set to input mode and treated the same as unused input pins. If there is unused output pin, make it to open.

- Power Supply Pins

In products with multiple Vcc or Vss pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to external power supply and a ground line to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with the V_{cc} and $\mathrm{V}_{\text {ss }}$ pins of this device at the low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between V cc and V ss pins near this device.

MB95160M Series

- Mode Pin (MOD)

Connect the MOD pin directly to V cc or $\mathrm{V} s \mathrm{~s}$.
To prevent the device unintentionally entering test mode due to noise, lay out the printed circuit board so as to minimize the distance from the MOD pin to Vcc or V_{ss} and to provide a low-impedance connection.

Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of Vcc pin must have a capacitance value higher than Cs . For connection of smoothing capacitor Cs , refer to the diagram below.

- C pin connection diagram

- Analog Power Supply

Always set the same potential to AVcc and Vcc pins. When $\mathrm{V}_{\mathrm{cc}}>\mathrm{AVcc}$, the current may flow through the ANOO to ANO7 pins.

- Treatment of Power Supply Pins on A/D Converter

Connect to be AV cc $=\mathrm{V}_{\mathrm{cc}}$ and AV ss $=\mathrm{AVR}=\mathrm{V}_{\mathrm{ss}}$ even if the A / D converter is not in use.
Noise riding on the AV cc pin may cause accuracy degradation. So, connect approx. $0.1 \mu \mathrm{~F}$ ceramic capacitor as a bypass capacitor between AV cc and AV ss pins in the vicinity of this device.

MB95160M Series

■ PROGRAMMING FLASH MEMORY MICROCONTROLLERS USING PARALLEL PROGRAMMER

- Supported Parallel Programmers and Adapters

The following table lists supported parallel programmers and adapters.

Package	Applicable adapter model	Parallel programmers
FPT-64P-M23	TEF110-95F168HPMC	AF9708 (Ver 02.35G or more)
FPT-64P-M24	TEF110-95F168HPMC1	AF9709/B (Ver 02.35G or more)
	AF9723+AF9834 (Ver 02.08E or more)	

Note : For information on applicable adapter models and parallel programmers, contact the following: Flash Support Group, Inc. TEL: +81-53-428-8380

- Sector Configuration

The individual sectors of Flash memory correspond to addresses used for CPU access and programming by the parallel programmer as follows:

*: Programmer addresses are corresponding to CPU addresses, used when the parallel programmer programs data into Flash memory.
These programmer addresses are used for the parallel programmer to program or erase data in Flash memory.

- Programming Method

1) Set the type code of the parallel programmer to 17222.
2) Load program data to programmer addresses 11000 н to 1 FFFFн.
3) Programmed by parallel programmer

MB95160M Series

BLOCK DIAGRAM

MB95160M Series

CPU CORE

1. Memory space

Memory space of the MB95160M series is 64 Kbytes and consists of I/O area, data area, and program area. The memory space includes special-purpose areas such as the general-purpose registers and vector table. Memory map of the MB95160M series is shown below.

- Memory Map

	MB95F168M MB95F168N MB95F168J		MB95FV100D-103
0000н	I/O	0000н	I/O
0080н	RAM 2Kbytes	0080н	RAM 3.75Kbytes
0100H	Register	$\begin{aligned} & 0100 \mathrm{H} \\ & \mathrm{O200H} \end{aligned}$	Register
0880н	Access prohibited	0F80H	
OF80H	Exterded I/O		Exterded I/O
1000 H		1000H	
	Flash memory 60Kbytes 60Kbytes		Flash memory 60Kbytes
FFFFH		FFFFH	

MB95160M Series

2. Register

The MB95160M series has two types of registers; dedicated registers in the CPU and general-purpose registers in the memory. The dedicated registers are as follows:
Program counter (PC) : A 16-bit register to indicate locations where instructions are stored.
Accumulator (A) : A 16-bit register for temporary storage of arithmetic operations. In the case of an 8 -bit data processing instruction, the lower 1 byte is used.
Temporary accumulator (T) : A 16-bit register which performs arithmetic operations with the accumulator. In the case of an 8 -bit data processing instruction, the lower 1 byte is used.
Index register (IX) : A 16-bit register for index modification.
Extra pointer (EP) : A 16-bit pointer to point to a memory address.
Stack pointer (SP) : A 16-bit register to indicate a stack area.
Program status (PS) : A 16-bit register for storing a register bank pointer, a direct bank pointer, and a condition code register.

16-bit		: Program counter : Accumulator	Initial Value FFFD
PC			
AH	AL		0000 ${ }^{\text {H }}$
TH	TL	: Temporary accumulator	0000 ${ }^{\text {H }}$
		: Index register	0000H
		: Extra pointer	0000 ${ }^{\text {H}}$
		: Stack pointer	0000 ${ }_{\text {H }}$
		: Program status	0030 ${ }^{\text {H }}$

The PS can further be divided into higher 8 bits for use as a register bank pointer (RP) and a direct bank pointer (DP) and the lower 8 bits for use as a condition code register (CCR). (Refer to the diagram below.)

- Structure of the Program Status

MB95160M Series

The RP indicates the address of the register bank currently being used. The relationship between the content of RP and the real address conforms to the conversion rule illustrated below:

- Rule for Conversion of Actual Addresses in the General-purpose Register Area

									RP upper				OP code lower			
	"0"	"0"	"0"	"0"	"0"	"0"	"0"	"1"	R4	R3	R2	R1	R0	b2	b1	b0
	\dagger	\dagger	\dagger	\downarrow	\dagger	\dagger	\downarrow	\dagger	\downarrow	\dagger	\downarrow	\downarrow	\downarrow	\dagger	\downarrow	\downarrow
Generated address	A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	A3	A2	A1	A0

The DP specifies the area for mapping instructions (16 different instructions such as MOV A, dir) using direct addresses to 0080н to 00FFн.

Direct bank pointer (DP2 to DP0)	Specified address area	Mapping area
XXX в (no effect to mapping) $^{\text {a }}$	0000н to 007F\%	0000н to 007Fн (without mapping)
000в (initial value)	0080 ${ }_{\text {r }}$ to 00FFH	0080н to 00FF\% (without mapping)
001в		0100н to 017F\%
010в		0180 to 01FFн $^{\text {d }}$
011в		0200н to 027Fн
100в		0280н to 02FF\%
101в		0300н to 037Fн
110в		0380н to 03FF\%
111 ${ }_{\text {в }}$		0400 ${ }^{\text {to }} 047 \mathrm{FH}$

The CCR consists of the bits indicating arithmetic operation results or transfer data contents and the bits that control CPU operations at interrupt.

H flag : Set to " 1 " when a carry or a borrow from bit 3 to bit 4 occurs as a result of an arithmetic operation. Cleared to " 0 " otherwise. This flag is for decimal adjustment instructions.
I flag : Interrupt is enabled when this flag is set to " 1 ". Interrupt is disabled when this flag is set to " 0 ". The flag is set to " 0 " when reset.
IL1, IL0 : Indicates the level of the interrupt currently enabled. Processes an interrupt only if its request level is higher than the value indicated by these bits.

IL1	ILO	Interrupt level	Priority
0	0	0	High
0	1	1	\vdots
1	0	2	
1	1	3	Low (no interruption)

[^1]
MB95160M Series

The following general-purpose registers are provided:
General-purpose registers: 8-bit data storage registers
The general-purpose registers are 8 bits and located in the register banks on the memory. 1-bank contains 8 -register. Up to a total of 32 banks can be used on the MB95160M series. The bank currently in use is specified by the register bank pointer (RP), and the lower 3 bits of OP code indicates the general-purpose register 0 (R0) to general-purpose register 7 (R7).

