32-bit Microcontroller

CMOS

FR60 MB91460 Series

MB91461

■ DESCRIPTION

MB91461 is a line of the general-purpose 32-bit RISC microcontrollers designed for embedded control applications such as consumer devices and vehicle system, which require high-speed real-time processing. MB91461 uses the FR60 CPU compatible with the FR family* CPUs.
MB91461 contains the LIN-UART and CAN controller.

* : FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited.

■ FEATURES

- FR60 CPU
- 32-bit RISC, load/store architecture, five-stage pipeline
- Maximum operating frequency : 80 MHz (oscillation frequency 20 MHz , oscillation frequency 4 multiplier (PLL clock multiplication method))
- 16-bit fixed-length instructions (basic instructions)
- Instruction execution speed : 1 instruction per cycle
- Instructions including memory-to-memory transfer, bit manipulation instructions, and barrel shift instructions: Instructions suitable for embedded applications
- Function entry/exit instructions and register data multi load store instructions: Instructions supporting C language
- Register interlock function : Facilitating assembly-language coding
- Built-in multiplier with instruction-level support

Signed 32-bit multiplication : 5 cycles
Signed 16-bit multiplication : 3 cycles

- Interrupt (PC/PS saving) : 6 cycles (16 priority levels)
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

"Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

"Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

MB91460 Series

- Harvard architecture enabling simultaneous execution of both program access and data access
- Instructions compatible with the FR family
- Internal peripheral resources
- MB91461 does not contain the ROM and flash memory.
- Internal RAM capacity : Instruction cache 4 Kbytes + 64 Kbytes (Instruction/data common RAM)
- General-purpose port : Maximum 72 ports
- DMAC (DMA Controller)

Maximum of 5 channels for simultaneous operation is possible. (1 channel for external-to-external)
3 transfer sources (external pin/internal peripheral/software)
Activation source can be selected using software.
Addressing mode with 32-bit full address indication (increment/decrement/fixed)
Transfer mode (demand transfer/burst transfer/step transfer/block transfer)
Fly-by transfer support (between external I/O and memory)
Transfer data size selection 8/16/32-bit
Multi-byte transfer enabled (by software)
DMAC descriptor in I/O areas (200н to $240 \mathrm{H}, 1000$ н to 1024 н)

- A / D converter (sequential comparison)

10-bit resolution: 13 channels
Conversion time: 1 us (peripheral macro operation clock at 16.67 MHz)

- External interrupt input: 16 channels

Pins shared with RX pins of CANO and CAN1

- Bit search module (for REALOS)

Function of searching for the first " 0 " data/ " 1 " data/change bit position in 1 word from the MSB (upper bit)

- LIN-UART (full duplex double buffer): 7 channels

Clock synchronous/asynchronous selectable
Sync-break detection
Internal dedicated baud rate generator

- $I^{2} C^{*}$ bus interface (400 kbps supported): 3 channels Master/slave sending and receiving Arbitration function, clock synchronization function
- CAN controller (C-CAN) : 2 channels

Maximum transfer speed : 1 Mbps
32 sent/received message buffers

- 16-bit PPG timer : 8 channels
- 16-bit reload timer : 5 channels
- 16-bit free-run timer : 4 channels (1 channel each for ICU and OCU)
- Input capture : 4 channels (work with free-run timer)
- Output compare : 4 channels (work with free-run timer)
- Watchdog timer

Watchdog reset output pin available

- Real-time clock
- Low-power consumption mode: Sleep/stop/shutdown mode function

MB91460 Series

(Continued)

- Package : LQFP-176 (FPT-176P-M07)
- CMOS $0.18 \mu \mathrm{~m}$ technology
- $3 \mathrm{~V} / 5 \mathrm{~V}$ power supplies [Internal logic is kept at 1.8 V by step-down circuit, some I/Os have the withstand voltage of 5.0 V]
- Operating temperature range : between $-40^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$
*: Purchase of Fujitsu $I^{2} \mathrm{C}$ components conveys a license under the Philips $I^{2} \mathrm{C}$ Patent Rights to use, these components in an $I^{2} \mathrm{C}$ system provided that the system conforms to the $I^{2} \mathrm{C}$ Standard Specification as defined by Philips.

MB91460 Series

PIN ASSIGNMENT

Note: (1) to (3) are $3.3 \mathrm{~V} / 5 \mathrm{~V}$ pin supported pin, and can set 3.3 V and 5 V to the voltage in each block. ${ }^{2} \mathrm{C}$ pin in (1) can be inputted at 5 V power supply. However, 3.3 V of the input threshold value is used as the standard value regardless of the power supply voltage.
If 5 V is set in (1) or (2), also set 5 V to (3).

MB91460 Series

PIN DESCRIPTION

Pin no.	Pin name	I/O	I/O circuit type*	Function
2	P24_2	I/O	D	General-purpose input/output port
	INT2			External interrupt input pin
3	P24_3	I/O	D	General-purpose input/output port
	INT3			External interrupt input pin
4	P22_6	$\begin{gathered} \text { I/O } \\ \text { Open Drain } \end{gathered}$	C	General-purpose input/output port
	SDA1			$1^{2} \mathrm{C}$ bus data input/output pin
	INT15			External interrupt input pin
5	P22_7	I/O Open Drain	C	General-purpose input/output port
	SCL1			$1^{2} \mathrm{C}$ bus clock input/output pin
6	P24_4	$\begin{gathered} \text { I/O } \\ \text { Open Drain } \end{gathered}$	C	General-purpose input/output port
	SDA2			$1^{2} \mathrm{C}$ bus data input/output pin
	INT4			External interrupt input pin
7	P24_5	$\begin{gathered} \text { I/O } \\ \text { Open Drain } \end{gathered}$	C	General-purpose input/output port
	SCL2			$1^{2} \mathrm{C}$ bus clock input/output pin
	INT5			External interrupt input pin
8	DREQ0	1	H	DMA external transfer request input
9	DACK0	0	H	DMA external transfer acknowledge output
10	DEOP0	0	H	DMA external transfer EOP (End of Process) output
15	$\overline{\mathrm{CS4}}$	0	H	Chip select 4 output
16	$\overline{\mathrm{CS3}}$	0	H	Chip select 3 output
17	CS2	0	H	Chip select 2 output
18	$\overline{\mathrm{CS1}}$	0	H	Chip select 1 output
19	$\overline{\mathrm{CSO}}$	0	H	Chip select 0 output
20	$\overline{\text { IORD }}$	0	H	Read strobe output at DMA fly-by transfer
21	$\overline{\text { IOWR }}$	0	H	Write strobe output at DMA fly-by transfer
22	RDY	1	H	External ready input
23	BRQ	I	H	External bus open request input
24	BGRNT	0	H	External bus open acknowledge output
25	$\overline{\mathrm{RD}}$	0	H	External read strobe output
26	$\overline{\text { WRO }}$	0	H	External write strobe output
27	WR1	0	H	External write strobe output
28	SYSCLK	0	H	System clock output
29	$\overline{\text { AS }}$	0	H	Address strobe output
33	X0	-	G	Clock (oscillation) input
34	X1	-	G	Clock (oscillation) output

