SPICE Device Model Si7703EDN ### **Vishay Siliconix** ## P-Channel 20-V (D-S) MOSFET with Schottky Diode #### **CHARACTERISTICS** - P-Channel Vertical DMOS - Macro Model (Subcircuit Model) - Level 3 MOS - · Apply for both Linear and Switching Application - Accurate over the -55 to 125°C Temperature Range - Model the Gate Charge, Transient, and Diode Reverse Recovery Characteristics #### **DESCRIPTION** The attached spice model describes the typical electrical characteristics of the p-channel vertical DMOS. The subcircuit model is extracted and optimized over the -55 to 125°C temperature ranges under the pulsed 0-V to 5-V gate drive. The saturated output impedance is best fit at the gate bias near the threshold voltage. A novel gate-to-drain feedback capacitance network is used to model the gate charge characteristics while avoiding convergence difficulties of the switched $C_{\rm gd}$ model. All model parameter values are optimized to provide a best fit to the measured electrical data and are not intended as an exact physical interpretation of the device. #### SUBCIRCUIT MODEL SCHEMATIC This document is intended as a SPICE modeling guideline and does not constitute a commercial product data sheet. Designers should refer to the appropriate data sheet of the same number for guaranteed specification limits. Document Number: 71010 www.vishay.com S-60542—Rev. B, 10-Apr-06 ## **SPICE Device Model Si7703EDN** ## **Vishay Siliconix** | SPECIFICATIONS (T _J = 25°C UNLESS OTHERWISE NOTED) | | | | | | |---|---------------------|--|-------------------|------------------|------| | Parameter | Symbol | Test Condition | Simulated
Data | Measured
Data | Unit | | Static | | | | | | | Gate Threshold Voltage | $V_{GS(th)}$ | $V_{DS} = V_{GS}, I_{D} = -0.8 \text{ mA}$ | 0.80 | | V | | On-State Drain Current ^a | I _{D(on)} | $V_{DS} \leq -5 \text{ V}, V_{GS}$ = -4.5 V | 80 | | Α | | Drain-Source On-State Resistance ^a | Γ _{DS(on)} | $V_{GS} = -4.5 \text{ V}, I_D = -6.3 \text{ A}$ | 0.040 | 0.041 | Ω | | | | $V_{GS} = -2.5 \text{ V}, I_D = -5.3 \text{ A}$ | 0.055 | 0.057 | | | | | V _{GS} = -1.8 V, I _D = -1 A | 0.075 | 0.072 | | | Forward Transconductance ^a | g _{fs} | $V_{DS} = -10 \text{ V}, I_{D} = -6.3 \text{ A}$ | 16 | 14 | S | | Diode Forward Voltage ^a | V_{SD} | $I_{S} = -2.3 \text{ A}, V_{GS} = 0 \text{ V}$ | -0.80 | -0.80 | V | | Dynamic ^b | - | | - | | | | Total Gate Charge | Q_g | $V_{DS} = -10 \text{ V}, V_{GS} = -4.5 \text{ V}, I_{D} = -6.3 \text{ A}$ | 12 | 12 | nC | | Gate-Source Charge | Q_{gs} | | 2.5 | 2.5 | | | Gate-Drain Charge | Q_{gd} | | 2.9 | 2.9 | | | Turn-On Delay Time | t _{d(on)} | $V_{DD} = -10, R_L = 10 \Omega$ $I_D \cong -1 \text{ A, } V_{GEN} = -4.5 \text{ V, } R_G = 6 \Omega$ | 4 | 2.5 | ns | | Rise Time | t _r | | 8 | 4 | | | Turn-Off Delay Time | $t_{d(off)}$ | | 9 | 15 | | | Fall Time | t _f | | 19 | 12 | | a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2%. b. Guaranteed by design, not subject to production testing. ## SPICE Device Model Si7703EDN Vishay Siliconix #### COMPARISON OF MODEL WITH MEASURED DATA (TJ=25°C UNLESS OTHERWISE NOTED) Note: Dots and squares represent measured data.