- Register Bank Configuration

MB95160M Series

I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	00000000в
0001н	DDR0	Port 0 direction register	R/W	00000000в
0002н	PDR1	Port 1 data register	R/W	00000000в
0003н	DDR1	Port 1 direction register	R/W	00000000в
0004н	-	(Disabled)	-	-
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н	PLLC	PLL control register	R/W	00000000в
0007H	SYCC	System clock control register	R/W	1010X011в
0008н	STBC	Standby control register	R/W	00000000в
0009н	RSRR	Reset factor register	R/W	XXXXXXXX
000Ан	TBTC	Time-base timer control register	R/W	00000000в
О00Вн	WPCR	Watch prescaler control register	R/W	00000000в
000Сн	WDTC	Watchdog timer control register	R/W	00000000в
000D ${ }_{\text {н }}$	-	(Disabled)	-	-
000Ен	PDR2	Port 2 data register	R/W	00000000в
000F\%	DDR2	Port 2 direction register	R/W	00000000в
$\begin{aligned} & \text { 0010н } \\ & \text { to } \\ & 0015 \mathrm{H} \end{aligned}$	-	(Disabled)	-	-
0016н	PDR6	Port 6 data register	R/W	00000000в
0017 ${ }^{\text {H}}$	DDR6	Port 6 direction register	R/W	00000000в
$\begin{aligned} & \text { 0018н } \\ & \text { to } \\ & 001 \text { в } \end{aligned}$	-	(Disabled)	-	-
$001 \mathrm{CH}_{\mathrm{H}}$	PDR9	Port 9 data register	R/W	00000000в
001D ${ }_{\text {H }}$	DDR9	Port 9 direction register	R/W	00000000в
001Ен	PDRA	Port A data register	R/W	00000000в
001F	DDRA	Port A direction register	R/W	00000000в
0020н	PDRB	Port B data register	R/W	00000000в
0021н	DDRB	Port B direction register	R/W	00000000в
0022н	PDRC	Port C data register	R/W	00000000в
0023н	DDRC	Port C direction register	R/W	00000000в
$\begin{gathered} \text { 0024н } \\ \text { to } \\ 002 \text { C }_{H} \end{gathered}$	-	(Disabled)	-	-

(Continued)

MB95160M Series

Address	Register abbreviation	Register name	R/W	Initial value
002D	PUL1	Port 1 pull-up register	R/W	00000000в
002Ен	PUL2	Port 2 pull-up register	R/W	00000000в
$\begin{gathered} 002 \mathrm{FH}_{\mathrm{H}} \\ \text { to } \\ 0035 \mathrm{H} \end{gathered}$	-	(Disabled)	-	-
0036н	T01CR1	8/16-bit compound timer 01 control status register 1 ch. 0	R/W	00000000в
0037	T00CR1	8/16-bit compound timer 00 control status register 1 ch. 0	R/W	00000000в
0038н	T11CR1	8/16-bit compound timer 11 control status register 1 ch. 1	R/W	00000000в
0039н	T10CR1	8/16-bit compound timer 10 control status register 1 ch. 1	R/W	00000000в
003Ан	PC01	8/16-bit PPG1 control register ch.0	R/W	00000000в
003Вн	PC00	8/16-bit PPG0 control register ch. 0	R/W	00000000в
$003 \mathrm{CH}_{\text {H }}$	PC11	8/16-bit PPG1 control register ch. 1	R/W	00000000в
003D ${ }_{\text {н }}$	PC10	8/16-bit PPG0 control register ch. 1	R/W	00000000в
$\begin{aligned} & \text { 003Ен } \\ & \text { to } \\ & 0041 \text { н } \end{aligned}$	-	(Disabled)	-	-
0042н	PCNTH0	16-bit PPG status control register (upper byte) ch.0	R/W	00000000в
0043н	PCNTLO	16-bit PPG status control register (lower byte) ch. 0	R/W	00000000в
$\begin{gathered} 0044 \mathrm{H} \\ \text { to } \\ 0047 \mathrm{H} \end{gathered}$	-	(Disabled)	-	-
0048н	EIC00	External interrupt circuit control register ch.0/ch. 1	R/W	00000000в
0049н	EIC10	External interrupt circuit control register ch.2/ch. 3	R/W	00000000в
004Ан	EIC20	External interrupt circuit control register ch.4/ch. 5	R/W	00000000в
004Bн	EIC30	External interrupt circuit control register ch.6/ch. 7	R/W	00000000в
$\begin{gathered} 004 \mathrm{CH}_{\mathrm{H}} \\ \text { to } \\ 004 \mathrm{FH} \end{gathered}$	-	(Disabled)	-	-
0050н	SCR	LIN-UART serial control register	R/W	00000000в
0051н	SMR	LIN-UART serial mode register	R/W	00000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR/TDR	LIN-UART reception/transmission data register	R/W	00000000в
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055	ECCR	LIN-UART extended communication control register	R/W	000000XХв
0056н	SMC10	UART/SIO serial mode control register 1 ch .0	R/W	00000000в
0057 ${ }^{\text {¢ }}$	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	00100000в
0058н	SSR0	UART/SIO serial status register ch. 0	R/W	00000001в

(Continued)

MB95160M Series

Address	Register abbreviation	Register name	R/W	Initial value
0059н	TDR0	UART/SIO serial output data register ch. 0	R/W	00000000в
005Ан	RDR0	UART/SIO serial input data register ch. 0	R	00000000в
$\begin{aligned} & \text { 005Bн } \\ & \text { to } \\ & 005 \mathrm{~F}_{\mathrm{H}} \end{aligned}$	-	(Disabled)	-	-
0060н	IBCR00	$1^{2} \mathrm{C}$ bus control register 0 ch. 0	R/W	00000000в
0061н	IBCR10	$\mathrm{I}^{2} \mathrm{C}$ bus control register 1 ch. 0	R/W	00000000в
0062н	IBSR0	$\mathrm{I}^{2} \mathrm{C}$ bus status register ch. 0	R	00000000в
0063н	IDDR0	$1^{2} \mathrm{C}$ data register ch. 0	R/W	00000000в
0064н	IAAR0	$1^{2} \mathrm{C}$ address register ch. 0	R/W	00000000в
0065	ICCRO	${ }^{2} \mathrm{C}$ clock control register ch. 0	R/W	00000000в
$\begin{aligned} & \text { 0066н } \\ & \text { to } \\ & 006 \text { Вн } \end{aligned}$	-	(Disabled)	-	-
006C ${ }_{\text {н }}$	ADC1	8/10-bit A/D converter control register 1	R/W	00000000в
006D	ADC2	8/10-bit A/D converter control register 2	R/W	00000000в
006Eн	ADDH	8/10-bit A/D converter data register (upper byte)	R/W	00000000в
006FH	ADDL	8/10-bit A/D converter data register (lower byte)	R/W	00000000в
0070н	WCSR	Watch counter status register	R/W	00000000в
0071н	-	(Disabled)	-	-
0072н	FSR	Flash memory status register	R/W	000X0000в
0073н	SWRE0	Flash memory sector writing control register 0	R/W	00000000в
0074 ${ }_{\text {¢ }}$	SWRE1	Flash memory sector writing control register 1	R/W	00000000в
0075 ${ }_{\text {H }}$	-	(Disabled)	-	-
0076 ${ }^{\text {¢ }}$	WREN	Wild register address compare enable register	R/W	00000000в
0077 ${ }_{\text {H }}$	WROR	Wild register data test setting register	R/W	00000000в
0078H	-	Register bank pointer (RP) , Mirror of direct bank pointer (DP)	-	-
0079н	ILR0	Interrupt level setting register 0	R/W	11111111в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111в
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111в
007CH	ILR3	Interrupt level setting register 3	R/W	11111111в
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в
007Eн	ILR5	Interrupt level setting register 5	R/W	11111111в
007F	-	(Disabled)	-	-
0F80н	WRARH0	Wild register address setting register (upper byte) ch. 0	R/W	00000000в

(Continued)

MB95160M Series

Address	Register abbreviation	Register name	R/W	Initial value
0F81н	WRARL0	Wild register address setting register (lower byte) ch. 0	R/W	00000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	00000000в
0F83н	WRARH1	Wild register address setting register (upper byte) ch. 1	R/W	00000000в
0F84н	WRARL1	Wild register address setting register (lower byte) ch. 1	R/W	00000000в
0F85	WRDR1	Wild register data setting register ch. 1	R/W	00000000в
0F86н	WRARH2	Wild register address setting register (upper byte) ch. 2	R/W	00000000в
0F87н	WRARL2	Wild register address setting register (lower byte) ch. 2	R/W	00000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	00000000в
$\begin{aligned} & \text { OF89н } \\ & \text { to } \\ & \text { 0F91н } \end{aligned}$	-	(Disabled)	-	-
0F92н	T01CR0	8/16-bit compound timer 01 control status register 0 ch. 0	R/W	00000000в
0F93н	T00CR0	8/16-bit compound timer 00 control status register 0 ch. 0	R/W	00000000в
0F94н	T01DR	8/16-bit compound timer 01 data register ch. 0	R/W	00000000в
0F95н	T00DR	8/16-bit compound timer 00 data register ch. 0	R/W	00000000в
0F96н	TMCR0	8/16-bit compound timer 00/01 timer mode control register ch. 0	R/W	00000000в
0F97н	T11CR0	8/16-bit compound timer 11 control status register 0 ch. 1	R/W	00000000в
0F98н	T10CR0	8/16-bit compound timer 10 control status register 0 ch. 1	R/W	00000000в
0F99н	T11DR	8/16-bit compound timer 11 data register ch. 1	R/W	00000000в
0F9Aн	T10DR	8/16-bit compound timer 10 data register ch. 1	R/W	00000000в
0F9Bн	TMCR1	8/16-bit compound timer 10/11 timer mode control register ch. 1	R/W	00000000в
0F9CH	PPS01	8/16-bit PPG1 cycle setting buffer register ch. 0	R/W	111111118
0F9Dн	PPS00	8/16-bit PPG0 cycle setting buffer register ch. 0	R/W	11111111в
0F9Eн	PDS01	8/16-bit PPG1 duty setting buffer register ch. 0	R/W	11111111в
0F9FH	PDS00	8/16-bit PPG0 duty setting buffer register ch. 0	R/W	11111111в
OFAOH	PPS11	8/16-bit PPG1 cycle setting buffer register ch. 1	R/W	11111111в
0FA1н	PPS10	8/16-bit PPG0 cycle setting buffer register ch. 1	R/W	11111111в
0FA2н	PDS11	8/16-bit PPG1 duty setting buffer register ch. 1	R/W	11111111в
ОFA3н	PDS10	8/16-bit PPG0 duty setting buffer register ch. 1	R/W	11111111в
0FA4н	PPGS	8/16-bit PPG start register	R/W	00000000в
0FA5	REVC	8/16-bit PPG output inversion register	R/W	00000000в
$\begin{aligned} & \text { OFA6н } \\ & \text { to } \\ & \text { 0FA9н } \end{aligned}$	-	(Disabled)	-	-

