ULN2004AI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

SLRS055 - APRIL 2004

- 500-mA-Rated Collector Current (Single Output)
- High-Voltage Outputs . . . 50 V
- Output Clamp Diodes
- Inputs Compatible With Various Types of Logic
- Relay-Driver Applications

D, N, OR NS PACKAGE (TOP VIEW) 16**∏** 1C 1B l 2B **∏** 15 **∏** 2C 3B **∏** 3 14**∏** 3C 4B 🛮 4 13 4C 5B **∏** 5 12 5C 6В П 6 11 **∏** 6C 7B **∏** 7 10 7 7C E [] 8 9 COM

description/ordering information

The ULN2004AI is a high-voltage, high-current Darlington transistor array. This device consists of seven npn Darlington pairs that feature

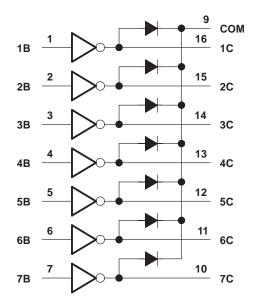
high-voltage outputs with common-cathode clamp diodes for switching inductive loads. The collector-current rating of a single Darlington pair is 500 mA. The Darlington pairs can be paralleled for higher-current capability. Applications include relay drivers, hammer drivers, lamp drivers, display drivers (LED and gas discharge), line drivers, and logic buffers.

The ULN2004AI has a 10.5-k Ω series base resistor for each Darlington pair for operation directly with TTL or 5-V CMOS devices.

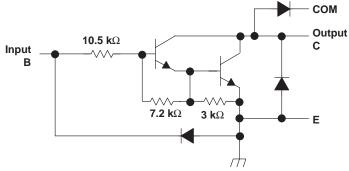
ORDERING INFORMATION

TA	PACKAC	3E†	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	PDIP (N)	Tube of 25	ULN2004AIN	ULN2004AIN
4000 +- 40500	SOIC (D)	Tube of 40	ULN2004AID	ULN2004AI
–40°C to 105°C	30IC (D)	Reel of 2500	ULN2004AIDR	ULINZUU4AI
	SOP (NS)	Reel of 2000	ULN2004AINSR	ULN2004AI

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.



Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.



SLRS055 - APRIL 2004

logic diagram

schematics (each Darlington pair)

All resistor values shown are nominal.

ULN2004AI HIGH-VOLTAGE HIGH-CURRENT DARLINGTON TRANSISTOR ARRAY

SLRS055 - APRIL 2004

absolute maximum ratings at 25°C free-air temperature (unless otherwise noted)†

Collector-emitter voltage	50 V
Clamp diode reverse voltage (see Note 1)	
Input voltage, V _I (see Note 1)	30 V
Peak collector current (see Notes 2 and 4)	500 mA
Output clamp current, I _{OK}	500 mA
Total emitter-terminal current	–2.5 A
Operating free-air temperature range, T _A	40°C to 105°C
Package thermal impedance, θ _{JA} (see Notes 2 and 3): D package	73°C/W
N package	67°C/W
NS package	64°C/W
Operating virtual junction temperature, T _J	150°C
Storage temperature range, T _{stq}	. −65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values are with respect to the emitter/substrate terminal E, unless otherwise noted.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-7.

electrical characteristics, T_A = 25°C

PARAMETER		TEST FIGURE	TEST C	CONDITIONS	MIN TY	P MAX	UNIT
				I _C = 125 mA		5	
	On-state input voltage	6	V _{CE} = 2 V	$I_C = 200 \text{ mA}$		6] ,,
V _{I(on)}				$I_C = 275 \text{ mA}$		7	·
				$I_C = 350 \text{ mA}$		8	
	Collector-emitter saturation voltage	5	I _I = 250 μA,	$I_C = 100 \text{ mA}$	0	.9 1.1	V
V _{CE(sat)}			I _I = 350 μA,	$I_C = 200 \text{ mA}$		1 1.3	
(,			I _I = 500 μA,	I _C = 350 mA	1	.2 1.6	
ICEX	Collector cutoff current	1	V _{CE} = 50 V,	I _I = 0		50	μΑ
٧F	Clamp forward voltage	8	I _F = 350 mA		1	.7 2	V
		4	V _I = 5 V		0.3	5 0.5	
II	Input current		V _I = 12 V			1 1.45	mA
I _R	Clamp reverse current	7	V _R = 50 V			50	μΑ
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz	1	5 25	pF

