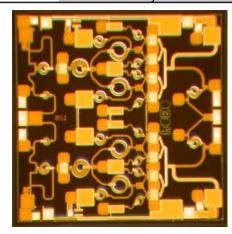


Amplifier, Power, 2.0 W 6.5—9.5 GHz

MAAPGM0064-DIE

Rev — Preliminary Information

Features


- 2 Watt Saturated Output Power Level
- ◆ Variable Drain Voltage (4-10V) Operation
- ♦ MSAG™ Process
- High Performance Ceramic Bolt Down Package

Description

The MAAPGM0064-DIE is a 2-stage 2 W power amplifier with on-chip bias networks. This product is fully matched to 50 ohms on both the input and output. It can be used as a power amplifier stage or as a driver stage in high power applications.

Each device is 100% RF tested to ensure performance compliance. The part is fabricated using M/A-COM's GaAs Multifunction Self-Aligned Gate Process.

M/A-COM's MSAG™ process features robust silicon-like manufacturing processes, planar processing of ion implanted transistors and multiple implant capability enabling power, low-noise, switch and digital FETs on a single chip. The use of refractory metals and the absence of platinum in the gate metal formulation prevents hydrogen poisoning when employed in hermetic packaging.

Primary Applications

- Multiple Band Point-to-Point Radio
- SatCom
- ♦ ISM Band

Also Available in:		SAMPLES	
Description	Ceramic Package	Sample Board (Die)	Mechanical Sample (Die)
Part Number	MAAPGM0064	MAAP-000064-SMB004	Not Available

Electrical Characteristics: $T_B = 40^{\circ}C^1$, $Z_0 = 50$ Ω , $V_{DD} = 8V$, $I_{DQ} \approx 600$ mA², $P_{in} = 18$ dBm, $R_G \approx 120\Omega$

Parameter	Symbol	Typical	Units
Bandwidth	f	6.5-9.5	GHz
Output Power	POUT	34.5	dBm
Power Added Efficiency	PAE	30	%
1-dB Compression Point	P1dB	32	dBm
Small Signal Gain	G	20	dB
Input VSWR	VSWR	1.8:1	
Output VSWR	VSWR	3.0:1	
Gate Supply Current	I_{GG}	< 5	mA
Drain Supply Current	I _{DD}	<1	mA
Noise Figure	NF	9.5	dB
2 nd Harmonic	2f	-20	dBc
3 rd Harmonic	3f	-45	dBc
Output Third Order Intercept	ОТОІ	41	dBm
3 rd Order Intermodulation Distortion, Single Carrier Level = 20 dBm	IM3	-10	dBm
5 th Order Intermodulation Distortion, Single Carrier Level = 20 dBm	IM5	-25	dBm

- 1. T_B = MMIC Base Temperature
- 2. Adjust V_{GG} between -2.6 and -1.2V to achieve specified Idq.

M/A-COM Inc. and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. M/A-COM makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does M/A-COM assume any liability whatsoever arising out of the use or application of any product(s) or information.

- North America Tel: 800.366.2266 / Fax: 978.366.2266
- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Amplifier, Power, 2.0 W 6.5—9.5 GHz

MAAPGM0064-DIE Rev — Preliminary Information

Maximum Ratings ³

Parameter	Symbol	Absolute Maximum	Units
Input Power	P _{IN}	23.0	dBm
Drain Supply Voltage	V_{DD}	+12.0	V
Gate Supply Voltage	V_{GG}	-3.0	V
Quiescent Drain Current (No RF, 40% Idss)	I _{DQ}	950	mA
Quiescent DC Power Dissipated (No RF)	P _{DISS}	7.9	W
Junction Temperature	T_J	170	°C
Storage Temperature	T _{STG}	-55 to +150	°C

^{3.} Operation beyond these limits may result in permanent damage to the part.

Recommended Operating Conditions⁴

Characteristic	Symbol	Min	Тур	Мах	Unit
Drain Supply Voltage	V_{DD}	4.0	8.0	10.0	V
Gate Supply Voltage	V_{GG}	-2.4	-2.0	-1.3	V
Input Power	P _{IN}		18.0	21.0	dBm
Thermal Resistance	Θ _{JC}		12.4		°C/W
Package Base Temperature	T _B			Note 5	°C

^{4.} Operation outside of these ranges may reduce product reliability.

Operating Instructions

This device is static sensitive. Please handle with care. To operate the device, follow these steps.

