

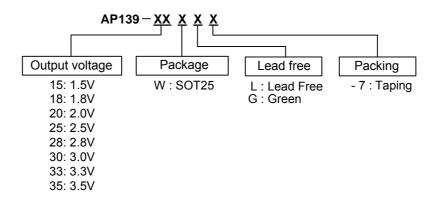
Features

- Very Low Dropout Voltage
- Low Current Consumption: Typ. 45μA, max. 60mA
- Output Voltage: 1.5V, 1.8V, 2.0V, 2.5V, 2.8V, 3.0V 3.3V, and 3.5V
- Guaranteed 300mA Output
- Input Range from 2.7 up to 5.5V
- Thermal Shutdown
- Current Limiting
- Stability with Low ESR Capacitors
- Low Temperature Coefficient
- Lead-free Package: SOT25
- SOT25: Available in "Green" Molding Compound (No Br, Sb)
- Lead Free Finish/RoHS Compliant (Note 1)

General Description

The AP139 is a positive voltage linear regulator utilizing CMOS technology. The features that include low quiescent current (45µA typ.), low dropout voltage, and high output voltage accuracy, make it ideal for battery applications. EN input connected to the device will produce a low bias current. The space-saving SOT25 package is attractive for "pocket" and "hand held" applications.

This rugged device has both thermal shutdown, and current limit protections to prevent device failure under the "worst" operating conditions.


In a low noise, regulated supply application, a 10nF capacitor is necessary to be placed in between Bypass and Ground.

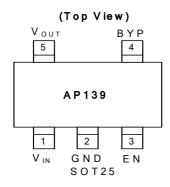
The AP139 is stable with a low ESR output capacitor of 1.0 μ F or greater.

Applications

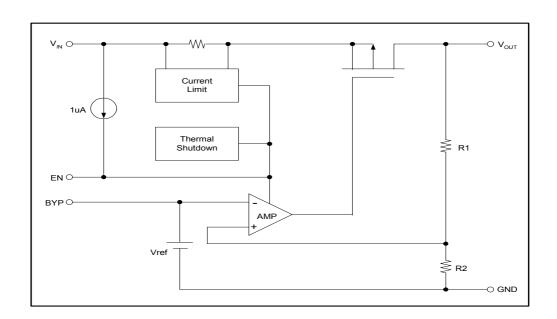
- Personal Communication Devices
- Home Electric/Electronic Appliances
- PC Peripherals
- Battery-Powered Devices

Ordering Information

Note: 1. RoHS revision 13.2.2003. Glass and High Temperature Solder Exemptions Applied, see EU Directive Annex Notes 5 and 7.


	Device	Package Code	Packaging	7" Tape and Reel		
	Device	rackage code	Fackaging	Quantity	Part Number Suffix	
Pb ,	AP139-XXW	W	SOT25	3000/Tape & Reel	-7	

Note: 2. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be on our website at http://www.diodes.com/datasheets/ap02001.pdf.


Pin Assignments

Pin Descriptions

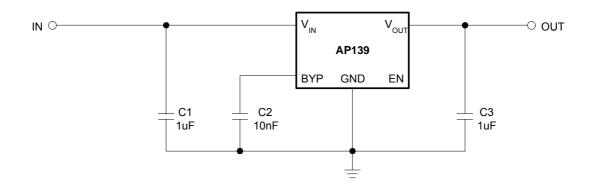
Pin Name	Pin No.	Function	
V_{IN}	1	Power Supply	
GND	2	Ground	
EN	3	Enable Pin	
BYP	4	Bypass Signal Pin	
V _{OUT}	5	Output	

Block Diagram

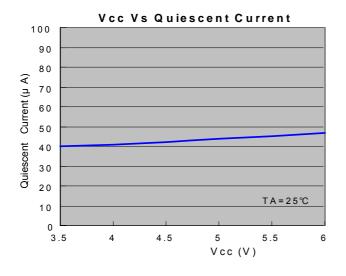
Absolute Maximum Ratings

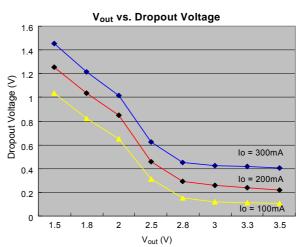
Symbol	Parameter	Rating	Unit
V _{IN}	Input Voltage	+6	V
I _{OUT}	Output Current	$P_D/(V_{IN}-V_O)$	mA
V_{OUT}	Output Voltage	GND - 0.3 to V _{IN} + 0.3	V
	ESD Classification	В	
T _{op}	Operating Junction Temperature Range	-40 to +125	°C
T _{MJ}	Maximum Junction Temperature	150	°C
P _D	Internal Power Dissipation	250	mW

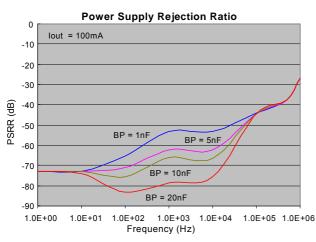
Electrical Characteristics $(T_A = +25^{\circ}C, unless otherwise noted)$