(Continued)

MB91460 Series

Pin no.	Pin name	I/O	I/O circuit type*	Function
$\begin{aligned} & \hline 36 \text { to } 43 \\ & 46 \text { to } 53 \end{aligned}$	D16 to D31	I/O	H	External data bus signal
54 to 56 59 to 72 75 to 81	A00 to A23	0	H	External address bus signal
82	$\overline{\mathrm{NMI}}$	I	H	NMI (Non Maskable Interrupt) input
83	P16_7	I/O	H	General-purpose input/output port
	$\overline{\text { ATG }}$			A/D converter external trigger input
84 to 87	P17_4 to P17_7	I/O	H	General-purpose input/output ports
	PPG4 to PPG7			PPG timer output pins
90 to 93	ICD0 to ICD3	1/O	H	Data input/output pins for development tool
94 to 96	ICS0 to ICS2	0	H	Status output pins for development tool
97	ICLK	0	I	Clock output pin for development tool
98	BREAK	I	H	Break input pin for development tool
99	WDRESET	0	J	Watchdog reset output pin
100 to 107	P29_0 to P29_7	I/O	F	General-purpose input/output ports
	AN0 to AN7			Analog input pins for A/D converter
108 to 112	P28_0 to P28_4	I/O	F	General-purpose input/output ports
	AN8 to AN12			Analog input pins for A/D converter
116, 117	P24_0, P24_1	I/O	D	General-purpose input/output ports
	INTO, INT1			External interrupt input pins. Can be used as a return source from shutdown.
118	P22_4	I/O Open Drain	C	General-purpose input/output port
	SDAO			$1^{2} \mathrm{C}$ bus data input/output pin
	INT14			External interrupt input pin
119	P22_5	I/O Open Drain	C	General-purpose input/output port
	SCLO			$1^{2} \mathrm{C}$ bus clock input/output pin
120	P24_6	I/O	D	General-purpose input/output port
	INT6			External interrupt input pin. Can be used as a return source from shutdown.
121	P24_7	I/O	D	General-purpose input/output port
	INT7			External interrupt input pin. Can be used as a return source from shutdown.

(Continued)

MB91460 Series

Pin no.	Pin name	I/O	I/O circuit type*	Function
122	P23_0	I/O	D	General-purpose input/output port
	RX0			RX input pin of CANO
	INT8			External interrupt input pin. Can be used as a return source from shutdown.
123	P23_1	I/O	D	General-purpose input/output port
	TXO			TX output pin of CANO
124	P23_2	I/O	D	General-purpose input/output port
	RX1			RX input pin of CAN1
	INT9			External interrupt input pin. Can be used as a return source from shutdown.
125	P23_3	I/O	D	General-purpose input/output port
	TX1			TX output pin of CAN1
126	MD3	I	A	Mode setting pins
127	MD2	1	A	
128	MD1	I	A	
129	MDO	1	B	
130	TRST	1	E	Reset input pin for development tool
131	$\overline{\text { INIT }}$	1	B	External reset input
134	P21_0	I/O	D	General-purpose input/output port
	SINO			Data input pin of UART0
135	P21_1	I/O	D	General-purpose input/output port
	SOTO			Data output pin of UART0
136	P21_2	I/O	D	General-purpose input/output port
	SCKO			Clock input/output pin of UART0
	FRCK0			External clock input pin of free-run timer0
137	P21_4	I/O	D	General-purpose input/output port
	SIN1			Data input pin of UART1
138	P21_5	I/O	D	General-purpose input/output port
	SOT1			Data output pin of UART1
139	P21_6	I/O	D	General-purpose input/output port
	SCK1			Clock input/output pin of UART1
	FRCK1			External clock input pin of free-run timer1
140	P20_0	I/O	D	General-purpose input/output port
	SIN2			Data input pin of UART2

(Continued)

MB91460 Series

Pin no.	Pin name	I/O	I/O circuit type*	Function
141	P20_1	I/O	D	General-purpose input/output port
	SOT2			Data output pin of UART2
142	P20_2	I/O	D	General-purpose input/output port
	SCK2			Clock input/output pin of UART2
	FRCK2			External clock input pin of free-run timer2
143	P20_4	I/O	D	General-purpose input/output port
	SIN3			Data input pin of UART3
144	P20_5	I/O	D	General-purpose input/output port
	SOT3			Data output pin of UART3
145	P20_6	I/O	D	General-purpose input/output port
	SCK3			Clock input/output pin of UART3
	FRCK3			External clock input pin of free-run timer3
148	P19_0	I/O	D	General-purpose input/output port
	SIN4			Data input pin of UART4
149	P19_1	I/O	D	General-purpose input/output port
	SOT4			Data output pin of UART4
150	P19_2	I/O	D	General-purpose input/output port
	SCK4			Clock input/output pin of UART4
151	P19_4	I/O	D	General-purpose input/output port
	SIN5			Data input pin of UART5
152	P19_5	I/O	D	General-purpose input/output port
	SOT5			Data output pin of UART5
153	P19_6	I/O	D	General-purpose input/output port
	SCK5			Clock input/output pin of UART5
154	P18_0	I/O	D	General-purpose input/output port
	SIN6			Data input pin of UART6
155	P18_1	I/O	D	General-purpose input/output port
	SOT6			Data output pin of UART6
156	P18_2	I/O	D	General-purpose input/output port
	SCK6			Clock input/output pin of UART6
157 to 160	P15_0 to P15_3	I/O	D	General-purpose input/output ports
	OCU0 to OCU3			Output compare output pins
	TOT0 to TOT3			Reload timer output pins
163	P23_4	I/O	D	General-purpose input/output port
	INT10			External interrupt input pin

(Continued)

MB91460 Series

(Continued)

Pin no.	Pin name	I/O	I/O circuit type*	Function
164	P23_6	I/O	D	General-purpose input/output port
	INT11			External interrupt input pin
165	P22_0	I/O	D	General-purpose input/output port
	INT12			External interrupt input pin
166	P22_2	I/O	D	General-purpose input/output port
	INT13			External interrupt input pin
167	P22_3	I/O	D	General-purpose input/output port
168 to 171	P14_0 to P14_3	I/O	D	General-purpose input/output ports
	ICU0 to ICU3			Input capture input pins
	TIN0 to TIN3			External trigger input pins of reload timer
	TRG0 to TRG3			External trigger input pins of PPG
172 to 175	P17_0 to P17_3	I/O	D	General-purpose input/output ports
	PPG0 to PPG3			PPG timer output pins

*: For details of I/O circuit types, refer to "■ I/O CIRCUIT TYPE".

