
FEATURES

- Integrated programmable clock divider and 1:2 fanout buffer
- Guaranteed AC performance over temperature and voltage:
 - > 2.5GHz f_{MAX}
 - < 250ps t_r/t_f
 - < 15ps within device skew
- Low jitter design:
 - < 10ps (pk-pk) total jitter
 - < 1ps (rms) cycle-to-cycle jitter
- Unique input termination and V_T pin for DC-coupled and AC-coupled Inputs; CML, PECL, LVDS and HSTL
- TTL/CMOS inputs for select and reset
- 100k EP compatible LVPECL outputs
- Parallel programming capability
- Programmable divider ratios of 1, 2, 4, 8 and 16
- Low voltage operation 2.5V or 3.3V
- Output disable function
- -40°C to 85°C temperature range
- Available in 16-pin (3mm × 3mm) MLFTM package

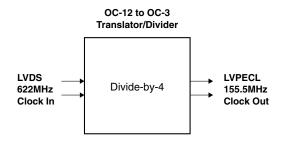
APPLICATIONS

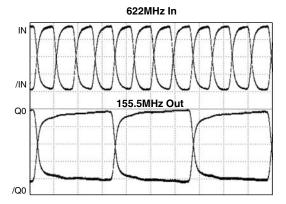
- SONET/SDH line cards
- Transponders
- High-end, multiprocessor sensors

FUNCTIONAL BLOCK DIAGRAM

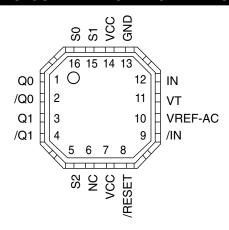
Precision Edge is a trademark of Micrel, Inc. *Micro*LeadFrame and MLF are trademarks of Amkor Technology, Inc.

Precision Edge™


DESCRIPTION


This low-skew, low-jitter device is capable of accepting a high-speed (e.g., 622MHz or higher) CML, LVPECL, LVDS or HSTL clock input signal and dividing down the frequency using a programmable divider ratio to create a frequency-locked, lower speed version of the input clock. Available divider ratios are 2, 4, 8 and 16, or straight pass-through. In a typical 622MHz clock system this would provide availability of 311MHz, 155MHz, 77MHz or 38MHz auxiliary clock components.

The differential input buffer has a unique internal termination design that allows access to the termination network through a V_T pin. This feature allows the device to easily interface to different logic standards. A V_{REF-AC} reference is included for AC-coupled applications.


The /RESET input asynchronously resets the divider. In the pass-through function (divide by 1) the /RESET synchronously enables or disables the outputs on the next falling edge of IN (rising edge of /N).

TYPICAL PERFORMANCE

PACKAGE/ORDERING INFORMATION

16-Pin MLF™ (MLF-16)

Ordering Information

Part Number	Package Type	Operating Range	Package Marking
SY89874UMI	MLF-16	Industrial	874U
SY89874UMITR*	MLF-16	Industrial	874U

^{*}Tape and Reel

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
12, 9	IN, /IN	Differential Input: Internal 50Ω termination resistors to V_T input. Flexible input accepts any differential input. See "Input Interface Applications" section.
1, 2, 3, 4	Q0, /Q0 Q1, /Q1	Differential Buffered LVPECL Outputs: Divided by 1, 2, 4, 8 or 16. See "Truth Table." Unused PECL outputs may be left floating with no impact on jitter performance.
16, 15, 5	S0, S1, S2	Select Pins: See "Truth Table." LVTTL/CMOS logic levels. Internal $25k\Omega$ pull-up resistor. Logic HIGH if left unconnected (divided by 16 mode.) Input threshold is $V_{CC}/2$.
6	NC	No Connect.
8	/RESET /DISABLE	LVTTL/CMOS Logic Levels: Internal 25k Ω pull-up resistor. Logic HIGH if left unconnected. Apply LOW to reset the divider (divided by 2, 4, 8 or 16 mode). Also acts as a synchronous disable/enable function. The reset and disable function occurs on the next high-to-low clock input transition. Input threshold is $V_{CC}/2$.
10	VREF-AC	Reference Voltage: Equal to V_{CC} -1.4V (approx.). Used for AC-coupled applications only. Decouple the V_{REF-AC} pin with a 0.01 μ F capacitor. See "Input Interface Applications" section.
11	VT	Termination Center-Tap: For CML or LVDS inputs, leave this pin floating. Otherwise, see Figures 2a to 2f "Input Interface Applications" section.
7, 14	VCC	Positive Power Supply: Bypass with 0.1μF//0.01μF low ESR capacitor.
13	GND	Ground.

