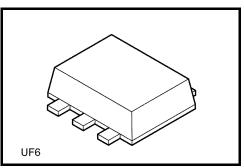
TOSHIBA

TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC7SP97TU,TC7SP98TU

Low Voltage Single Configurable Multiple Function Gate with 3.6 V Tolerant Inputs and Outputs

The TC7SP97,98 is a high performance CMOS multiple Function Gate which is guaranteed to operate from 1.2-V to 3.6-V. Designed for use in 1.5 V, 1.8 V, 2.5 V or 3.3 V systems, it achieves high speed operation while maintaining the CMOS low power dissipation.


It is also designed with over voltage tolerant inputs and outputs up to 3.6 V. $\,$

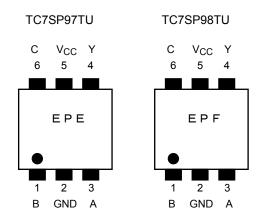
It independently consists of three circuits for Multiple Function Gate.

The output state is determined by seven patterns of 3-inputs.

The user can choose the functions of Multiplexer, AND, OR, NAND, Schmitt Inverter, and Schmitt Buffer.

All inputs are equipped with protection circuits against static discharge.

Weight: 0.007 g(typ)

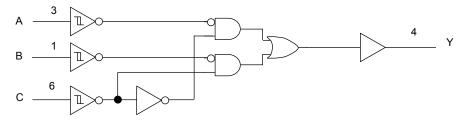

Features

•	Low-voltage operation High-speed operation	: V _{CC} = 1.2 to 3.6 V : t _{pd} = 8.5 ns (max) (V _{CC} = 3.0 to 3.6 V) : t _{pd} = 12.0 ns (max) (V _{CC} = 2.3 to 2.7 V)
•	Output current	: I _{OH} /I _{OL} = ±8 mA (min) (V _{CC} = 3.0 V) : I _{OH} /I _{OL} = ±4 mA (min) (V _{CC} = 2.3 V) : I _{OH} /I _{OL} = ±1.5 mA (min) (V _{CC} = 1.65 V)
•	Latch-up performance	: -300 mA
•	ESD performance	: Machine model ≥ ±200 V Human body model ≥ ±2000 V
•	Package	: UF6

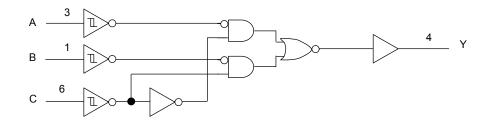
 $\bullet \quad \mbox{Power-down protection is provided on all inputs and outputs}$

<u>TOSHIBA</u>

Pin Assignment (top view)



Truth Table


	INPUTS		OUTPUT		
	INPUIS		TC7SP97	TC7SP98	
А	В	С	Y	Y	
L	L	L	L	Н	
L	L	Н	L	Н	
L	н	L	Н	L	
L	н	Н	L	Н	
Н	L	L	L	Н	
Н	L	Н	Н	L	
Н	Н	L	Н	L	
Н	Н	Н	Н	L	

System Diagram

TC7SP97

TC7SP98

Logic configrations(1/2)

Function	Input Condition	TC7SP97 Logic symbol	TC7SP98 Logic symbol	FUNCTION TABLE
SP97 AND SP98 NAND	A=INPUT B=L-Level C=INPUT Y=OUTPUT	A Y	A CY	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
SP97 OR SP98 NOR	A=H-Level B=INPUT C=INPUT Y=OUTPUT	B Y	B C	$ \begin{array}{c c} A \\ A \\ H \\$
SP97 Schmitt INV+NOR or Schmitt INV+AND SP98 Schmitt INV+OR or Schmitt INV+NAND	A=L-Level B=INPUT C=INPUT Y=OUTPUT	$ \begin{array}{c} B \\ C \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} F \\ C \\ \end{array} \\ \end{array} \\ \begin{array}{c} F \\ \end{array} \\ \end{array} \\ \begin{array}{c} F \\ \end{array} \\ \end{array} \\ \begin{array}{c} F \\ \end{array} \\ \begin{array}{c} F \\ \end{array} \\ \end{array} \\ \end{array} $	$ \begin{array}{c} B \\ C \\ \hline C \\ C \\ C \\ \hline C \\ C \\ C \\ \hline C \\ C \\$	$ \begin{array}{c c} A \\ B \\ L \\ L \\ L \\ L \\ L \\ H \\ L \\ H \\ L \\ H \\ H$
SP97 Schmitt INV+NAND or Schmitt INV+OR SP98 Schmitt INV+AND or Schmitt INV+NOR	A=INPUT B=H-Level C=INPUT Y=OUTPUT	$ \begin{array}{c} A \\ C \\ \hline \end{array} \\ \hline \end{array} \\ OR \\ C \\ \hline \end{array} \\ Y $	$ \begin{array}{c} A \\ C \\ \hline $	A B C 977 98 L H L H L L H H L H H H L H L H H L L L H L H
SP97 2 to 1 Selector SP98 2 to 1 Selector+INV	A=INPUT B=INPUT C=Select Y=OUTPUT	C A B Y	C A B	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Logic configrations(2/2)