(Continued)

MB95160M Series

Address	Register abbreviation	Register name	R/W	Initial value
ОFААн	PDCRH0	16-bit PPG down counter register (upper byte) ch.0	R	00000000в
OFABH	PDCRLO	16-bit PPG down counter register (lower byte) ch. 0	R	00000000в
OFACH	PCSRH0	16-bit PPG cycle setting buffer register (upper byte) ch. 0	R/W	11111111в
OFAD	PCSRLO	16-bit PPG cycle setting buffer register (lower byte) ch. 0	R/W	11111111B
ОFAEн	PDUTH0	16-bit PPG duty setting buffer register (upper byte) ch. 0	R/W	11111111в
OFAFH	PDUTLO	16-bit PPG duty setting buffer register (lower byte) ch. 0	R/W	11111111B
$\begin{aligned} & \text { OFBOн } \\ & \text { to } \\ & \text { OFBBн } \end{aligned}$	-	(Disabled)	-	-
OFBCH	BGR1	LIN-UART baud rate generator register 1	R/W	00000000в
0FBDн	BGR0	LIN-UART baud rate generator register 0	R/W	00000000в
OFBEн	PSSR0	UART/SIO dedicated baud rate generator prescaler selecting register ch. 0	R/W	00000000в
OFBFH	BRSR0	UART/SIO dedicated baud rate generator setting register ch. 0	R/W	00000000в
$\begin{aligned} & \text { OFCOн } \\ & \text { to } \\ & \text { OFC2н } \end{aligned}$	-	(Disabled)	-	-
0FC3н	AIDRL	A/D input disable register (lower byte)	R/W	00000000в
OFC4	LCDCC	LCDC control register	R/W	00010000в
0FC5 ${ }_{\text {¢ }}$	LCDCE1	LCDC enable register 1	R/W	00110000в
0FC6\%	LCDCE2	LCDC enable register 2	R/W	00000000в
0FC7 ${ }_{\text {H }}$	LCDCE3	LCDC enable register 3	R/W	00000000в
0FC8 ${ }_{\text {- }}$	LCDCE4	LCDC enable register 4	R/W	00000000в
0FC9н	LCDCE5	LCDC enable register 5	R/W	00000000в
ОFСАн	-	(Disabled)	-	-
OFCBн	LCDCB1	LCDC blinking setting register 1	R/W	00000000в
ОFCCH	LCDCB2	LCDC blinking setting register 2	R/W	00000000в
$\begin{aligned} & \text { OFCDH } \\ & \text { to } \\ & \text { OFDCH } \end{aligned}$	LCDRAM	LCDC display RAM	R/W	00000000в
$\begin{aligned} & \text { OFDD } \\ & \text { to } \\ & \text { OFE2н } \end{aligned}$	-	(Disabled)	-	-
OFE3н	WCDR	Watch counter data register	R/W	00111111B

(Continued)
(Continued)

Address	Register abbreviation	Register name	R/W	Initial value
$\begin{gathered} \text { OFE4н } \\ \text { to } \\ \text { OFE6н } \end{gathered}$	-	(Disabled)	-	-
OFE7 ${ }^{\text {¢ }}$	ILSR2	Input level select register 2	R/W	00000000в
0FE8н, 0FE9н	-	(Disabled)	-	-
ОFEAн	CSVCR	Clock supervisor control register	R/W	00011100в
$\begin{aligned} & \hline \text { OFEBн } \\ & \text { to } \\ & \text { OFED } \end{aligned}$	-	(Disabled)	-	-
ОFEE,	ILSR	Input level selecting register	R/W	00000000в
OFEFH	WICR	Interrupt pin control register	R/W	01000000в
$\begin{gathered} \hline \text { OFFOH }_{\prime} \\ \text { to } \\ \text { OFFF }_{\boldsymbol{H}} \end{gathered}$	-	(Disabled)	-	-

- R/W access symbols

R/W : Readable/Writable
R : Read only
W : Write only

- Initial value symbols

0 : The initial value of this bit is " 0 ".
1 : The initial value of this bit is " 1 ".
$X \quad$: The initial value of this bit is undefined.
Note : Do not write to the " (Disabled) ". Reading the " (Disabled) " returns an undefined value.

MB95160M Series

INTERRUPT SOURCE TABLE

| Interrupt source | $\begin{array}{c}\text { Interrupt } \\ \text { request } \\ \text { number }\end{array}$ | Vector table address | Upper | Lit name of |
| :--- | :---: | :--- | :--- | :--- | :---: |
| interrupt level | | | | |
| setting register | | | | \(\left.\begin{array}{c}Same level

priority order

(atsimultaneous

occurrence)\end{array}\right]\)

MB95160M Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Ratings

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc, AVcc	Vss-0.3	Vss + 6.0	V	*2
	AVR	Vss - 0.3	Vss + 6.0		*2
Power supply voltage for LCD	V0 to V3	Vss-0.3	Vss +6.0	V	*3
Input voltage*1	V_{1}	Vss-0.3	Vss + 6.0	V	*4
Output voltage*1	Vo	Vss-0.3	Vss + 6.0	V	*4
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	Applicable to pins*5
Total maximum clamp current	Ellclampl	-	20	mA	Applicable to pins*5
"L" level maximum output current	lob	-	15	mA	Applicable to pins*5
"L" level average current	lolav	-	4	mA	Applicable to pins*5 Average output current $=$ operating current \times operating ratio (1 pin)
"L" level total maximum output current	Elo	-	100	mA	
"L" level total average output current	Elolav	-	50	mA	Total average output current $=$ operating current \times operating ratio (Total of pins)
"H" level maximum output current	Іон	-	- 15	mA	Applicable to pins*5
" H " level average current	lohav	-	-4	mA	Applicable to pins*5 Average output current = operating current \times operating ratio (1 pin)
" H " level total maximum output current	इloн	-	- 100	mA	
"H" level total average output current	Elohav	-	- 50	mA	Total average output current $=$ operating current \times operating ratio (Total of pins)
Power consumption	Pd	-	320	mW	
Operating temperature	TA	- 10	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	- 55	+ 150	${ }^{\circ} \mathrm{C}$	

(Continued)

MB95160M Series

(Continued)

*1 : The parameter is based on $\mathrm{Vss}=0.0 \mathrm{~V}$.
*2 : Apply equal potential to AVcc and Vcc . $A V R$ should not exceed $\mathrm{AVcc}+0.3 \mathrm{~V}$.
*3 : V0 to V 3 should not exceed $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$.
*4 : Vı and Vo should not exceed $\mathrm{Vcc}+0.3 \mathrm{~V}$. V ı must not exceed the rating voltage. However, if the maximum current to/from an input is limited by some means with external components, the Iclamp rating supersedes the V_{1} rating.
*5 : Applicable to pins :
P00 to P07, P10 to P14, P20 to P22,P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7

- Use within recommended operating conditions.
- Use at DC voltage (current).
- + B signal is an input signal that exceeds V_{cc} voltage. The +B signal should always be applied a limiting resistance placed between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in the power saving modes, the +B input potential may pass through the protective diode and increase the potential at the Vcc pin, and this affects other devices.
- Note that if the +B signal is inputted when the microcontroller power supply is off (not fixed at 0 V), the power supply is provided from the pins, so that incomplete operation may result.
- Note that if the + B input is applied during power-on, the power supply is provided from the pins and the resulting power supply voltage may not be sufficient to operate the power-on reset.
- Care must be taken not to leave the $+B$ input pin open.
- Note that analog system input/output pins other than the A/D input pins (LCD drive pins, etc.) cannot accept + B signal input.
- Sample recommended circuits :
- Input/Output Equivalent circuits