ULN2004AI **HIGH-VOLTAGE HIGH-CURRENT DARLINGTON** TRANSISTOR ARRAY SLRS055 – APRIL 2004

electrical characteristics, $T_A = -40^{\circ} C$ to $105^{\circ} C$

	PARAMETER	TEST FIGURE	TEST C	MIN	TYP	MAX	UNIT		
				$I_C = 125 \text{ mA}$			5		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	On state involvedtance	6	\\ 2\\	$I_C = 200 \text{ mA}$			6] _v	
V _{I(on)}	On-state input voltage	0	V _{CE} = 2 V	$I_C = 275 \text{ mA}$			7	V	
				$I_C = 350 \text{ mA}$			8		
			$I_I = 250 \mu A$,	$I_C = 100 \text{ mA}$		0.9	1.1	V	
VCE(sat)	Collector-emitter saturation voltage	5	$I_{I} = 350 \mu A$,	$I_C = 200 \text{ mA}$		1	1.3		
			$I_{I} = 500 \mu A$,	$I_C = 350 \text{ mA}$		1.2	1.6		
	Collector cutoff current	1	V _{CE} = 50 V,	$I_I = 0$			50		
ICEX		•	V _{CE} = 50 V	$I_I = 0$			100	μА	
		2		V _I = 1 V			500		
٧F	Clamp forward voltage	8	I _F = 350 mA			1.7	2	V	
I _{I(off)}	Off-state input current	3	$V_{CE} = 50 \text{ V},$	$I_C = 500 \mu A$	50	65		μΑ	
		4	V _I = 5 V			0.35	0.5	A	
Ц	Input current	4	V _I = 12 V			1	1.45	mA	
I_{R}	Clamp reverse current	7	V _R = 50 V				100	μΑ	
Ci	Input capacitance		$V_{I} = 0,$	f = 1 MHz		15	25	pF	

switching characteristics, $T_A = 25^{\circ}C$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	See Figure 8		0.25	1	μs
tPHL	Propagation delay time, high- to low-level output	See Figure 8		0.25	1	μs
Vон	High-level output voltage after switching	$V_S = 50 \text{ V}, \qquad I_O \approx 300 \text{ mA},$ See Figure 9	V _S -20			mV

switching characteristics, $T_{\mbox{\scriptsize A}}$ = $-40^{\circ}\mbox{\scriptsize C}$ to $105^{\circ}\mbox{\scriptsize C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	See Figure 8		1	10	μs
tPHL	Propagation delay time, high- to low-level output	See Figure 8		1	10	μs
Vон	High-level output voltage after switching	$V_S = 50 \text{ V}, \qquad I_O \approx 300 \text{ mA},$ See Figure 9	V _S - 500			mV

PARAMETER MEASUREMENT INFORMATION

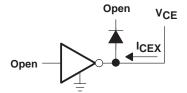


Figure 1. I_{CEX} Test Circuit

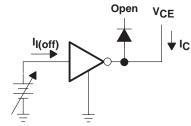
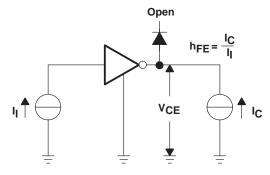



Figure 3. I_{I(off)} Test Circuit

NOTE: I_I is fixed for measuring $V_{CE(sat)}$, variable for measuring h_{FE}.

Figure 5. h_{FE}, V_{CE(sat)} Test Circuit

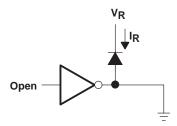


Figure 7. I_R Test Circuit

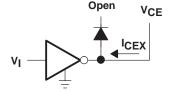


Figure 2. I_{CEX} Test Circuit



Figure 4. I_I Test Circuit

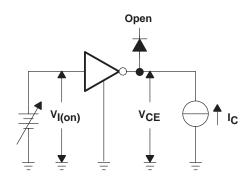


Figure 6. V_{I(on)} Test Circuit

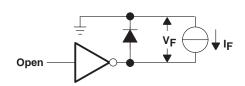


Figure 8. V_F Test Circuit

PARAMETER MEASUREMENT INFORMATION

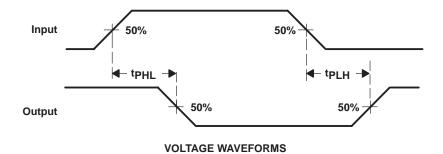
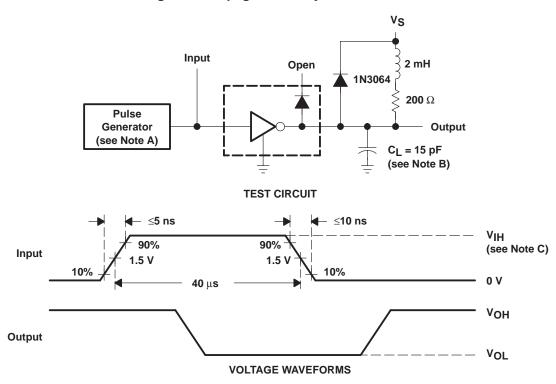
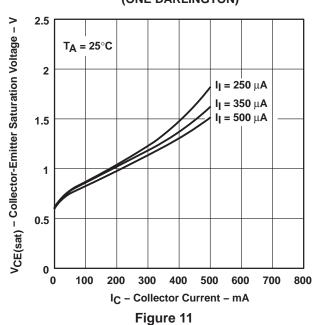
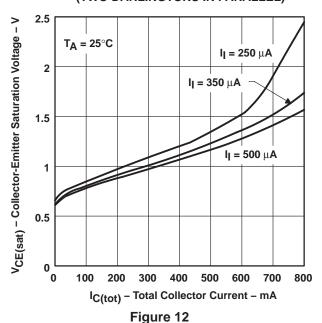



Figure 9. Propagation Delay-Time Waveforms

NOTES: A. The pulse generator has the following characteristics: PRR = 12.5 kHz, Z_O = 50 Ω .