Function	Input Condition	TC7SP97 Logic symbol	TC7SP98 Logic symbol	FUNCTION TABLE
SP97 Schmitt INV SP98 Schmitt Buffer	A=L-Level B=H-Level C=INPUT Y=OUTPUT	C Y	C Y	A B C 97 98 L H L H L L H H L H
SP97 Schmitt Buffer SP98 Schmitt INV	A=H-Level B=L-Level C=INPUT Y=OUTPUT	C Y	с <u></u> ү	A B C Y 97 98 H L L L H H L H H L
SP97 Schmitt Buffer SP98 Schmitt INV	A=L-Level B=INPUT C=L-Level Y=OUTPUT	В Ү	В У	$ \begin{array}{c c} A \\ B \\ L \\ L \\ L \\ H \\ H$
SP97 Schmitt Buffer SP98 Schmitt INV	A=H-Level B=INPUT C=L-Level Y=OUTPUT	В Ү	В Ү	A B C 97 98 H L L L H H H L H L
SP97 Schmitt Buffer SP98 Schmitt INV	A=INPUT B=L-Level C=H-Level Y=OUTPUT	A Y	A Y	A B C Y 97 98 L L H L H H L H L L

Absolute Maximum Rating (Note1)

Characteristics	Symbol	Rating	Unit
Power supply voltage	V _{CC}	-0.5 to 4.6	V
DC input voltage	V _{IN}	-0.5 to 4.6	V
	Vout	-0.5 to 4.6 (Note2)	V
DC output voltage	VOUT	-0.5 to V _{CC} + 0.5(Note3)	v
Input diode current	IIК	-20	mA
Output diode current	I _{OK}	±20 (Note4)	mA
DC output current	IOUT	±25	mA
Power dissipation	PD	180	mW
DC V _{CC} /ground current	I _{CC} /I _{GND}	±25	mA
Storage temperature	T _{stg}	-65~150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction. Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: $V_{CC} = 0 V$

Note 3: High or Low state. IOUT absolute ratiingmust be observed.

Note 4: $V_{OUT} < GND$, $V_{OUT} > V_{CC}$

Operating Range (Note1)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	1.2~3.6	V	
Input voltage	V _{IN}	-0.3~3.6	V	
	Varia	0~3.6 (Note2)	v	
Output voltage	Vout	0~V _{CC} (Note3)	v	
		±8.0 (Note4)		
Output current	I _{OH} /I _{OL}	±4.0 (Note5)	mA	
		±1.5 (Note6)		
Operating temperature	T _{opr}	-40~85	°C	

Note 1: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Note 2: $V_{CC} = 0 V$

- Note 3: High or low state
- Note 4: V_{CC} = 3.0~3.6 V
- Note 5: V_{CC} = 2.3~2.7 V
- Note 6: V_{CC} = 1.65~1.8 V

Electrical Characteristics

DC Characteristics (Ta = -40 to 85° C)

Characteristics		Symbol	Test Co	ondition		Min	Max	Unit																			
		-			V _{CC} (V)																						
					1.2		1.10																				
					1.4		1.20																				
	H-level	VP	_	_	1.65		1.35	v																			
		• •			2.3		1.70																				
					3.0		2.00																				
Input voltage					3.6		2.20																				
input voltage					1.2	0.10																					
					1.4	0.20																					
	L-level	No.			1.65	0.30		v																			
	L-IEVEI	V _N	_	_	2.3	0.50		v																			
					3.0	0.70																					
					3.6	0.80																					
					1.2	0.2	0.9																				
			_		1.4	0.2	0.9	V																			
		V _H			1.65	0.2	0.95																				
Hysteresis voltage					2.3	0.3	1.0																				
					3.0	0.3	1.2																				
					3.6	0.3	1.2																				
				$I_{OH} = -100 \ \mu A$	1.2~1.3	Vcc - 0.1																					
				I _{OH} = -500 μA	1.4~1.6	Vcc - 0.2																					
	H-level	V _{OH}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OH} = -1.5 mA	1.65~1.95	Vcc - 0.3		
				I _{OH} = -4.0 mA	2.3~2.7	Vcc - 0.4	_																				
				I _{OH} = -8.0 mA	3.0~3.6	2.40																					
Output voltage				I _{OL} = 100 μA	1.2~1.3	_	0.10	V																			
					I _{OL} = 500 μA	1.4~1.6	_	0.20																			
	L-level	V _{OL}	$V_{IN} = V_{IH} \text{ or } V_{IL}$	I _{OL} = 3.0 mA	1.65~1.95	_	0.25																				
				I _{OL} = 4.0 mA	2.3~2.7		0.40																				
				I _{OL} = 8.0 mA	3.0~3.6		0.40																				
Input leakage current		I _{IN}	V _{IN} = 0~3.6 V	1	1.2~3.6		±1.5	μA																			
Power-off leakage	current	IOFF	V _{IN} , V _{OUT} = 0~3.6 V	V	0		1.5	μA																			
			$V_{IN} = V_{CC}$ or GND		1.2~3.6		3.0																				
Quiescent supply of	current	ICC	$V_{CC} \le V_{IN} \le 3.6 \text{ V}$		1.2~3.6		±3.0	μA																			
Increase in I _{CC} per	r input	Δlcc	$V_{IH} = V_{CC} - 0.6 V$		2.7~3.6		100																				