MB91460 Series

[Power supply/GND pins]

Pin number	Pin name	1/0	Function
$\begin{gathered} \hline 1,13,32,35,45, \\ 58,74,88,132, \\ 146,161 \end{gathered}$	VSS	(VSS)	GND pins
$\begin{gathered} \hline 11,12,30,44, \\ 57, \\ 73,89 \end{gathered}$	VCC3	(VCC3)	3.3 V power supply pins
133, 147	VCC5	(VCC5)	5 V power supply pins. These pins are I/O power supplies corresponding to 116 to 145 pins. The corresponding I/O pin operates at 3.3 V when supplying 3.3 V , and at 5 V when supplying 5 V . Be sure to supply 5 V if more than one 5 V operating pin is specified, or 5 V is supplied at pin 162 or pin 176.
162	VCC5	(VCC5)	5 V power supply pin. This pin is an I/O power supply corresponding to 148 to 160 pins. The corresponding I/O pin operates at 3.3 V when supplying 3.3 V , and at 5 V when supplying 5 V . Be sure to supply 5 V if more than one 5 V operating pin is specified.
176	VCC5	(VCC5)	5 V power supply pin. This pin is an I/O power supply corresponding to 2 to 7 pins. The corresponding I/O pin operates at 3.3 V when supplying 3.3 V , and at 5 V when supplying 5 V . Be sure to supply 5 V if more than one 5 V operating pin is specified.
113	AVSS/AVRL	(AVSS)	Analog GND pin for A/D converter
114	AVCC3	(AVCC3)	3.3 V power supply pin for A/D converter
115	AVRH	(AVRH)	Reference power supply pin for A/D converter
14	C_1	-	Capacitor connection pin for internal regulator. Connect a $4.8 \mu \mathrm{~F}$ capacitor.
31	C_2	-	Capacitor connection pin for internal regulator. Connect a $4.8 \mu \mathrm{~F}$ capacitor.

MB91460 Series

I/O CIRCUIT TYPE

Type	Circuit type	Remarks
A	5 V level	5 V CMOS hysteresis input
B		5 V CMOS hysteresis input
C		Input/output pin for $I^{2} \mathrm{C}$ $\mathrm{loL}=3 \mathrm{~mA}$ With stand voltage of 5 V With standby control

(Continued)

MB91460 Series

Type	Circuit type	Remarks
D		5 V CMOS output loL $=4 \mathrm{~mA}$ 5 V CMOS input 5 V CMOS hysteresis input With $50 \mathrm{k} \Omega$ pull-up/pull-down control With standby control
E	3.3 V level \square Input	3.3 V CMOS hysteresis input With stand voltage of 5 V With standby control
F		3.3 V CMOS output $\mathrm{loL}=4 \mathrm{~mA}$ 3.3 V CMOS input 3.3 V CMOS hysteresis input Analog input With standby control

(Continued)
(Continued)

| Type | Circuit type | Remarks |
| :--- | :--- | :--- | :--- |
| | | 3.3 V oscillation cell |

MB91460 Series

- HANDLING DEVICES

- Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage higher than V_{cc} or less than V ss is applied to an input or output pin or if a voltage exceeding the rating is applied between VCC pin and VSS pin. If latch-up occurs, the power supply current increases rapidly, sometimes resulting in thermal breakdown of the device. Therefore, when using a CMOS IC, do not exceed the maximum rating.

- Handling of unused input pins

If unused input pins are left open, abnormal operation may result. Any unused input pins should be connected to pull-up or pull-down resistor.

- Power supply pins

When provided with multiple VCC pins or VSS pins, the device is designed such that the pins having equal potential are interconnected internally to prevent malfunctions such as latch-up. All of these pins must however be connected to the power supply and ground externally to reduce unwanted radiation, to prevent the strobe signal from malfunctioning due to a rise of ground level, and to follow the total output current standards. In addition, VCC pin and VSS pin of this device should be connected from the power supply source with the lowest possible impedance.
It is also recommended to connect a ceramic capacitor of approximately $0.1 \mu \mathrm{~F}$ as a bypass capacitor between VCC pin and VSS pin near this device.
This series has a built-in step-down regulator. Connect a bypass capacitor of $4.7 \mu \mathrm{~F}$ to $\mathrm{C} _1$ and $\mathrm{C} _2$ pins for the regulator.

- Crystal oscillator circuit

Noise in proximity to the $\mathrm{X0}$ and X 1 pins can cause abnormal operation in this device. Printed circuit boards should be designed so that the X0 and X1 pins, and crystal oscillator, as well as bypass capacitors connected to ground, are placed as close together as possible.
The use of printed circuit board architecture in which the X 0 and X 1 pins are surrounded by ground contributes to stable operation and is strongly recommended.
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

- Notes on using external clock

In principle, when using external clock, supply a clock to the X0 pin and X1 pin simultaneously. Also, an opposite phase clock to the X0 pin must be supplied to the X1 pin. However, in this case the stop mode (oscillation stop mode) must not be used (This is because the X1 pin stops at "H" output in STOP mode).

(Note) Stop mode (oscillation stop mode) cannot be used.

MB91460 Series

- Mode pins (MD0 to MD3)

When using mode pins, connect them directly to VCC pin or VSS pin. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between each mode pin and VCC pin or VSS pin on the printed circuit board as possible and connect them with low impedance.

- Power-on sequences for 3.3 V and 5 V
- Immediately after power-on, keep "L" level input to the INIT pin for the oscillation stabilization wait time (8 ms) to ensure the oscillation stabilization wait time for the oscillator circuit.
- There is no power-on sequences.
- When executing a reset cancellation (changing INIT pin from " L " level to " H " level), be sure to execute it while 3 V and 5 V power supplies are stable.
- Caution on operations during PLL clock mode

On this microcontroller, if in case the crystal oscillator breaks off or an external reference clock input stops while the PLL clock mode is selected, a self-oscillator circuit contained in the PLL may continue its operation at its self-running frequency. However, Fujitsu will not guarantee results of operations if such failure occurs.