- B. C_L includes probe and jig capacitance.
- C. For testing, $\dot{V}_{IH} = 3 \text{ V}$


Figure 10. Latch-Up Test Circuit and Voltage Waveforms


SLRS055 - APRIL 2004

TYPICAL CHARACTERISTICS

COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
COLLECTOR CURRENT
(ONE DARLINGTON)

COLLECTOR-EMITTER
SATURATION VOLTAGE
vs
TOTAL COLLECTOR CURRENT
(TWO DARLINGTONS IN PARALLEL)

COLLECTOR CURRENT

INPUT CURRENT 500 $R_L = 10 \Omega$ 450 T_A = 25°C 400 I_C - Collector Current - mA V_S = 10 V 350 V_S = 8 V 300 250 200 150 100 50 0 0 100 25 50 75 125 150 175 200

Figure 13

I_I - Input Current - μA

SLRS055 - APRIL 2004

APPLICATION INFORMATION

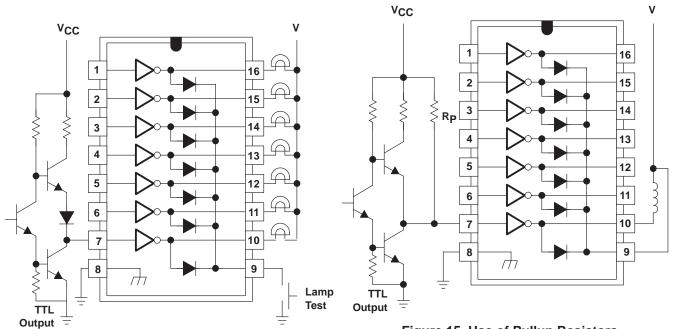


Figure 14. TTL to Load

Figure 15. Use of Pullup Resistors to Increase Drive Current

ti.com 5-Feb-2007

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
ULN2004AID	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
ULN2004AIDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
ULN2004AIDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
ULN2004AIDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
ULN2004AIN	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
ULN2004AINE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
ULN2004AINSR	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
ULN2004AINSRE4	ACTIVE	SO	NS	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

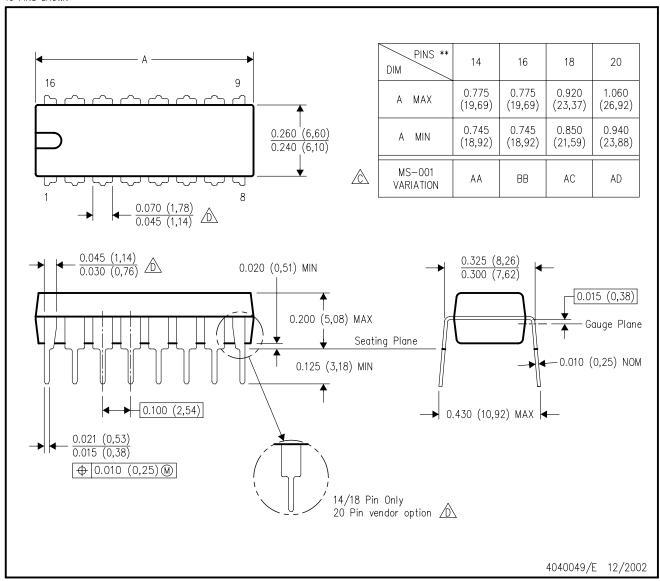
TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

NOTES:

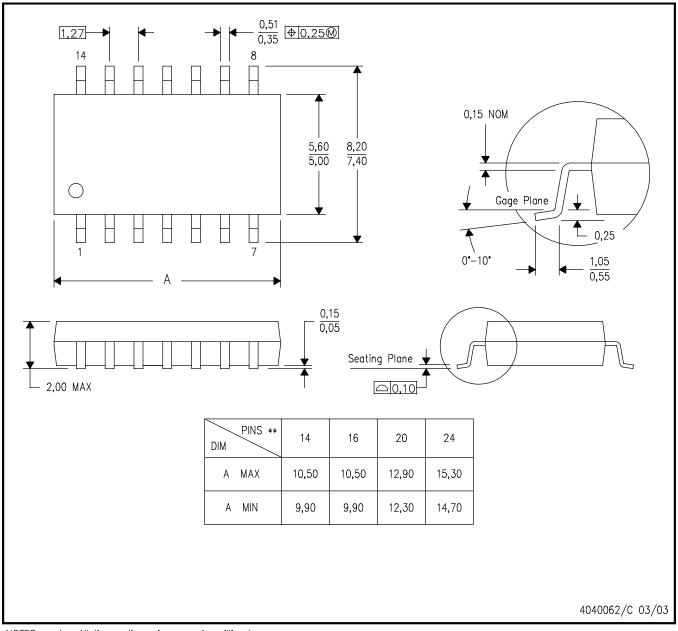
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265