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB95160M Series

2. Recommended Operating Conditions

(Vss $=0.0 \mathrm{~V}$)

Parameter	Symbol	Conditions	Value		Unit	Remarks	
			Min	Max			
Power supply voltage	Vcc, AVcc	-	$2.42^{* 1, * 2}$	5.5*1	V	In normal operating	Other tha
			2.3	5.5		Hold condition in STOP mode	$\begin{aligned} & \text { MB95FV100D- } \\ & 103 \end{aligned}$
			2.7	5.5		In normal operating	
			2.3	5.5		Hold condition in STOP mode	103
Power supply voltage for LCD	$\begin{aligned} & \text { V0 } \\ & \text { to } \\ & \text { V3 } \end{aligned}$		Vss	Vcc	V	The range of liquid crys without up-conversion depends on liquid crysta used.)	al power supply: The optimal value display elements
A/D converter reference input voltage	AVR		4.0	AV cc	V		
Smoothing capacitor	Cs		0.1	1.0	$\mu \mathrm{F}$	*3	
Operating temperature	TA		- 10	+ 85	${ }^{\circ} \mathrm{C}$	Other than MB95FV100D-103	
			+ 5	+35	${ }^{\circ} \mathrm{C}$	MB95FV100D-103	

*1: The values vary with the operating frequency, machine clock or analog guarantee range.
*2 : The value is 2.88 V when the low voltage detection reset is used. The device operates normally during the time between 2.88 V and low voltage detection, and between release voltage and 2.88 V .
(Continued)

MB95160M Series

(Continued)
*3 : Use a ceramic capacitor or a capacitor with equivalent frequency characteristics. A bypass capacitor of Vcc pin must have a capacitor value higher than Cs . For connection of smoothing capacitor Cs , refer to the diagram below.

- C pin connection diagram

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB95160M Series

3. DC Characteristics

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
" H " level input voltage	VIH1	P10, P67	*1	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	When selecting CMOS input level
	$\mathrm{V}_{\mathbf{H} \mathbf{+}}$	P23, P24	*1	0.7 Vcc	-	Vss +5.5	V	
	VIHA	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	-	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Port inputs if Automotive input levels are selected
	VIHS 1	P00 to P07, P10 to P14, P20 to P22, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	*1	0.8 Vcc	-	$\mathrm{Vcc}+0.3$	V	Hysteresis input
	ViHS2	P23, P24	*1	0.8 Vcc	-	Vss +5.5	V	
	Vінм	$\overline{\mathrm{RST}}$, MOD	-	0.7 Vcc	-	$\mathrm{Vcc}+0.3$	V	CMOS input
"L" level input voltage	VIL	P10,P23, P24,P67	*1	Vss - 0.3	-	0.3 Vcc	V	Hysteresis input (When selecting CMOS input level)
	VILA	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	-	Vss - 0.3	-	0.5 Vcc	V	Port inputs if Automotive input levels are selected
	VILs	P00 to P07, P10 to P14, P20 to P24, P60 to P67, P90 to P95, PA0 to PA3, PB0 to PB7, PC0 to PC7	*1	Vss - 0.3	-	0.2 Vcc	V	Hysteresis input
	VILM	$\overline{\text { RST, MOD }}$	-	Vss -0.3	-	0.3 Vcc	V	Hysteresis input
" H " level output voltage	Vон	Output pins other than P00 to P07	$\begin{aligned} & \hline \mathrm{IOH}= \\ & -4.0 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\text {cc }}-0.5$	-	-	V	

(Continued)

MB95160M Series

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"L" level output voltage	Voı	Output pins other than P00 to P07, $\overline{\text { RST }^{* 2}}$	$\mathrm{loL}=4.0 \mathrm{~mA}$	-	-	0.4	V	
Input leakage current (Hi-Z output leakage current)	l L	Ports other than P23, P24	$0.0 \mathrm{~V}<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}}$	-5	-	+ 5	$\mu \mathrm{A}$	When the pull-up prohibition setting
Pull-up resistor	Rpuls	$\begin{aligned} & \text { P10 to P14, } \\ & \text { P20 to P22 } \end{aligned}$	$\mathrm{V}_{1}=0.0 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$	When the pull-up permission setting
Input capacitance	Cin	Other than AV cc, AVss, AVR, V_{cc}, V_{ss}	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	
Power supply current ${ }^{* 3}$	Icc	Vcc (External clock operation)	$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \end{aligned}$ Main clock mode (divided by 2)	-	9.5	12.5	mA	At other than Flash memory writing and erasing
				-	30.0	35.0	mA	At Flash memory writing and erasing
			$\begin{aligned} & \mathrm{F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ & \text { Main clock mode } \\ & \text { (divided by 2) } \end{aligned}$	-	15.2	20.0	mA	At other than Flash memory writing and erasing
				-	35.7	42.5	mA	At Flash memory writing and erasing
	Iccs		$\begin{aligned} & \hline \mathrm{F}_{\mathrm{CH}}=20 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \text { Main Sleep mode } \\ & \text { (divided by 2) } \\ & \hline \end{aligned}$	-	4.5	7.5	mA	
			$\begin{array}{\|l\|} \hline \mathrm{F}_{\mathrm{CH}}=32 \mathrm{MHz} \\ \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ \text { Main Sleep mode } \\ \text { (divided by 2) } \\ \hline \end{array}$	-	7.2	12.0	mA	
	Iccl		$\begin{aligned} & \hline \mathrm{FCL}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Sub clock mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	45	100	$\mu \mathrm{A}$	
	Iccıs		$\begin{aligned} & \mathrm{FCL}=32 \mathrm{kHz} \\ & \mathrm{~F}_{\mathrm{MPL}}=16 \mathrm{kHz} \\ & \text { Sub sleep mode } \\ & \text { (divided by 2) } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	10	81	$\mu \mathrm{A}$	
	Icct		FCL $=32 \mathrm{kHz}$ Watch mode Main stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	4.6	27.0	$\mu \mathrm{A}$	

(Continued)

MB95160M Series

(Continued)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current*3	IccmplL	Vcc (External clock operation)	$\begin{aligned} & \hline \mathrm{F}_{\mathrm{CH}}=4 \mathrm{MHz} \\ & \mathrm{~F}_{\mathrm{MP}}=10 \mathrm{MHz} \\ & \text { Main PLL mode } \\ & \text { (multiplied by 2.5) } \\ & \hline \end{aligned}$	-	9.3	12.5	mA	
			$\begin{array}{\|l} \hline \text { F }_{\text {CH }}=6.4 \mathrm{MHz} \\ \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz} \\ \text { Main PLL mode } \\ \text { (multiplied by 2.5) } \end{array}$	-	14.9	20.0	mA	
	Iccspll		$\begin{aligned} & \hline \text { FcL }=32 \mathrm{kHz} \\ & \mathrm{FmPL}^{2} 128 \mathrm{kHz} \\ & \text { Sub PLL mode } \\ & \text { (multiplied by 4), } \\ & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{aligned}$	-	160	400	$\mu \mathrm{A}$	
	Icts		$\mathrm{F}_{\text {сн }}=10 \mathrm{MHz}$ Time-base timer mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	0.15	1.10	mA	
	Ic ch		Sub stop mode $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	5	20	$\mu \mathrm{A}$	
	I_{A}		$\mathrm{F}_{\mathrm{CH}}=16 \mathrm{MHz}$ At operating of A / D conversion	-	2.4	4.7	mA	
	Іан	AVcc	$\mathrm{F}_{\mathrm{cH}}=16 \mathrm{MHz}$ At stopping of A/D conversion $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-	1	5	$\mu \mathrm{A}$	
LCD internal division resistance	Rlcd	-	Between V3 and Vss	-	300	-	$\mathrm{k} \Omega$	
COM0 to COM3 output impedance	Rvcom	COM0 to COM3	V 1 to $\mathrm{V} 3=5.0 \mathrm{~V}$	-	-	5	$\mathrm{k} \Omega$	
$\begin{aligned} & \text { SEG00 to SEG31 } \\ & \text { output impedance } \end{aligned}$	Rvseg	SEG00 to SEG31		-	-	7	$\mathrm{k} \Omega$	
LCD leak current	Ilcdl	$\begin{aligned} & \text { V0 to V3, } \\ & \text { COM0 to COM3 } \\ & \text { SEG00 to SEG31 } \end{aligned}$	-	-1	-	+1	$\mu \mathrm{A}$	

*1 : The value is 2.88 V when the low voltage detection reset is used.
*2 : Product without clock supervisor only
*3 : - The power-supply current is determined by the external clock. When both low voltage detection option and clock supervisor option are selected, the power-supply current will be a value of adding current consumption of the low voltage detection circuit (Ivv) and current consumption of built-in CR oscillator (Icsv) to the specified value.