- External bus setting

This model guarantees the maximum frequency of 40 MHz for the external bus clock SYSCLK.
Setting the base clock frequency to 80 MHz without changing the initial value of DIVR1 (external bus base clock division setting register) sets the external bus frequency also to 80 MHz . Before changing the base clock frequency, set SYSCLK not exceeding 40 MHz .

- Pull-up control

Connecting a pull-up resistor to the pin serving as an external bus pin cannot guarantee the AC standard.

- Notes on PS register

Since some instructions process the PS register in advance, the following exceptional operations may cause a break in the interrupt process routine or an update of display contents of the flag in the PS register when the debugger is being used. In either case, as the device is designed to carry out reprocessing correctly upon returning from such an EIT event, it performs operations before and after the EIT as specified.

1) The following operations may be performed when the instruction immediately followed by a DIVOU/DIVOS instruction accepts a user interrupt/NMI, executes a step, or breaks in response to a data event or emulator menu.
-D0 and D1 flags are updated in advance.
-An EIT process routine (user interrupt/NMI or emulator) is executed.
-Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as those in 1).
2) The following operations are performed when each instruction of OR CCR, ST ILM, MOV Ri and PS is executed to enable interrupts while a user interrupt/NMI source has been occurring.
-The PS register is updated in advance.
-An EIT process routine (user interrupt/NMI or emulator) is executed.
-Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as that in 1).

MB91460 Series

NOTES ON DEBUGGER

- Step execution of RETI instruction

In the environment where interrupts occur frequently when stepping, only the corresponding interrupt process routines are executed repeatedly. As the result of that, the main routine and low-interrupt-level programs are not executed (For example, if an interrupt to the time base timer is enabled, a break always occurs at the beginning of the time base routine when stepping RETI).
Disable the corresponding interrupts when the debug on the corresponding interrupt process routines becomes unnecessary.

- Break function

If the target address of a hardware break (including an event break) is set to the address currently contained in the system stack pointer or in the area containing the stack pointer, the user program causes a break after execution of one instruction even though there is no actual data access instruction in the user program.
To prevent this, do not set (word) access to the area containing the address of the system stack pointer as the target of a hardware break (including an event break).

- Operand break

If a stack pointer exists in the area which is set as the DSU operand break, malfunctions may occur. Do not set the access to the areas containing the address of system stack pointer as a target of data event break.

MB91460 Series

DSU4 (ICE) DEDICATED CONNECTION PINS
MB91461 DSU4 (ICE) dedicated connection pins

Pin no.	Pin name	Function
93 to 90	ICD3 to ICD0	Data input/output pins for development tool
96 to 94	ICS2 to ICS0	Status output pins for development tool
97	ICLK	Clock pin for development tool
98	BREAK	Break pin for development tool
130	TRST	Reset pin for development tool $(3 \mathrm{~V} / 5 \mathrm{~V}$ supported input pin)

- User target side connector and the MB91461 connection

The recommended connector for the user target side is shown below.
Manufacturer : YAMAICHI ELECTRONICS CO., LTD.
Model number : FAP-20-08\#*
Note : The asterisk (*) in the model number represents each of the following pin shapes:
-1 : Right angle/wrapping

- 2 : Right angle/solder dip
- 4 : Straight/solder dip

MB91460 Series

Connector pin no.	Signal line name	I/O		Pin handling
1	EVCC2	I	Open	
2	EVCC3	1	Open	
3	DSUIO	I/O	Open	
4	UVCC	0	User Vcc 0	
6	XRSTIN	0	Connected	cuit $\overline{\text { INIT }}$ signal
8	PLVL	I	Open	
5	XTRST	1	MB91461	Connected to TRST (130 pin)
7	XINIT	I		Connected to $\overline{\text { INIT (131 pin) }}$
9	GND	-		Connected to VSS
10	BREAK	1		Connected to BREAK (98 pin)
11	ICD3	I/O		Connected to ICD3 (93 pin)
12	ICD2			Connected to ICD2 (92 pin)
13	ICD1			Connected to ICD1 (91 pin)
14	ICDO			Connected to ICDO (90 pin)
15	GND	-		Connected to VSS
16	ICS2	0		Connected to ICS2 (96 pin)
17	ICS1			Connected to ICS1 (95 pin)
18	ICSO			Connected to ICSO (94 pin)
19	GND	-		Connected to VSS
20	ICLK	0		Connected to ICLK (97 pin)

MB91460 Series

Handling of dedicated pin for DSU4 (ICE) in mass production

Handling of dedicated pin for DSU4 (ICE) in mass production

MB91461 pin no.	Pin name	Pin handling
93 to 90	ICD3 to ICD0	Open
96 to 94	ICS2 to ICS0	Open
97	ICLK	Open
98	BREAK	Open
130	$\overline{\text { TRST }}$	Connected to $\overline{\text { INIT }}$ (131 pin: external reset input pin)

Connection handling of the reset pin (TRST) for development tool (DSU) in mass production
\square
Since the reset pin (TRST) for development tool is the input pin supporting $3 \mathrm{~V} / 5 \mathrm{~V}$, it can be connected to $\overline{\mathrm{INIT}}$ pin directly.

MB91460 Series

BLOCK DIAGRAM

MB91460 Series

- CPU AND CONTROL UNIT

The FR family CPU is a high performance core that is designed based on the RISC architecture with advanced instructions for embedded applications.

1. Features

- Adoption of RISC architecture

Basic instruction: 1 instruction per cycle

- General-purpose registers: 32-bit $\times 16$ registers
- 4 Gbytes linear memory space
- Multiplier installed

32-bit $\times 32$-bit multiplication: 5 cycles
16-bit $\times 16$-bit multiplication: 3 cycles

- Enhanced interrupt processing function Quick response speed (6 cycles)
Multiple-interrupt support
Level mask function (16 levels)
- Enhanced instructions for I/O operation

Memory-to-memory transfer instruction Bit processing instruction

- Basic instruction word length: 16 bits
- Low-power consumption

Sleep mode/stop mode/shutdown mode

MB91460 Series

2. Internal architecture

The FR family CPU uses the Harvard architecture in which the instruction bus and data bus are independent of each other.
A 32 -bit $\leftrightarrow 16$-bit bus adapter is connected to the 32 -bit bus (D-bus) to provide an interface between the CPU and peripheral resources.
A Harvard \leftrightarrow Princeton bus converter is connected to both the I-bus and D-bus to provide an interface between the CPU and the bus controller.
The following figure shows the internal architecture structure.