TRUTH TABLE

/RESET ⁽¹⁾	S2	S1	S0	Outputs
1	0	Х	Х	Reference Clock (pass through)
1	1	0	0	Reference Clock ÷2
1	1	0	1	Reference Clock ÷4
1	1	1	0	Reference Clock ÷8
1	1	1	1	Reference Clock ÷16
0(1)	1	Х	Х	Q = LOW, /Q = HIGH Clock Disable

Note 1. Reset/Disable function is asserted on the next clock input (IN, /IN) high-to-low transition.

Absolute Maximum Ratings(Note 1)

Operating Ratings(Note 2)

Supply Voltage (V _{CC})	+3.3V ±10% or +2.5V ±5%
Ambient Temperature (T _A)	40°C to +85°C
Package Thermal Resistance	
MLF TM (θ _{JA}) Still-Air	
Still-Air	60°C/W
	54°C/W
MLF™ (ψ _{JB}), Note 4	
Junction-to-Board	32°C/W

- Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. Due to the limited drive capability use for input of the same package only.
- Note 4. Junction-to-board resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB.

DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
$\overline{V_{CC}}$	Power Supply		2.375		3.63	V
I _{CC}	Power Supply Current	No load, max. V _{CC}		50	75	mA
R _{IN}	Differential Input Resistance (IN, /IN)		80	100	120	Ω
V_{IH}	Input High Voltage (IN, /IN)	Note 3	0.1	-	V _{CC} +0.3	V
V_{IL}	Input Low Voltage (IN, /IN)	Note 3	-0.3	-	V _{CC} +0.2	V
V _{IN}	Input Voltage Swing	Notes 3, 4	0.1	-	3.6	V
V _{DIFF_IN}	Differential Input Voltage Swing	Notes 3, 4, 5	0.2	-		V
I _{IN}	Input Current (IN, /IN)	Note 3	_	-	45	mA
V _{REF-AC}	Reference Voltage	Note 6	V _{CC} -1.525	V _{CC} -1.425	V _{CC} -1.325	V

- Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- Note 2. Specification for packaged product only.
- Note 3. Due to the internal termination (see "Input Structures") the input current depends on the applied voltages at IN, /IN and V_T inputs. Do not apply a combination of voltages that causes the input current to exceed the maximum limit!
- Note 4. See "Timing Diagram" for V_{IN} definition. V_{IN} (Max) is specified when V_T is floating.
- Note 5. See "Typical Operating Characteristics" section for V_{DIFF} definition.
- Note 6. Operating using V_{IN} is limited to AC-coupled PECL or CML applications only. Connect directly to V_T pin.

(100KEP) LVPECL DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

 $V_{CC} = 3.3V \pm 10\%$ or 2.5V $\pm 5\%$; $T_A = -40^{\circ}C$ to $+85^{\circ}C$, $R_L = 50\Omega$ to $V_{CC} - 2V$; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output High Voltage		V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V
V _{OL}	Output Low Voltage		V _{CC} -1.945	V _{CC} -1.820	V _{CC} -1.695	V
V _{OUT}	Output Voltage Swing		550	800	1050	mV
V _{DIFF_OUT}	Differential Output Voltage Swing		1.10	1.60	2.10	V

- Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- Note 2. Specification for packaged product only.

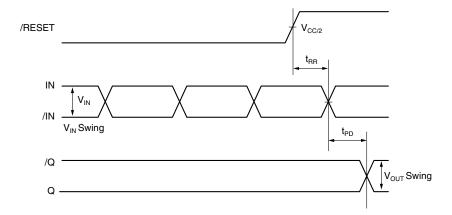
LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

 $\rm V_{CC}$ = 3.3V $\pm 10\%$ or 2.5V $\pm 5\%;$ $\rm T_A$ = $-40^{\circ}C$ to +85°C; Unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{IH}	Input HIGH Voltage		2.0			V
V_{IL}	Input LOW Voltage				0.8	V
I _{IH}	Input HIGH Current		-125		20	μΑ
I _{IL}	Input LOW Current				-300	μΑ

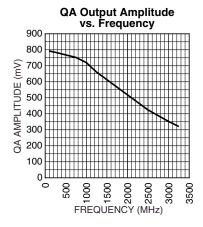
Note 1. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

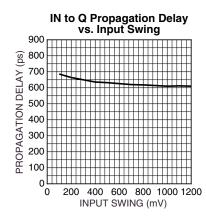
Note 2. Specification for packaged product only.