- Refer to "4. AC Characteristics (1) Clock Timing" for Fсн and Fcl.
- Refer to "4. AC Characteristics (2) Source Clock/Machine Clock" for Fmp and Fmpl.

MB95160M Series

4. AC Characteristics

(1) Clock Timing
($\mathrm{Vcc}=2.42 \mathrm{~V}$ to 5.5 V , Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	Fсн	X0, X1	-	1.00	-	16.25	MHz	When using main oscillation circuit
				1.00	-	32.50	MHz	When using external clock
				3.00	-	10.00	MHz	Main PLL multiplied by 1
				3.00	-	8.13	MHz	Main PLL multiplied by 2
				3.00	-	6.50	MHz	Main PLL multiplied by 2.5
				3.00	-	4.06	MHz	Main PLL multiplied by 4
	FcL	X0A, X1A		-	32.768	-	kHz	When using sub oscillation circuit
				-	32.768	-	kHz	When using sub PLL
Clock cycle time	thcyl	X0, X1		61.5	-	1000	ns	When using oscillation circuit
				30.8	-	1000	ns	When using external clock
	tıCYL	X0A, X1A		-	30.5	-	$\mu \mathrm{s}$	When using sub clock
Input clock pulse width	$\begin{aligned} & \text { twhy } \\ & \text { twL1 } \end{aligned}$	X0		61.5	-	-	ns	When using external clock Duty ratio is about 30% to 70\%.
	twh2 twL2	X0A		-	15.2	-	$\mu \mathrm{s}$	
Input clock rise time and fall time	$\begin{aligned} & \text { tcr } \\ & \text { tcc } \end{aligned}$	X0, X0A		-	-	5	ns	When using external clock

MB95160M Series

- Input wave form for using external clock (main clock)

- Figure of Main Clock Input Port External Connection

When using a crystal or ceramic oscillator

When using external clock

- Input wave form for using external clock (sub clock)

- Figure of Sub clock Input Port External Connection

When using a crystal or ceramic oscillator

When using external clock

MB95160M Series

(2) Source Clock/Machine Clock

$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%\right.$, $\mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Value			Unit	Remarks
			Min	Typ	Max		
Source clock cycle time*1 (Clock before setting division)	tsclk	-	61.5	-	2000	ns	When using main clock Min : $\mathrm{F}_{\mathrm{CH}}=8.125 \mathrm{MHz}$, PLL multiplied by 2 Max : $\mathrm{F}_{\mathrm{ch}}=1 \mathrm{MHz}$, divided by 2
			7.6	-	61.0	$\mu \mathrm{s}$	When using sub clock Min : Fcl $=32 \mathrm{kHz}$, PLL multiplied by 4 Max: Fcl $=32 \mathrm{kHz}$, divided by 2
Source clock frequency	Fsp		0.50	-	16.25	MHz	When using main clock
	Fspl		16.384	-	131.072	kHz	When using sub clock
Machine clock cycle time*2 (Minimum instruction execution time)	tmclk		61.5	-	32000	ns	When using main clock Min: $\mathrm{Fsp}_{\mathrm{sp}}=16.25 \mathrm{MHz}$, no division Max: $\mathrm{Fsp}=0.5 \mathrm{MHz}$, divided by 16
			7.6	-	976.5	$\mu \mathrm{S}$	When using sub clock Min : Fspl $=131 \mathrm{kHz}$, no division Max : FspL $=16 \mathrm{kHz}$, divided by 16
Machine clock frequency	Fmp		0.031	-	16.250	MHz	When using main clock
	FMPL		1.024	-	131.072	kHz	When using sub clock

*1: Clock before setting division due to machine clock division ratio selection bit (SYCC : DIV1 and DIV0) . This source clock is divided by the machine clock division ratio selection bit (SYCC : DIV1 and DIV0), and it becomes the machine clock. Further, the source clock can be selected as follows.

- Main clock divided by 2
- PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
- Sub clock divided by 2
- PLL multiplication of sub clock (select from 2, 3, 4 multiplication)
*2 : Operation clock of the microcontroller. Machine clock can be selected as follows.
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

MB95160M Series

- Outline of clock generation block

MB95160M Series

- Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)
- MB95F168M/F168N/F168J

- Operating voltage - Operating frequency (When $\mathrm{T}_{\mathrm{A}}=+5^{\circ} \mathrm{C}$ to $+35^{\circ} \mathrm{C}$)
- MB95FV100D-103

MB95160M Series

- Main PLL operation frequency

MB95160M Series

(3) External Reset
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\text { RST }}$ "L" level pulse width	trstL	$\overline{\mathrm{RST}}$	-	2 tmack ${ }^{\text {¢ }}$	-	ns	At normal operating
				Oscillation time of oscillator*2 $\text { + } 100$	-	$\mu \mathrm{s}$	At stop mode, sub clock mode, sub sleep mode, and watch mode
				100	-	$\mu \mathrm{s}$	At time-base timer mode

*1 : Refer to " (2) Source Clock/Machine Clock" for tmськ.
*2 : Oscillation time of oscillator is the time that the amplitude reaches 90%. In the crystal oscillator, the oscillation time is between several ms and tens of ms . In ceramic oscillators, the oscillation time is between hundreds of $\mu \mathrm{s}$ and several ms . In the external clock, the oscillation time is 0 ms .

- At normal operating
$\overline{\mathrm{RST}}$

- At stop mode, sub clock mode, sub sleep mode, watch mode, and power-on

MB95160M Series

(4) Power-on Reset

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Power supply rising time	t_{R}	Vcc	-	-	50	ms	
Power supply cutoff time	toff			1	-	ms	Waiting time until power-on

Note : Sudden change of power supply voltage may activate the power-on reset function. When changing power supply voltages during operation, set the slope of rising within $30 \mathrm{mV} / \mathrm{ms}$ as shown below.

MB95160M Series

(5) Peripheral Input Timing

$$
\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Peripheral input "H" pulse width	tıı	INT00 to INT07, EC0, EC1, TRG0/ADTG	-	2 tмськ*	-	ns
Peripheral input "L" pulse width	timi			2 tмськ*	-	ns

* : Refer to " (2) Source Clock/Machine Clock" for tmськ.

INT00 to INTOT, EC0, EC1, TRGO/ADTG

MB95160M Series

(6) UART/SIO, Serial I/O Timing

$$
\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	UCK0	```Internal clock operation output pin : CL= 80 pF + 1TTL.```	4 tmalk*	-	ns
UCK $\downarrow \rightarrow$ UO time	tstov	UCKO, UOO		- 190	+ 190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCKO, UIO		2 tмськ*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCKO, UIO		2 tmack*	-	ns
Serial clock "H" pulse width	tshsL	UCKO	External clock operation output pin : $\mathrm{C}_{\mathrm{L}}=80 \mathrm{pF}$ +1 TTL.	4 tmack*	-	ns
Serial clock "L" pulse width	tslsh	UCKO		4 tıcık*	-	ns
UCK $\downarrow \rightarrow$ UO time	tstov	UCKO, UO0		-	190	ns
Valid UI \rightarrow UCK \uparrow	tivsh	UCKO, UIO		2 tмськ*	-	ns
UCK $\uparrow \rightarrow$ valid UI hold time	tshix	UCK0, UIO		2 tмсLK*	-	ns

*: Refer to " (2) Source Clock/Machine Clock" for tmсLк.

- Internal shift clock mode

- External shift clock mode

MB95160M Series

(7) LIN-UART Timing

Sampling at the rising edge of sampling clock ${ }^{\star 1}$ and prohibited serial clock delay*2
(ESCR register : SCES bit =0, ECCR register : SCDE bit $=0$)

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin : $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmack*	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivsht	SCK, SIN		tмсLк*3 +190	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tstIxI	SCK, SIN		0	-	ns
Serial clock "L" pulse width	tstsh	SCK	External clock operation output pin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	$3 \mathrm{tmcLk}^{* 3}-\mathrm{tr}_{\text {R }}$	-	ns
Serial clock "H" pulse width	tshsL	SCK		tıCLк ${ }^{\text {* }}+95$	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT		-	2 tмськ*3 +95	ns
Valid SIN \rightarrow SCK \uparrow	tivshe	SCK, SIN		190	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshlixe	SCK, SIN		tıcık ${ }^{* 3}+95$	-	ns
SCK fall time	tF	SCK		-	10	ns
SCK rise time	t_{R}	SCK		-	10	ns

*1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3: Refer to " (2) Source Clock/Machine Clock" for tmalk.