MB91460 Series

3. Programming model

- Basic programming model

MB91460 Series

4. Registers

- General-purpose register
\square
Registers R0 to R15 are general-purpose registers. These registers can be used as accumulators for computation operations and as pointers for memory access.

Of the 16 registers, enhanced commands are provided for the following registers to enable their use for particular applications.

R13 : Virtual accumulator
R14 : Frame pointer
R15 : Stack pointer

Initial values at reset are undefined for R0 to R14. The value for R15 is 00000000 н (SSP value).

- PS (Program Status)

This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.
All undefined bits $(-)$ in the diagram are reserved bits. The read values are always " 0 ". Write access to these bits is invalid.

MB91460 Series

- CCR (Condition Code Register)

bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0 Initial value

S : Stack flag
I : Interrupt enable flag
N : Negative enable flag
Z : Zero flag
V : Overflow flag
C : Carry flag

- SCR (System Condition Register)

bit 10	bit 9	bit 8	Initial va
D1	D0	T	

Flag for step multiplication (D1, D0)
This flag stores interim data during execution of step multiplication.
Step trace trap flag (T)
This flag indicates whether the step trace trap is enabled or disabled.
The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution of user programs.

- ILM
bit 20 bit 19 bit 18 bit 17 bit 16 Initial value

ILM4	ILM3	ILM2	ILM1	ILM0
01111B				

This register stores interrupt level mask values, and the values stored in ILM4 to ILM0 are used for level masking.
The register is initialized to value "01111b" at reset.

- PC (Program Counter)

The program counter indicates the address of the instruction that is being executed.
The initial value at reset is undefined.

MB91460 Series

- TBR (Table Base Register)

The table base register stores the starting address of the vector table used in EIT processing.
The initial value at reset is 000FFCOOн.

- RP (Return Pointer)
\square

The return pointer stores the address for return from subroutines.
During execution of a CALL instruction, the PC value is transferred to this RP register.
During execution of a RET instruction, the contents of the RP register are transferred to PC.
The initial value at reset is undefined.

- USP (User Stack Pointer)

The user stack pointer, when the S flag is " 1 ", this register functions as the R15 register.

- The USP register can also be explicitly specified.

The initial value at reset is undefined.

- This register cannot be used with RETI instructions.
- Multiply \& divide registers
\square

These registers are for multiplication and division, and are each 32 bits in length.
The initial value at reset is undefined.

MB91460 Series

MODE SETTING

In the FR family, the mode pins (MD2, MD1, MD0) and the mode register (MODR) are used to set the operating mode.

1. Mode pins

The three pins MD2, MD1, MD0 are used to specify the mode vector fetch related settings.
Settings other than shown in the table are not allowed.

Mode pins*			Mode name	Reset vector access area	Remarks	
MD2	MD1	MD0		Internal	Not allowed	
0	0	0	Internal ROM mode vector	Exal	Bus width is set by mode register.	
0	0	1	External ROM mode vector	External		

*: Always use MD3 with " 0 ".
Note : The FR family does not support the external mode vector fetch using multiplex bus.

2. Mode register (MODR)

The data written to the mode register using mode vector fetch is called mode data.
After the mode register (MODR) is set, the device operates according to the operation mode set in this register.
The mode register is set by all reset sources. User programs cannot write data to the mode register.
Rewriting is allowed in the emulator mode. In this case, use an 8-bit length data transfer instruction.
A 16/32-bit length transfer instruction cannot be used for writing.
Description of the mode register is given below.
[Mode register description]
\square

[bit7 to bit3] Reserved bits

Be sure to set these bits to "00000s".
Operation is not guaranteed when any value other than "000008" is set.

[bit2] ROMA (Internal enable bit)

The ROMA bit is used to set whether to enable the internal F-bus RAM and F-bus ROM areas.

ROMA	Function	Remarks
0	External ROM mode	Internal F-bus RAM becomes valid. The internal ROM area $\left(40000_{H}\right.$ to FFFFFH) is used as an external area.
1	Internal ROM mode	Internal F-bus RAM and F-bus ROM become valid.

Note : Use "0" in MB91461.

MB91460 Series

[bit1, bit0] WTH1, WTH0 (Bus width setting bits)
These bits are used to set the bus width to be used in the external bus mode.
When the operation mode is the external bus mode, these values are set in bits BW1 and BW0 in AMDO (CS0 area).

WTH1	WTH0	Function	Remarks
0	0	8-bit bus width	External bus mode
0	1	16 -bit bus width	External bus mode
1	0	-	Setting disabled
1	1	Single chip mode	Setting disabled

MB91460 Series

MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) available to the CPU by linear access.

- Direct addressing area

The following address space area is used for I/O.
This area is called direct addressing area, and the address of an operand can be specified directly in an instruction.
The size of directly addressable area depends on the length of the data being accessed as shown below.
Byte data access : 000н to 0FFн
Half word access : 000 to 1FFн
Word data access : 000 н to 3FFH

2. Memory map

MB91461

Each mode is set depending on the mode vector fetch after INIT is negated. (For details on mode settings, refer to "■ MODE SETTING".)

MB91460 Series

I/O MAP

Note : Initial values of register bits are represented as follows:
" 1 " : Initial value" 1 "
" 0 " : Initial value " 0 "
" X" : Initial value " undefined"
" - " : No physical register at this location
Access is barred with an undefined data access attribute.