- 1. Apply $V_{GG} = -2.7 \text{ V}$, $V_{DD} = 0 \text{ V}$.
- 2. Ramp V_{DD} to desired voltage, typically 8.0 V.
- 3. Adjust V_{GG} to set I_{DQ} , (approximately @ -2.0 V).
- 4. Set RF input.
- 5. Power down sequence in reverse. Turn V_{GG} off last.

^{5.} MMIC Base Temperature = 170° C — Θ_{JC}^{*} V_{DD}^{*} I_{DQ}

[•] Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300

Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Amplifier, Power, 2.0 W 6.5—9.5 GHz

MAAPGM0064-DIE Rev — Preliminary Information

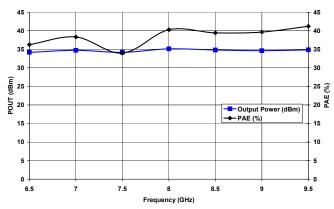


Figure 1. Output Power and Power Added Efficiency vs. Frequency @ $P_{\rm IN}$ =18.0 dBm, $V_{\rm D0}$ =8V, $I_{\rm D0}$ =600 mA

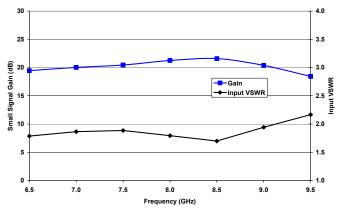


Figure 2. Gain and Input VSWR vs. Frequency (V_{DD} =8 V, I_{DQ} =600 mA)

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298

Amplifier, Power, 2.0 W 6.5-9.5 GHz

MAAPGM0064-DIE Rev -**Preliminary Information**

Mechanical Information

Chip Size: 2.95 x 2.95 x 0.075 mm (116 x 116 x 3 mils)

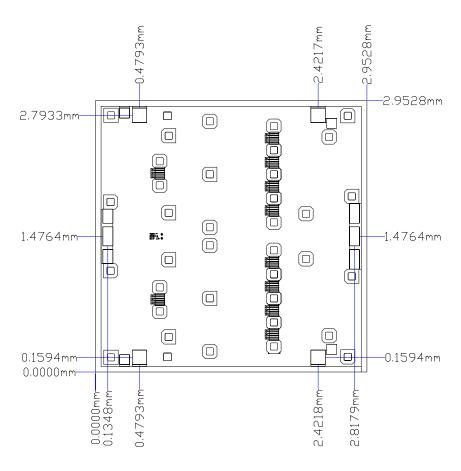


Figure 3. Die Layout

Bond Pad Dimensions

Pad	Size (μm)	Size (mils)
RF In and Out	100 x 200	4 x 8
DC Drain Supply Voltage VDD	200 x 150	8 x 6
DC Gate Supply Voltage VGG	150 x 150	6 x 6

information.

Amplifier, Power, 2.0 W 6.5—9.5 GHz

MAAPGM0064-DIE

Rev —

Preliminary Information

Assembly and Bonding Diagram

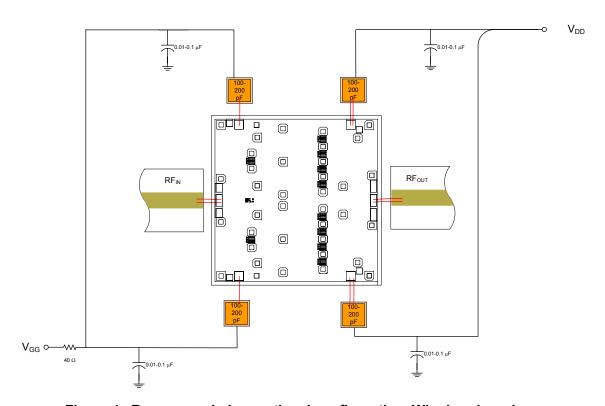


Figure 4. Recommended operational configuration. Wire bond as shown.

Die Handling:

Refer to Application Note AN3016.

Assembly Instructions:

Die Attach: Use AuSn (80/20) 1 mil. preform solder. Limit time @ 310 °C to less than 7 minutes. Refer to Application Note AN3017 for more detailed information.

Wirebonding: Bond @ 160 °C using standard ball or thermal compression wedge bond techniques. For DC pad connections, use either ball or wedge bonds. For best RF performance, use wedge bonds of shortest length, although ball bonds are also acceptable.

Biasing Note: Must apply negative bias to V_{GG} before applying positive bias to V_{DD} to prevent damage to amplifier.

- Europe Tel: 44.1908.574.200 / Fax: 44.1908.574.300
- Asia/Pacific Tel: 81.44.844.8296 / Fax: 81.44.844.8298