MB95160M Series

- Internal shift clock mode

- External shift clock mode

MB95160M Series

Sampling at the falling edge of sampling clock*1 and prohibited serial clock delay*2
(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 0)

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscrc	SCK	Internal clock operation output pin : $C L=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmсLк*3	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivsLI	SCK, SIN		tmcık*3 +190	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tsLIxI	SCK, SIN		0	-	ns
Serial clock "H" pulse width	tshsL	SCK	External clock operation output pin : $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	3 tmack $^{* 3}-\mathrm{t}_{\text {R }}$	-	ns
Serial clock "L" pulse width	tsLsh	SCK		tмсLк*3 +95	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshove	SCK, SOT		-	2 tмсLк $^{* 3}+95$	ns
Valid SIN \rightarrow SCK \downarrow	tivsLe	SCK, SIN		190	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tslixe	SCK, SIN		tıсLк*3 +95	-	ns
SCK fall time	t_{F}	SCK		-	10	ns
SCK rise time	tR	SCK		-	10	ns

*1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3: Refer to " (2) Source Clock/Machine Clock" for tmсlк.

MB95160M Series

- Internal shift clock mode

- External shift clock mode

MB95160M Series

Sampling at the rising edge of sampling clock*1 and enabled serial clock delay ${ }^{* 2}$

(ESCR register : SCES bit = 0, ECCR register : SCDE bit = 1)

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin : $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmcık*3	-	ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \downarrow	tivsul	SCK, SIN		tmaLk ${ }^{\text {³ }}+190$	-	ns
SCK $\downarrow \rightarrow$ valid SIN hold time	tsuxı	SCK, SIN		0	-	ns
SOT \rightarrow SCK \downarrow delay time	tsovLI	SCK, SOT		-	4 tmack* ${ }^{\text {a }}$	ns

*1: Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3: Refer to " (2) Source Clock/Machine Clock" for tmсlк.

MB95160M Series

Sampling at the falling edge of sampling clock*1 and enabled serial clock delay*2

(ESCR register : SCES bit = 1, ECCR register : SCDE bit = 1)
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK	Internal clock operation output pin: $\mathrm{CL}=80 \mathrm{pF}+1 \mathrm{TTL}$.	5 tmcık*	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tstovi	SCK, SOT		-95	+95	ns
Valid SIN \rightarrow SCK \uparrow	tivs'H1	SCK, SIN		tmcLк $^{* 3}+190$	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tsHIXI	SCK, SIN		0	-	ns
SOT \rightarrow SCK \uparrow delay time	tsovH	SCK, SOT		-	4 tmcık* ${ }^{\text {a }}$	ns

*1 : Provide switch function whether sampling of reception data is performed at rising edge or falling edge of the serial clock.
*2 : Serial clock delay function is used to delay half clock for the output signal of serial clock.
*3 : Refer to " (2) Source Clock/Machine Clock" for tmclk.

MB95160M Series

(8) $I^{2} C$ Timing
$\left(\mathrm{V} \mathrm{cc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{AV}_{\mathrm{ss}}=\mathrm{V}_{\mathrm{ss}}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value				Unit
				Standard-mode		Fast-mode		
				Min	Max	Min	Max	
SCL clock frequency	fscl	SCLO	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz
(Repeat) Start condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	tho;sta	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.0	-	0.6	-	$\mu \mathrm{s}$
SCL clock "L" width	tow	SCLO		4.7	-	1.3	-	$\mu \mathrm{s}$
SCL clock "H" width	thigh	SCLO		4.0	-	0.6	-	$\mu \mathrm{s}$
(Repeat) Start condition setup time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thdidat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		0	$3.45{ }^{* 2}$	0	0.9*3	$\mu \mathrm{s}$
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;DAT	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$0.25{ }^{* 4}$	-	$0.1 * 4$	-	$\mu \mathrm{s}$
Stop condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.0	-	0.6	-	$\mu \mathrm{s}$
Bus free time between stop condition and start condition	teuf	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		4.7	-	1.3	-	$\mu \mathrm{s}$

*1: R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : The maximum thd;дat have only to be met if the device dose not stretch the "L" width (tıow) of the SCL signal.
*3: A fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus device can be used in a standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement tsu;DAT ≥ 250 ns must then be met.
*4 : Refer to "• Note of SDA and SCL set-up time".

- Note of SDA and SCL set-up time

Note : The rating of the input data set-up time in the device connected to the bus cannot be satisfied depending on the load capacitance or pull-up resistor.
Be sure to adjust the pull-up resistor of SDA and SCL if the rating of the input data set-up time cannot be satisfied.

MB95160M Series

MB95160M Series

Parameter	Symbol	$\begin{gathered} \text { Pin } \\ \text { name } \end{gathered}$	Conditions	Value*2		Unit	Remarks
				Min	Max		
SCL clock "L" width	tow	SCLO	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	($2+\mathrm{nm} / 2)_{\text {) }}^{\text {tmaLk }-20}$	-	ns	Master mode
SCL clock " H " width	tнıн	SCLO		$(\mathrm{nm} / 2)$ tncle - 20	$(\mathrm{nm} / 2)$ tmalk +20	ns	Master mode
Start condition hold time	thd; STA	$\begin{array}{\|l\|} \text { SCLO } \\ \text { SDAO } \end{array}$		(-1 + nm / 2) tмськ - 20	$(-1+n m)$ tмскк +20	ns	Master mode Maximum value is applied when m , $\mathrm{n}=1$, 8 . Otherwise, the minimum value is applied.
Stop condition setup time	tsu;sto	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$(1+\mathrm{nm} / 2)$ tмскк - 20	$(1+n m / 2)$ tмсLк +20	ns	Master mode
Start condition setup time	tsu;STA	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$(1+\mathrm{nm} / 2)$ tмськ - 20	$(1+n m / 2)$ tмсLк +20	ns	Master mode
Bus free time between stop condition and start condition	teuf	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$(2 \mathrm{~nm}+4)$ tмськ - 20	-	ns	
Data hold time	thd; dat	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		3 tмсцк - 20	-	ns	Master mode
Data setup time	tsu;dat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		$(-2+n m / 2)$ tмсLк - 20	(-1 + nm / 2) tmсцк +20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing interrupt and SCL rising	tsu;int	SCLO		$(\mathrm{nm} / 2)$ tmсlк - 20	$(1+n m / 2)$ tmalk +20	ns	Minimum value is applied to interrupt at 9th SCL \downarrow. Maximum value is applied to interrupt at 8 th $\operatorname{SCL} \downarrow$.
SCL clock "L" width	tow	SCLO		4 tıсцк - 20	-	ns	At reception
SCL clock "H" width	tнıн	SCLO		4 tmсlк - 20	-	ns	At reception
Start condition detection	thd; STA	$\begin{array}{\|l\|} \text { SCLO } \\ \text { SDAO } \end{array}$		2 tmalk - 20	-	ns	Undetected when 1 tmclк is used at reception

(Continued)

MB95160M Series

(Continued)

Parameter	Symbol	Pin name	Conditions	Value*2		Unit	Remarks
				Min	Max		
Stop condition detection	tsu;sto	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$	$\begin{aligned} & \mathrm{R}=1.7 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	2 tmсlк - 20	-	ns	Undetected when 1 tmalk is used at reception
Restart condition detection condition	tsu;sta	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tmсlк - 20	-	ns	Undetected when 1 tmalk is used at reception
Bus free time	tbuf	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tnclk - 20	-	ns	At reception
Data hold time	thd; DAT	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		2 tmalk - 20	-	ns	At slave transmission mode
Data setup time	tsu;dat	$\begin{array}{\|l} \text { SCLO } \\ \text { SDAO } \end{array}$		tow - 3 tıclk - 20	-	ns	At slave transmission mode
Data hold time	thd; dat	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		0	-	ns	At reception
Data setup time	tsu;dat	$\begin{aligned} & \hline \text { SCLO } \\ & \text { SDAO } \end{aligned}$		tmсıк - 20	-	ns	At reception
SDA $\downarrow \rightarrow$ SCL \uparrow (at wakeup function)	twakeUP	$\begin{aligned} & \text { SCLO } \\ & \text { SDAO } \end{aligned}$		Oscillation stabilization wait time + 2 tмскк - 20	-	ns	

*1 : R, C : Pull-up resistor and load capacitor of the SCL and SDA lines.
*2 : •Refer to " (2) Source Clock/Machine Clock" for tmсцк.