MB91460 Series

Address	Register				Block
	0	1	2	3	
000000н	Reserved				R-bus port data register
000004H	Reserved				
000008н	Reserved				
00000С ${ }^{\text {¢ }}$	Reserved		PDR14 [R/W] B, H $---X X X X$		
000010н	PDR16 [R/W] B, H X------	PDR17 [R/W] B,H XXXXXXXX		PDR19 [R/W] B,H -xxx-xxx	
000014	PDR20 [R/W] B,H -XXX-XXX	PDR21 [R/W] B,H -XXX-XXX	PDR22 [R/W] B,H XXXXXX-X	PDR23 [R/W] B,H -X-XXXXX	
000018H	PDR24 [R/W] B,H XXXXXXXX	Reserved			
00001CH	PDR28 [R/W] B,H ---XXXXX	PDR29 [R/W] B,H XXXXXXXX	Reserved		
000020н	Reserved				
$\begin{array}{\|c\|} \hline 000024_{\mathrm{H}} \\ \text { to } \\ 00002 \mathrm{C}_{\mathrm{H}} \end{array}$	Reserved				Reserved
000030н	EIRRO [R/W] B 00000000	ENIRO [R/W] B 00000000	ELVRO [R/W] B,H0000000000000000		External interrupt (INT0 to INT7) NMI
000034н	EIRR1 [R/W] B 00000000	ENIR1 [R/W] B 00000000	ELVR1 [R/W] B,H 0000000000000000		External interrupt (INT 8 to INT15)
000038	$\begin{gathered} \text { DICR }[\text { R/W] B } \\ -----0 \end{gathered}$	$\begin{gathered} \hline \text { HRCL [R/W] B } \\ 0--11111 \end{gathered}$	Reserved		Delay interrupt
00003C ${ }_{\text {H }}$	Reserved				Reserved
000040н	$\begin{gathered} \text { SCRO0 [R/W,W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SMR00 [R/W,W] } \\ B, H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \text { SSR00 [R/W,R] } \\ \text { B,H,W } \\ 00001000 \end{gathered}$	RDR00/TDR00 [R/W] B,H,W 00000000	UART (LIN) 0
000044н	$\begin{gathered} \text { ESCR00 [R/W] } \\ \text { B,H } \\ 00000 \times 00 \end{gathered}$	ECCRO0 [R/W,R,W] B,H $-00000 X X$	Reserved		
000048 +	$\begin{gathered} \hline \text { SCR01 [R/W,W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { SMR01 [R/W,W] } \\ B, H, W \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { SSR01 [R/W,R] } \\ \text { B,H,W } \\ 00001000 \end{gathered}$	RDR01/TDR01 [R/W] B,H,W 00000000	LIN-UART 1
00004CH	$\begin{gathered} \text { ESCR01 [R/W] } \\ \text { B,H } \\ 00000 \times 00 \end{gathered}$	$\begin{gathered} \text { ECCRO1 } \\ {[\mathrm{R} / \mathrm{W}, \mathrm{R}, \mathrm{~W}] \mathrm{B}, \mathrm{H}} \\ -00000 \mathrm{XX} \end{gathered}$	Reserved		

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000050н	SCR02 [R/W,W] B,H,W 00000000	SMR02 [R/W,W] B,H,W 00000000	SSR02 [R/W,R] B,H,W 00001000	RDR02/TDR02 [R/W] B,H,W 00000000	LIN-UART 2
000054н	ESCR02 [R/W]B,H 00000X00	$\begin{aligned} & \text { ECCR02 } \\ & {[R / W, R, W] B, H} \\ & -00000 X X \end{aligned}$	Reserved		
000058н	SCR03 [R/W,W] B,H,W 00000000	SMR03 [R/W,W] B,H,W 00000000	SSR03 [R/W,R] B,H,W 00001000	$\begin{gathered} \hline \text { RDR03/TDR03 } \\ \text { [R/W] B,H,W } \\ 00000000 \end{gathered}$	LIN-UART 3
00005Сн	$\begin{aligned} & \text { ESCR03 } \\ & \text { [R/W] B,H } \\ & 00000 \times 00 \end{aligned}$	$\begin{aligned} & \text { ECCR03 } \\ & {[R / W, R, W] B, H} \\ & -00000 X X \end{aligned}$	Reserved		
000060н	$\begin{gathered} \hline \text { SCR04 [R/W,W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { SMR04 [R/W,W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { SSR04 [R/W,R] } \\ \text { B,H,W } \\ 00001000 \end{gathered}$	$\begin{gathered} \hline \text { RDR04/TDR04 } \\ {[R / W] B, H, W} \\ 00000000 \end{gathered}$	LIN-UART 4
000064н	ESCR04 [R/W] B,H,W 00000X00	$\begin{gathered} \text { ECCR04 } \\ {[R / W, R, W] B, H, W} \\ -00000 X X \end{gathered}$	$\begin{gathered} \text { FSR04 [R] } \\ \text { B,H,W } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { FCR04 [R/W] } \\ \text { B,H,W } \\ 0001-000 \end{gathered}$	
000068н	SCR05 [R/W,W] B,H,W 00000000	SMR05 [R/W,W] B,H,W 00000000	SSR05 [R/W,R] B,H,W 00001000	$\begin{aligned} & \text { RDR05/TDR05 } \\ & \text { [R/W] B,H,W } \\ & 00000000 \end{aligned}$	LIN-UART 5
00006CH	ESCR05 [R/W] B,H,W 00000X00	ECCR05 [R/W,R,W] B,H,W $-00000 X X$	$\begin{gathered} \hline \text { FSR05 [R] } \\ \text { B,H,W } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { FCR05 [R/W] } \\ \text { B,H,W } \\ 0001-000 \end{gathered}$	
000070н	SCR06 [R/W,W] B,H,W 00000000	SMR06 [R/W,W] B,H,W 00000000	$\begin{gathered} \hline \text { SSR06 [R/W,R] } \\ \text { B,H,W } \\ 00001000 \end{gathered}$	$\begin{gathered} \hline \text { RDR06/TDR06 } \\ {[R / W] \text { B,H,W }} \\ 00000000 \end{gathered}$	LIN-UART 6
000074H	ESCR06 [R/W] B,H,W 00000X00	$\begin{gathered} \text { ECCR06 } \\ {[R / W, R, W] B, H, W} \\ -00000 X X \end{gathered}$	$\begin{gathered} \text { FSR06 [R] } \\ \text { B,H,W } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { FCR06 [R/W] } \\ \text { B,H,W } \\ 0001-000 \end{gathered}$	
$\begin{aligned} & 000078 \mathrm{H} \\ & \text { to } \\ & 00007 \mathrm{CH}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
000080н	BGR100 [R/W] B,H,W 00000000	BGR000 [R/W] B,H,W 00000000	BGR101 [R/W] B,H,W 00000000	BGR001 [R/W] B,H,W 00000000	Baud rate generator UART (LIN) 0 to 6
000084н	$\begin{gathered} \text { BGR102 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR002 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR103 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR003 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	
000088н	BGR104 [R/W] B,H,W 00000000	BGR004 [R/W] B,H,W 00000000	BGR105 [R/W] B,H,W 00000000	BGR005 [R/W] B,H,W 00000000	