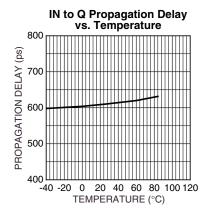

AC ELECTRICAL CHARACTERISTICS(Notes 1, 2)

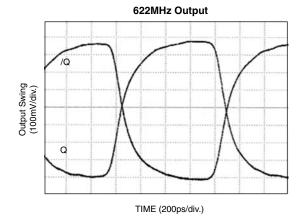
 V_{CC} = 3.3V $\pm 10\%$ or 2.5V $\pm 5\%;$ T_A = $-40^{\circ}C$ to +85°C; Unless otherwise stated.

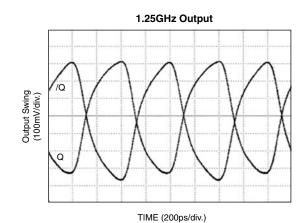
Symbol	Parameter	Condition	Min	Тур	Max	Units
f_{MAX}	Maximum Output Toggle Frequency	Output Swing ≥ 400mV	2.5			GHz
	Maximum Input Frequency	Divide by 2, 4, 8, 16	3.2			GHz
t _{PLH}	Differential Propagation Delay	Input Swing < 400mV	540	650	790	ps
t _{PHL}	IN to Q	Input Swing ≥ 400mV	480	600	730	ps
t _{SKEW}	Within-Device Skew (diff.) Q0–Q1	Note 3		7	15	ps
	Part-to-Part Skew (diff.)	Note 3			250	ps
t _{RR}	Reset Recovery Time	Note 4	600			ps
T _{jitter}	Cycle-to-Cycle Jitter	Note 5			1	ps(rms)
	Total Jitter	Note 6			10	ps(pk-pk)
t _r ,t _f	Rise/Fall Time (20% to 80%)		70	150	250	ps

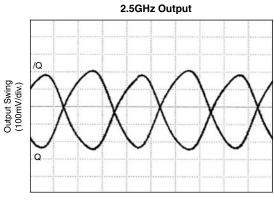

- Note 1. Measured with 400mV input signal, 50% duty cycle, all outputs loaded with 50Ω to V_{CC} -2V, unless otherwise stated.
- Note 2. Specification for packaged product only.
- Note 3. Skew is measured between outputs under identical transitions.
- Note 4. See "Timing Diagram."
- Note 5. Cycle-to-cycle jitter definition: the variation in period between adjacent cycles over a random sample of adjacent cycle pairs. T_{jitter_cc}=T_n-T_{n+1}, where T is the time between rising edges of the output signal.
- Note 6. Total jitter definition: with an ideal clock input, of frequency ≤ f_{MAX} (device), no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.


TIMING DIAGRAM




TYPICAL OPERATING CHARACTERISTICS


 V_{CC} = 3.3V, V_{IN} = 400mV, T_A = 25°C, unless otherwise stated.