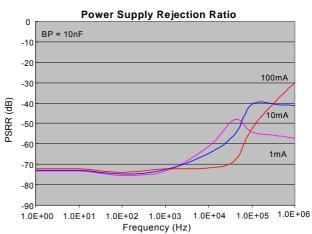

Symbol	Parameter	Test Condit	ions	Min.	Тур.	Max.	Unit
V _{IN}	Input Voltage			Note 4	-	5.5	V
ΙQ		I _O = 0mA		-	45	60	μA
I _{STB}	Standby Current	$V_{IN} = 5.0V, V_{OUT} = 0V, V$	$I_{EN} < V_{EL}$	-	2.0	3.0	μA
V _{OUT}	Output Voltage Accuracy			-2	-	2	%
	V _{OUT} Temperature Coefficient			-	50	_	ppm/°C
V _{DROPOUT}	Dropout Voltage	$I_O = 1 \text{mA to } 300 \text{mA},$ $V_{OUT} = V_{O(NOM)} - 1.5\%$	V _O ≥2.8V	-	-	0.45	V
I _{OUT}	Output Current			300	-	-	mA
I _{LIMIT}	Current Limit	V _{OUT} > 1.05V		300	450	-	mA
I _{short}	Short Circuit Current	V _{cc} = 5V, V _{out} < 1.05V		-	150	300	mA
$\triangle V_{LINE}$	Line Regulation	I _{OUT} =1mA, V _{IN} =(V _{OUT} +1V) to 5.5V		-	0.1	0.3	%
$\triangle V_{LOAD}$	Load Regulation	$I_O = 1 \text{mA to } 300 \text{mA}, V_{IN} = 5 \text{V}$		-	0.3	1	%
		$I_0 = 100 \text{mA},$ $f = 1 \text{KH}$ $C_0 = 2.2 \text{UF ceramic}$	f = 1KHz	-	60	-	dB
PSRR	DOWAR STINNIV DAIGCTION		f = 10KHz	-	50	-	
			f = 100KHz	-	40	-	
		$I_0 = 100 \text{mA},$	f = 1KHz	-	75	-	
PSRR		C_0 = 2.2 μ F ceramic,	f = 10KHz	-	55	-	dB
		$C_{BYP} = 20nF$	f = 100KHz	-	30	-	
V_{EH}		Output ON		1.7	-	-	V
V _{EL}	EN Input Threshold	Output OFF		-	-	0.8	V
I _{EN}	Enable Pin Current			-	-	<0.1	μA
OTS	Over Temperature Shutdown			-	130	-	°C
ОТН	Over Temperature Hysteresis		-	20	-	°C	
θ_{JA}		SOT25 (Note 4)			226		°C/W
θ_{JC}	Thermal Resistance	SOT25 (Note 4)			34		°C/W

Note:

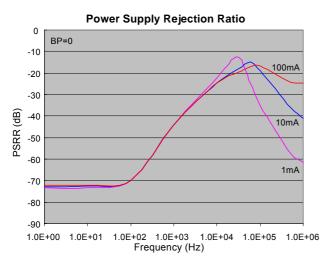

^{3.} V_{IN(MIN)} = V_{OUT} + V_{DROPOUT}.
4. Test conditions for SOT25: Devices mounted on FR-4 PC board, MRP, 1 oz. copper, single sided, calibrate at T_J=85 °C, measure at T_A=25 °C, no heat Sink, no air flow.

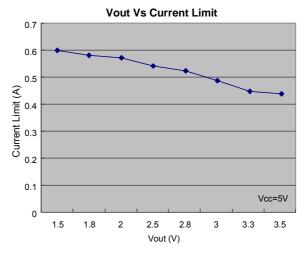


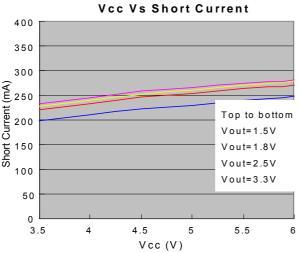

Typical Application



Typical Performance Characteristics







Typical Performance Characteristics (Continued)

Function Description

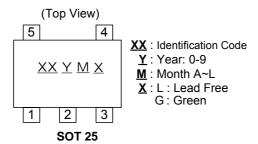
The AP139 of CMOS regulators contain a PMOS pass transistor, voltage reference, error amplifier, over-current protection, thermal shutdown.

The P-channel pass transistor receives data from the error amplifier, over-current protection, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. The over-current and thermal shutdown circuits become active when the junction temperature exceeds 130°C, or the current exceeds 300mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 110°C.

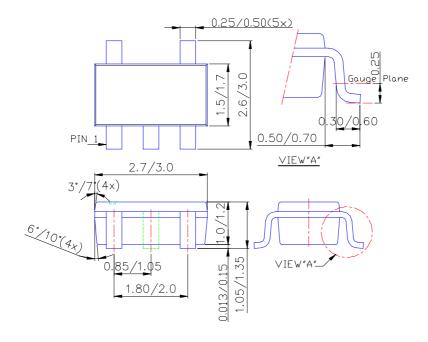
The AP139 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress.

Enable

The enable pin normally floats high. When actively, pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than 2µA. This pin behaves much like an electronic switch.


External Capacitor

The AP139 is stable with a low ESR output capacitor to ground of 1.0 μ F or greater. It can keep stable even with higher ESR capacitors. A second capacitor is recommended between the input and ground to stabilize V_{IN}. The input capacitor should be larger than 0.1 μ F to have a beneficial effect. All capacitors should be placed in close proximity to the pins. A "quiet" ground termination is desirable.


Marking Information

Identification Code	Output Version
N0	AP139-1.5V
N1	AP139-1.8V
N2	AP139-2.0V
N3	AP139-2.5V
N4	AP139-2.8V
N5	AP139-3.0V
N6	AP139-3.3V
N7	AP139-3.5V

Package Information (unit: mm)

Package Type: SOT25

IMPORTANT NOTICE

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to any product herein. Diodes Incorporated does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on our website, harmless against all damages.

LIFE SUPPORT

Diodes Incorporated products are not authorized for use as critical components in life support devices or systems without the expressed written approval of the President of Diodes Incorporated.