AC Characteristics (Ta = -40 to 85°C, Input: $t_r = t_f = 3.0 \text{ ns}$)

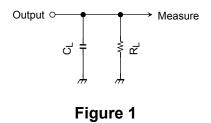
Characteristics	Symbol	Test Condition	V _{CC} (V)	Min	Max	Unit
		Figure 1. Figure 2	1.8± 0.15	1.0	21.0	
	t _{pLH}	Figure 1, Figure 2 CL = 10pF, R_L = 1M Ω	2.5 ± 0.2	0.8	10.0	ns
	t _{pHL}		$\textbf{3.3}\pm\textbf{0.3}$	0.6	7.0	
Propagation delay time	+		1.8± 0.15	1.0	23.0	
(A, B,C-Y)	t _{pLH} t _{pHL}		2.5 ± 0.2	0.8	11.0	ns
(1, 5, 5, 1)			$\textbf{3.3}\pm\textbf{0.3}$	0.6	7.7	
		Figure 1, Figure 2 CL = 30pF, R_L = 1M Ω	1.8± 0.15	1.0	27.0	
	t _{pLH}		2.5 ± 0.2	0.8	12.0	ns
	t _{pHL}		$\textbf{3.3}\pm\textbf{0.3}$	0.6	8.5	

Dynamic Switching Characteristics (Ta = 25° C, Input: t_r = t_f = 3.0 ns, C_L = 30 pF)

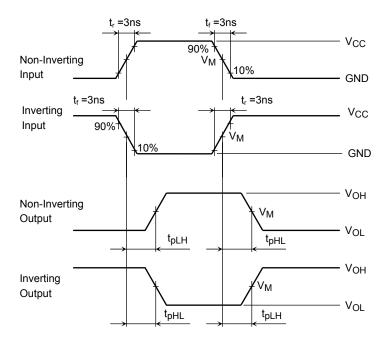
Characteristics	Symbol	Test Condition			Тур.	Unit
	Cymbol			V _{CC} (V)	Typ.	Offic
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	1.8	0.25	
Quiet output maximum dynamic V_{OL}	V _{OLP}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	0.6	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	0.8	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	1.8	-0.25	
Quiet output minimum dynamic V_{OL}	V _{OLV}	$V_{IH} = 2.5 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	2.5	-0.6	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	-0.8	
		$V_{IH} = 1.8 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	1.8	1.5	
Quiet output minimum dynamic V_{OH}	V _{OHV}	$V_{IH} = 2.5 V, V_{IL} = 0 V$	(Note)	2.5	1.9	V
		$V_{IH} = 3.3 \text{ V}, V_{IL} = 0 \text{ V}$	(Note)	3.3	2.2	

Note : Parameter guaranteed by design.

Capacitive Characteristics (Ta = 25°C)


Characteristics	Symbol	Test Condition		Turp	Unit	
Characteristics	Symbol	Test Condition		V _{CC} (V)		Тур.
Input capacitance	C _{IN}	—		1.8, 2.5, 3.3	6	pF
Power dissipation capacitance	C _{PD}	$f_{IN} = 10 \text{ MHz}$	(Note)	1.8, 2.5, 3.3	30	pF

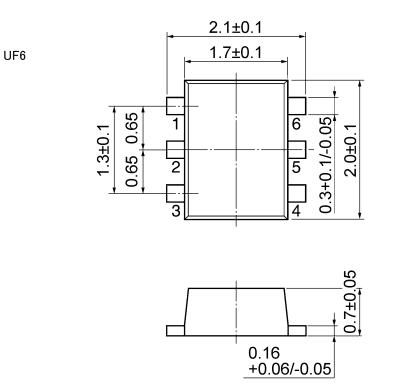
Note : C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}$

AC Test Circuit

AC Waveform



Symbol	V _{CC}						
Symbol	$3.3\pm0.3~\text{V}$	$2.5\pm0.2~\text{V}$	$1.8 \ V{\pm} \ 0.15 \ V$				
V _{IN}	V _{CC}	V _{CC}	V _{CC}				
VM	1.5 V	V _{CC} /2	V _{CC} /2				

Figure 2 t_{pLH}, t_{pHL}

TOSHIBA

Package Dimensions

Weight: 0.06 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN

• The information contained herein is subject to change without notice.

TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.

- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.).These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- Please contact your sales representative for product-by-product details in this document regarding RoHS compatibility. Please use these products in this document in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses occurring as a result of noncompliance with applicable laws and regulations.