- m is CS4 bit and CS3 bit (bit 4 and bit 3) of $I^{2} \mathrm{C}$ clock control register (ICCR).
- n is CS2 bit to CSO bit (bit 2 to bit 0) of $\mathrm{I}^{2} \mathrm{C}$ clock control register (ICCR) .
- Actual timing of $\mathrm{I}^{2} \mathrm{C}$ is determined by m and n values set by the machine clock (tmcLк) and CS4 to CSO of ICCRO register.
- Standard-mode :
m and n can be set at the range : $0.9 \mathrm{MHz}<$ tмськ (machine clock) $<10 \mathrm{MHz}$.
Setting of m and n determines the machine clock that can be used below.

$(\mathrm{m}, \mathrm{n})=(1,8)$: $0.9 \mathrm{MHz}<$ tmclk $^{5} 1 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,22)$	$(5,4),(6,4),(7,4),(8,4)$: $0.9 \mathrm{MHz}<$ tmclk $^{5} 2 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,38)$	$(5,8),(6,8),(7,8),(8,8)$: $0.9 \mathrm{MHz}<$ tmclk $^{5} 4 \mathrm{MHz}$
$(\mathrm{m}, \mathrm{n})=(1,98)$: $0.9 \mathrm{MHz}<\mathrm{tmcLK}^{5} 10 \mathrm{MHz}$

- Fast-mode :
m and n can be set at the range : $3.3 \mathrm{MHz}<$ tмськ (machine clock) < 10 MHz .
Setting of m and n determines the machine clock that can be used below.

$$
\begin{array}{ll}
(m, n)=(1,8) & : 3.3 \mathrm{MHz}<\text { tmсLk } \leq 4 \mathrm{MHz} \\
(m, n)=(1,22),(5,4) & : 3.3 \mathrm{MHz}<\text { tccLk } \leq 8 \mathrm{MHz} \\
(m, n)=(6,4) & : 3.3 \mathrm{MHz}<\text { tmcLk } \leq 10 \mathrm{MHz}
\end{array}
$$

MB95160M Series

(9) Low Voltage Detection

(Vss $=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)							
Parameter	Sym-bol	Conditions	Value			Unit	Remarks
			Min	Typ	Max		
Release voltage	VDL+	-	2.52	2.70	2.88	V	At power-supply rise
Detection voltage	Vol-		2.42	2.60	2.78	V	At power-supply fall
Hysteresis width	Vhys		70	100	-	mV	
Power-supply start voltage	Voff		-	-	2.3	V	
Power-supply end voltage	Von		4.9	-	-	V	
Power-supply voltage change time (at power supply rise)	tr		0.3	-	-	$\mu \mathrm{s}$	Slope of power supply that reset release signal generates
			-	3000	-	$\mu \mathrm{s}$	Slope of power supply that reset release signal generates within rating (Vol+)
Power-supply voltage change time (at power supply fall)	$t_{\text {f }}$		300	-	-	$\mu \mathrm{s}$	Slope of power supply that reset detection signal generates
			-	300	-	$\mu \mathrm{s}$	Slope of power supply that reset detection signal generates within rating (Vol-)
Reset release delay time	td		-	-	400	$\mu \mathrm{s}$	
Reset detection delay time	td2		-	-	30	$\mu \mathrm{s}$	
Current consumption	Ivv		-	38	50	$\mu \mathrm{A}$	Current consumption of low voltage detection circuit only

MB95160M Series

(10) Clock Supervisor Clock
$\left(\mathrm{Vcc}=5.0 \mathrm{~V} \pm 10 \%, \mathrm{Vss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Conditions	Value			Unit	Remarks
			Min	Typ	Max		
Oscillation frequency	fout	-	50	100	200	kHz	
Oscillation start time	twk		-	-	10	$\mu \mathrm{s}$	
Current consumption	Icsv		-	20	36	$\mu \mathrm{A}$	Current consumption of built-in CR oscillator, at 100 kHz oscillation

MB95160M Series

5. A/D Converter

(1) A/D Converter Electrical Characteristics
$\left(\mathrm{AV} \mathrm{cc}=\mathrm{V} \mathrm{cc}=4.0 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{AV} \mathrm{ss}=\mathrm{V} s \mathrm{ss}=0.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Conditions	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error			-3.0	-	+ 3.0	LSB	
Linearity error			-2.5	-	+ 2.5	LSB	
Differential linear error			- 1.9	-	+1.9	LSB	
Zero transition voltage	Vот		AVss - 1.5 LSB	AVss + 0.5 LSB	AVss + 2.5 LSB	V	
Full-scale transition voltage	$V_{\text {fst }}$		AVR - 3.5 LSB	AVR - 1.5 LSB	AVR + 0.5 LSB	V	
Compare time	-		0.9	-	16500	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AVcc} \leq 5.5 \mathrm{~V}$
			1.8	-	16500	$\mu \mathrm{s}$	$4.0 \mathrm{~V} \leq \mathrm{AVcc}<4.5 \mathrm{~V}$
Sampling time	-		0.6	-	∞	$\mu \mathrm{s}$	$4.5 \mathrm{~V} \leq \mathrm{AVcc} \leq 5.5 \mathrm{~V}$, At external impedance $<5.4 \mathrm{k} \Omega$
			1.2	-	∞	$\mu \mathrm{s}$	$\begin{aligned} & 4.0 \mathrm{~V} \leq \mathrm{AVcc}<4.5 \mathrm{~V}, \\ & \text { At external } \\ & \text { impedance }<2.4 \mathrm{k} \Omega \end{aligned}$
Analog input current	IAIN		-0.3	-	+0.3	$\mu \mathrm{A}$	
Analog input voltage	$\mathrm{V}_{\text {AIN }}$		AVss	-	AVR	V	
Reference voltage	-		AVss +4.0	-	AVcc	V	AVR pin
Reference voltage supply current	IR		-	600	900	$\mu \mathrm{A}$	AVR pin, during A/D operation
	Івн		-	-	5	$\mu \mathrm{A}$	AVR pin, at stop mode

MB95160M Series

(2) Notes on Using A/D Converter

- About the external impedance of analog input and its sampling time

A/D converter with sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the internal sample and hold capacitor is insufficient, adversely affecting A/ D conversion precision. Therefore, to satisfy the A / D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Also, if the sampling time cannot be sufficient, connect a capacitor of about $0.1 \mu \mathrm{~F}$ to the analog input pin.

- Analog input equivalent circuit

During sampling: ON

$$
\begin{array}{ccc}
& \text { R } & \text { C } \\
4.5 \mathrm{~V} \leq \mathrm{Vcc} \leq 5.5 \mathrm{~V} & 2.0 \mathrm{k} \Omega(\mathrm{Max}) & 16 \mathrm{pF}(\mathrm{Max}) \\
4.0 \mathrm{~V} \leq \mathrm{V} \mathrm{cc}<4.5 \mathrm{~V} & 8.2 \mathrm{k} \Omega \text { (Max) } & 16 \mathrm{pF} \text { (Max) }
\end{array}
$$

Note : The values are reference values.

- The relationship between external impedance and minimum sampling time

- About errors

As IVcc - Vssl becomes smaller, values of relative errors grow larger.

MB95160M Series

(3) Definition of A/D Converter Terms

- Resolution

The level of analog variation that can be distinguished by the A / D converter.
When the number of bits is 10 , analog voltage can be divided into $2^{10}=1024$.

- Linearity error (unit : LSB)

The deviation between the value along a straight line connecting the zero transition point
("00 00000000 " $\leftarrow \rightarrow$ "00 00000001 ") of a device and the full-scale transition point
("11 $11111111 " \leftarrow \rightarrow$ "11 11111110") compared with the actual conversion values obtained.

- Differential linear error (Unit : LSB)

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

- Total error (unit: LSB)

Difference between actual and theoretical values, caused by a zero transition error, full-scale transition error, linearity error, quantum error, and noise.