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
00008CH	$\begin{gathered} \text { BGR106 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { BGR006 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	Reserved		Baud rate generator UART (LIN) 0 to 6
$\begin{gathered} 000090_{\mathrm{H}} \\ \text { to } \\ 0000 \text { C }_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
0000D0н	$\begin{gathered} \hline \text { IBCRO [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { IBSRO [R] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { ITBAHO }[\text { R/W] B, H } \\ ----00 \end{gathered}$	ITBALO [R/W] B,H 00000000	${ }^{2} \mathrm{C} 0$
0000D4H	$\begin{gathered} \text { ITMKHO }[\text { R/W] B,H } \\ 00---11 \end{gathered}$	$\begin{gathered} \text { ITMKLO [R/W] B,H } \\ 11111111 \end{gathered}$	$\begin{gathered} \hline \text { ISMKO [R/W] B,H } \\ 01111111 \end{gathered}$	$\begin{gathered} \text { ISBAO [R/W] B,H } \\ -0000000 \end{gathered}$	
0000D8н	Reserved	IDARO [R/W] B,H 0000000	$\begin{gathered} \hline \text { ICCRO }[\mathrm{R} / \mathrm{W}] \mathrm{B} \\ -0011111 \end{gathered}$	Reserved	
0000DCH	$\begin{gathered} \hline \text { IBCR1 [R/W] B,H } \\ 00000000 \end{gathered}$	IBSR1 [R] B,H 00000000	ITBAH1 [R/W] B, H	ITBAL1 [R/W] B,H 00000000	${ }^{2} \mathrm{C}$ ¢ 1
0000EО ${ }_{\text {H }}$	ITMKH1 [R/W] B,H $00---11$	$\begin{gathered} \text { ITMKL1 [R/W] B,H } \\ 11111111 \end{gathered}$	$\begin{gathered} \text { ISMK1 [R/W] B,H } \\ 01111111 \end{gathered}$	$\begin{gathered} \text { ISBA1 [R/W] B,H } \\ -0000000 \end{gathered}$	
0000E4н	Reserved	IDAR1 [R/W] B,H 00000000	$\begin{gathered} \hline \text { ICCR1 [R/W] B } \\ -0011111 \end{gathered}$	Reserved	
$\begin{gathered} \hline 0000 \mathrm{E} 8 \mathrm{H} \\ \text { to } \\ 0000 \mathrm{FC} \end{gathered}$	Reserved				Reserved
000100	$\begin{gathered} \hline \text { GCN10 [R/W] B,H } \\ 0011001000010000 \end{gathered}$		Reserved	$\begin{gathered} \hline \text { GCN20 }[\mathrm{R} / \mathrm{W}] \mathrm{B} \\ ---0000 \end{gathered}$	$\begin{gathered} \hline \text { PPG control } \\ 0 \text { to } 3 \end{gathered}$
000104н	$\begin{gathered} \text { GCN11 [R/W] B,H } \\ 0011001000010000 \end{gathered}$		Reserved	$\begin{gathered} \text { GCN21 [R/W] B } \\ ----0000 \end{gathered}$	$\begin{gathered} \hline \text { PPG control } \\ 4 \text { to } 7 \end{gathered}$
000108H	Reserved				Reserved
000110н	$\begin{gathered} \text { PTMR00 [R] H } \\ 1111111111111111 \end{gathered}$		PCSR00 [W] H XXXXXXXX XXXXXXXX		PPG 0
000114н	PDUT00 [W] H XXXXXXXX XXXXXXXX		$\begin{gathered} \hline \text { PCNH00 [R/W] } \mathrm{B}, \mathrm{H} \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL00 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	
000118H	PTMR01 [R] H1111111111111111		PCSR01 [W] H XXXXXXXX XXXXXXXX		PPG 1
00011CH	$\begin{gathered} \text { PDUT01 [W] H } \\ \text { XXXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \text { PCNH01 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL01 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	
000120н	PTMR02 [R] H111111111111111		$\begin{gathered} \text { PCSR02 [W] H } \\ X X X X X X X X X X X X X X X \end{gathered}$		PPG 2
000124H	PDUT02 [W] H XXXXXXXX XXXXXXXX		$\begin{gathered} \hline \text { PCNH02 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL02 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000128н	$\begin{gathered} \text { PTMR03 [R] H } \\ 111111111111111 \end{gathered}$		PCSR03 [W] H XXXXXXXX XXXXXXXX		PPG 3
00012CH	$\begin{gathered} \text { PDUT03 [W] H } \\ \text { XXXXXXXXXXXXXX } \end{gathered}$		$\begin{gathered} \hline \text { PCNH03 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL03 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	
000130	$\begin{gathered} \text { PTMR04 [R] H } \\ 1111111111111111 \end{gathered}$		PCSR04 [W] H XXXXXXXX XXXXXXXX		PPG 4
000134	PDUT04 [W] H XXXXXXXX XXXXXXXX		$\begin{gathered} \hline \text { PCNH04 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL04 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	
000138	$\begin{gathered} \text { PTMR05 [R] H } \\ 11111111 \text { 11111111 } \end{gathered}$		PCSR05 [W] H XXXXXXXX XXXXXXXX		PPG 5
00013С	PDUT05 [W] H XXXXXXXX XXXXXXXX		$\begin{gathered} \text { PCNH05 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL05 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	
000140	$\begin{gathered} \text { PTMR06 [R] H } \\ 1111111111111111 \end{gathered}$		PCSR06 [W] H XXXXXXXX XXXXXXXX		PGG 6
000144н	PDUT06 [W] H XXXXXXXX XXXXXXXX		$\begin{gathered} \text { PCNH06 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL06 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	
000148	PTMR07 [R] H 1111111111111111		PCSR07 [W] H XXXXXXXX XXXXXXXX		PPG 7
00014CH	PDUT07 [W] H XXXXXXXX XXXXXXXX		$\begin{gathered} \mathrm{PCNH07}[\mathrm{R} / \mathrm{W}] \\ \mathrm{B}, \mathrm{H} \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PCNL07 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	
$\begin{gathered} 000170_{\mathrm{H}} \\ \text { to } \\ 00017 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
000180н	Reserved	ICS01 [R/W] B 00000000	Reserved	$\begin{aligned} & \text { ICS23 [R/W] B } \\ & 00000000 \end{aligned}$	Input capture0 to 3
000184н	IPCPO [R] H XXXXXXXX XXXXXXXX		IPCP1 [R] H XXXXXXXX XXXXXXXX		
000188H	IPCP2 [R] H XXXXXXXX XXXXXXXX		IPCP3 [R] HXXXXXXXX XXXXXXXX		
00018C	$\begin{gathered} \text { OCS01 [R/W] } \\ 1110110000001100 \end{gathered}$		$\begin{gathered} \hline \text { OCS23 [R/W] } \\ 1110110000001100 \end{gathered}$		Output compare 0 to 3
000190н	OCCPO [R/W] H XXXXXXXX XXXXXXXX		OCCP1 [R/W] H XXXXXXXX XXXXXXXX		
000194	OCCP2 [R/W] H XXXXXXXX XXXXXXXX		OCCP3 [R/W] H XXXXXXXX XXXXXXXX		