DEFINITION OF SINGLE-ENDED AND DIFFERENTIAL SWING

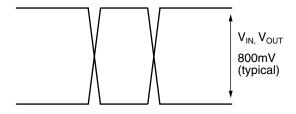


Figure 1a. Single-Ended Swing

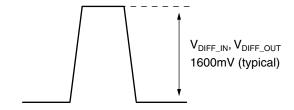


Figure 1b. Differential Swing

INPUT BUFFER STRUCTURE

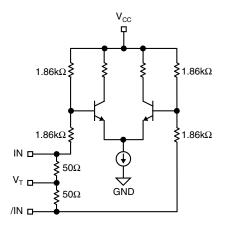


Figure 2a. Simplified Differential Input Buffer

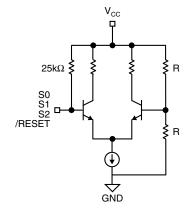


Figure 2b. Simplified TTL/CMOS Input Buffer

INPUT INTERFACE APPLICATIONS

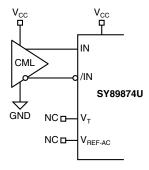


Figure 3a. DC-Coupled CML Input Interface

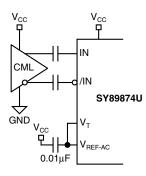


Figure 3b. AC-Coupled CML Input Interface

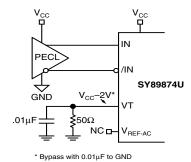


Figure 3c. DC-Coupled PECL Input Interface

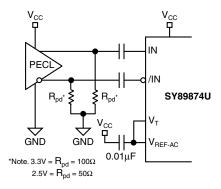


Figure 3d. AC-Coupled PECL Input Interface

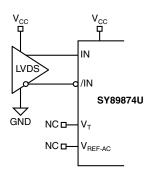


Figure 3e. LVDS Input Interface

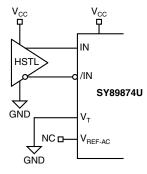


Figure 3f. HSTL Input Interface

RELATED PRODUCT AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY89871U	2.5GHz Any Diff. In-to-LVPECL Programmable Clock Divider/Fanout Buffer w/Internal Termination	http://www.micrel.com/product-info/products/sy89871u.shtml
	MLF™ Application Note	http://www.amkor.com/products/notes_papers/mlf_appnote_0902.pdf
HBW Solutions	New Products and Applications	http://www.micrel.com/product-info/products/solutions.shtml

LVPECL OUTPUT TERMINATION RECOMMENDATIONS

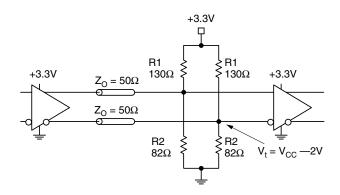


Figure 4a. Parallel Termination-Thevenin Equivalent

Note 1. For +2.5V systems: R1 = 250Ω , R2 = 62.5Ω

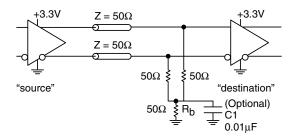


Figure 4b. Three-Resistor "Y-Termination"

- Note 1. Power-saving alternative to Thevenin termination.
- Note 2. Place termination resistors as close to destination inputs as possible.
- **Note 3.** R_b resistor sets the DC bias voltage, equal to V_t . For +3.3V systems $R_b = 46\Omega$ to 50Ω . For +2.5V systems $R_b = 39\Omega$
- Note 4. C1 is an optional bypass capacitor intended to compensate for any t_r/t_f mismatches.

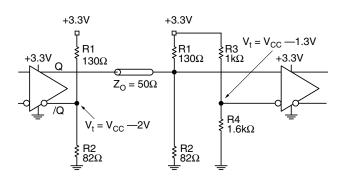
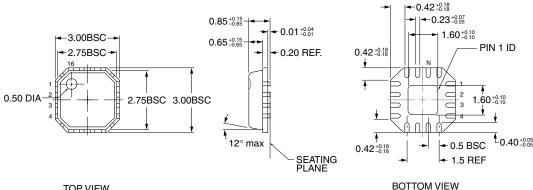
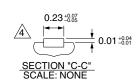



Figure 4d. Terminating Unused I/O


- $\textbf{Note 1.} \quad \textbf{Unused output (/Q) must be terminated to balance the output.}$
- Note 2. For +2.5V systems: R1 = 250Ω , R2 = 62.5Ω , R3 = $1.25k\Omega$, R4 = $1.2k\Omega$.

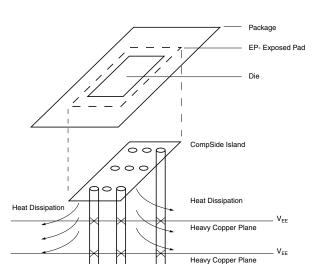
16 LEAD *Micro*LeadFrame™ (MLF-16)

TOP VIEW

0.5BSC

1. DIMENSIONS ARE IN mm.

- 2. DIE THICKNESS ALLOWABLE IS 0.305mm MAX.
- PACKAGE WARPAGE MAX 0.05mm.


4\ THIS DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20mm AND 0.25mm FROM TIP.

Rev 02

5. APPLIES ONLY FOR TERMINALS

FOR EVEN TERMINAL/SIDE

CC

PCB Thermal Consideration for 16-Pin MLF™ Package (Always solder, or equivalent, the exposed pad to the PCB)

Note 1. Package meets Level 2 moisture sensitivity classification, and is shipped in dry-pack form.

Note 2. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.