(Continued)

MB95160M Series

(Continued)

MB95160M Series

6. Flash Memory Program/Erase Characteristics

Parameter	Conditions	Value			Unit	Remarks
		Min	Typ	Max		
Chip erase time	-	-	1*1	$15^{* 2}$	s	Excludes 00 н programming prior erasure.
Byte programming time		-	32	3600	$\mu \mathrm{s}$	Excludes system-level overhead.
Erase/program cycle		10000	-	-	cycle	
Power supply voltage at erase/program		4.5	-	5.5	V	
Flash memory data retention time		$20^{* 3}$	-	-	year	Average $\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$

*1: $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{Vc}=5.0 \mathrm{~V}, 10000$ cycles
*2: $T_{A}=+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{cc}}=4.5 \mathrm{~V}, 10000$ cycles
*3: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

MB95160M Series

EXAMPLE CHARACTERISTICS

- Power supply current temperature

$$
\mathrm{Icc}-\mathrm{V}_{\mathrm{cc}}
$$

$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=2,4,8,10,16 \mathrm{MHz}$ (divided by 2) Main clock mode, at external clock operating

Iccs - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=2,4,8,10,16 \mathrm{MHz}$ (divided by 2)
Main sleep mode, at external clock operating

Iccmpll - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=2,4,8,10,16 \mathrm{MHz}$
(Main PLL multiplied by 2.5)
Main PLL mode, at external clock operating

Icc $-\mathrm{T}_{\mathrm{A}}$
$V_{c c}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{mp}}=10,16 \mathrm{MHz}$ (divided by 2) Main clock mode, at external clock operating

Iccs - TA
$\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{mp}}=10,16 \mathrm{MHz}$ (divided by 2)
Main sleep mode, at external clock operating

Iccmpll - TA
$V_{c c}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MP}}=10,16 \mathrm{MHz}$ (Main PLL multiplied by 2.5) Main PLL mode, at external clock operating

(Continued)

MB95160M Series

Iccls - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $\mathrm{F}_{\text {мpl }}=16 \mathrm{kHz}$ (divided by 2) Sub sleep mode, at external clock operating

$\mathrm{I}_{\text {сст }}$ - V Vc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, $\mathrm{FmpL}=16 \mathrm{kHz}$ (divided by 2)
Clock mode, at external clock operating

Iccl - TA
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$, $\mathrm{F}_{\mathrm{mpL}}=16 \mathrm{kHz}$ (divided by 2)
Sub clock mode, at external clock operating

Iccls - T_{A}
$\mathrm{V} \mathrm{cc}=5.5 \mathrm{~V}$, $\mathrm{F}_{\mathrm{mpL}}=16 \mathrm{kHz}$ (divided by 2)
Sub sleep mode, at external clock operating

Icct - T_{A}
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}$, $\mathrm{F}_{\mathrm{mpL}}=16 \mathrm{kHz}$ (divided by 2) Clock mode, at external clock operating

(Continued)

MB95160M Series

Iccspll - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MPL}}=128 \mathrm{kHz}$ (Main PLL multiplied by 4) Sub PLL mode, at external clock operating

Icts - Vcc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=2,4,8,10,16 \mathrm{MHz}$ (divided by 2) Time-base timer mode, at external clock operating

$\mathrm{Icch}^{-} \mathrm{V}$ cc
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MPL}}=$ (stop)
Sub stop mode, at external clock stopping

Iccspll - TA
Vcc $=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MPL}}=128 \mathrm{kHz}$ (Main PLL multiplied by 4) Sub PLL mode, at external clock operating

Icts - T_{A}
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MP}}=10$, 16 MHz (divided by 2) Time-base timer mode, at external clock operating

$\mathrm{IcCH}-\mathrm{T}_{\mathrm{A}}$
$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{mpL}}=$ (stop)
Sub stop mode, at external clock stopping

MB95160M Series

(Continued)

$\mathrm{I}_{\mathrm{A}}-\mathrm{AVCC}$
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=16 \mathrm{MHz}$ (divided by 2)
Main clock mode, at external clock operating

$\mathrm{I}_{\mathrm{R}}-\mathrm{AV} \mathrm{cc}$
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}_{\mathrm{MP}}=16 \mathrm{MHz}$ (divided by 2)
Main clock mode, at external clock operating

$$
I_{A}-T_{A}
$$

$\mathrm{V}_{\mathrm{cc}}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{MP}}=16 \mathrm{MHz}$ (divided by 2)
Main clock mode, at external clock operating

$I_{R}-T_{A}$
$\mathrm{Vcc}=5.5 \mathrm{~V}, \mathrm{~F}_{\mathrm{mp}}=16 \mathrm{MHz}$ (divided by 2) Main clock mode, at external clock operating

MB95160M Series

- Input voltage

MB95160M Series

- Output voltage

Vol2 - lol
$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$

- Pull-up

MB95160M Series

MASK OPTION

No.	Part number	MB95F168M/F168N/F168J	MB95FV100D-103
	Specifying procedure	Setting disabled	Setting disabled
1	Clock mode select* - Single-system clock mode - Dual-system clock mode	Dual-system clock mode	Changing by the switch on MCU board
2	Low voltage detection reset* - With low voltage detection reset - Without low voltage detection reset	Specified by part number	Changing by the switch on MCU board
3	Clock supervisor* - With clock supervisor - Without clock supervisor	Specified by part number	Changing by the switch on MCU board
4	Reset output* - With reset output - Without reset output	Specified by part number	MCU board switch sets as follows; - With clock supervisor: Without reset output - Without clock supervisor: With reset output
5	Oscillation stabilization wait time	Fixed to oscillation stabilization wait time of ($2^{14}-2$)/Fсн	Fixed to oscillation stabilization wait time of $\left(2^{14}-2\right) / F_{\text {ch }}$

*: Refer to table below about clock mode select, low voltage detection reset, clock supervisor select and reset output.

Part number	Clock mode select	Low voltage detection reset	Clock supervisor	Reset output
MB95F168M	Dual-system	No	No	Yes
MB95F168N		Yes	No	Yes
MB95F168J		Yes	Yes	No
MB95FV100D-103	Single-system	No	No	Yes
		Yes	No	Yes
		Yes	Yes	No
	Dual-system	No	No	Yes
		Yes	No	Yes
		Yes	Yes	No

MB95160M Series

■ ORDERING INFORMATION

Part number	Package
MB95F168MPMC MB95F168NPMC MB95F168JPMC	64-pin plastic LQFP (FPT-64P-M23)
MB95F168MPMC1 MB95F168NPMC1 MB95F168JPMC1	64-pin plastic LQFP (FPT-64P-M024)
MB2146-303A (MB95FV100D-103PBT)	MCU board $\binom{$ 224-pin plastic PFBGA }{ (BGA-224P-M08) }

MB95160M Series

PACKAGE DIMENSIONS

64-pin plastic LQFP	Lead pitch	0.65 mm
Package width \times package length	$12.0 \times 12.0 \mathrm{~mm}$	
Lead shape	Gullwing	
Sealing method	Plastic mold	
	1.70 mm MAX	

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html
(Continued)

MB95160M Series

(Continued)

64-pin plastic LQFP	Lead pitch	0.50 mm
Package width \times package length	$10.0 \times 10.0 \mathrm{~mm}$	
	Gullwing	
	Sead shape	Plastic mold

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html

MB95160M Series

MAIN CHANGES (The Main Changes from the First Edition to This Edition)

Page	Section	Change Results
-	-	Preliminary Data Sheet \rightarrow Data Sheet
22	■ I/O MAP	Changed as follows for R/W of Reset factor register $R \rightarrow R / W$
29	ELECTRICAL CHARACTERISTICS 1. Absolute Maximum Ratings	The Min value in the row of "Operating temperature" is changed as follows; $-40 \rightarrow-10$
31	ELECTRICAL CHARACTERISTICS 2. Recommended Operating Conditions	The Min value in the row of "Operating temperature" is changed as follows; $-40 \rightarrow-10$
36	4. AC Characteristics (1) Clock Timing	Added "Main PLL multiplied by 4" in the Clock frequency
38	(2) Source Clock/Machine Clock	- Changed in the remarks of source clock cycle time (when using main clock) Min : Fch $=16.25 \mathrm{MHz}$, PLL multiplied by $1 \rightarrow$ Min : $\mathrm{F}_{\mathrm{CH}}=8.125 \mathrm{MHz}$, PLL multiplied by 2 - Changed the footnote of ${ }^{*} 1$; PLL multiplication of main clock (select from 1, 2, 2.5 multiplication) \rightarrow PLL multiplication of main clock (select from 1, 2, 2.5, 4 multiplication)
39		- Added " $\times 4$ " in the Main PLL of "• Outline of clock generation block"
41		Changed the figure of "• Main PLL operation frequency"
52 to 55	(8) $I^{2} \mathrm{C}$ Timing	Added the characteristics
63 to 68	- EXAMPLE CHARACTERISTICS	Added the ■ EXAMPLE CHARACTERISTICS

The vertical lines marked in the left side of the page show the changes.

MB95160M Series

The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.
Edited Business Promotion Dept.

[^0]: "Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
 "Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

[^1]: N flag : Set to " 1 " if the MSB is set to " 1 " as the result of an arithmetic operation. Cleared to " 0 " when the bit is set to "0".
 Z flag : Set to " 1 " when an arithmetic operation results in "0". Cleared to "0" otherwise.
 V flag : Set to " 1 " if the complement on 2 overflows as a result of an arithmetic operation. Cleared to " 0 " otherwise.
 C flag : Set to "1" when a carry or a borrow from bit 7 occurs as a result of an arithmetic operation. Cleared to "0" otherwise. Set to the shift-out value in the case of a shift instruction.