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
$\begin{gathered} \hline 000198 \mathrm{H} \\ \text { to } \\ 00019 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
0001AOH	ADERH [R/W] B,H,W 0000000000000000		ADERL [R/W] B,H,W 0000000000000000		A/D converter
0001A4н	ADCS1 [R/W] B,H 00000000	ADCSO [R/W] B,H 00000000	$\begin{aligned} & \text { ADCR1 [R] B,H } \\ & 000000 \mathrm{XX} \end{aligned}$	ADCRO [R] B,H XXXXXXXX	
0001A8H	ADCT1 [R/W] B,H 00010000	ADCTO [R/W] B,H 00101100	$\begin{gathered} \text { ADSCH [R/W] B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { ADECH }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ --00000 \end{gathered}$	
0001 ACH	Reserved				Reserved
0001B0н	TMRLRO [W] H XXXXXXXX XXXXXXXX		TMR0 [R] H XXXXXXXX XXXXXXXX		$\begin{aligned} & \text { Reload timer } 0 \\ & (\text { PPG } 0,1) \end{aligned}$
0001B4н	Reserved		$\begin{gathered} \text { TMCSRCO [R/W] } \\ \text { B,H } \\ --00000 \end{gathered}$	$\begin{gathered} \text { TMCSRCO [R/W] } \\ \text { B,H } \\ 0-000000 \end{gathered}$	
0001B8н	TMRLR1 [W] H XXXXXXXX XXXXXXXX		TMR1 [R] H XXXXXXXX XXXXXXXX		Reload timer 1 (PPG 2, 3)
0001BCH	Reserved		$\begin{gathered} \hline \text { TMCSRC1 [R/W] } \\ \text { B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \hline \text { TMCSRC1 [R/W] } \\ \text { B,H } \\ 0-000000 \end{gathered}$	
0001COH	TMRLR2 [W] H XXXXXXXX XXXXXXXX		TMR2 [R] H XXXXXXXX XXXXXXXX		$\begin{aligned} & \text { Reload timer } 2 \\ & (\text { PPG 4, 5) } \end{aligned}$
0001C4н	Reserved		$\begin{gathered} \text { TMCSRC2 [R/W] } \\ \text { B,H } \\ --00000 \end{gathered}$	$\begin{gathered} \hline \text { TMCSRC2 [R/W] } \\ \text { B,H } \\ 0-000000 \end{gathered}$	
0001C8H	TMRLR3 [W] H XXXXXXXX XXXXXXXX		TMR3 [R] H XXXXXXXX XXXXXXXX		Reload timer 3 (PPG 6, 7)
0001СС	Reserved		$\begin{gathered} \hline \text { TMCSRC3 [R/W] } \\ \text { B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \hline \text { TMCSRC3 [R/W] } \\ \text { B,H } \\ 0-000000 \end{gathered}$	
$\begin{gathered} \hline 0001 \mathrm{DOH} \\ \text { to } \\ 0001 \mathrm{E} 4 \mathrm{H} \end{gathered}$	Reserved				Reserved
0001E8н	TMRLR7 [W] H XXXXXXXX XXXXXXXX		TMR7 [R] H XXXXXXXX XXXXXXXX		Reload timer 7 (A/D converter)
0001ECH	Reserved		$\begin{gathered} \text { TMCSRC7 [R/W] } \\ \text { B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { TMCSRC7 [R/W] } \\ \text { B,H } \\ 0-000000 \end{gathered}$	
0001FOн	TCDTO [R/W] H XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \text { TCCSO [R/W] } \\ -0000000 \end{gathered}$	Free-run timer 0 (ICU 0, 1)

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
0001F4н	TCDT1 [R/W] H XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \text { TCCS1 [R/W] } \\ -0000000 \end{gathered}$	Free-run timer 1 (ICU 2, 3)
0001F8н	TCDT2 [R/W] H XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \text { TCCS2 [R/W] } \\ -0000000 \end{gathered}$	Free-run timer 2 (OCU 0, 1)
0001FCH	TCDT3 [R/W] H XXXXXXXX XXXXXXXX		Reserved	$\begin{gathered} \text { TCCS3 [R/W] } \\ -0000000 \end{gathered}$	Free-run timer 3 (OCU 2, 3)
000200 ${ }_{\text {H }}$	DMACAO [R/W] B,H,W*1 00000000 0000XXXX XXXXXXXX XXXXXXXX				DMAC
000204	$\begin{gathered} \text { DMACBO [R/W] B,H,W } \\ 0000000000000000 \text { XXXXXXXX XXXXXXXX } \end{gathered}$				
000208н	DMACA1 [R/W] B,H,W*1 $000000000000 X X X X$ XXXXXXXX XXXXXXXX				
00020砛	$\begin{gathered} \text { DMACB1 [R/W] B,H,W } \\ 0000000000000000 \text { XXXXXXXX XXXXXXXX } \end{gathered}$				
000210н	DMACA2 [R/W] B,H,W*100000000 0000XXXX XXXXXXXX XXXXXXXX				
000214	DMACB2 [R/W] B,H,W 0000000000000000 XXXXXXXX XXXXXXXX				
000218	DMACA3 [R/W] B,H,W*1$000000000000 X X X X$ XXXXXXXX XXXXXXXX				
$00021 \mathrm{CH}_{\mathrm{H}}$	DMACB3 [R/W] B,H,W0000000000000000 XXXXXXXX XXXXXXXX				
000220 ${ }^{\text {H }}$	DMACA4 [R/W] B,H,W** $000000000000 \times X X X$ XXXXXXXX XXXXXXXX				
000224	DMACB4 [R/W] B,H,W 0000000000000000 XXXXXXXX XXXXXXXX				
$\begin{gathered} \hline 000228_{\mathrm{H}} \\ \text { to } \\ 00023 \text { C }_{\mathrm{H}} \end{gathered}$	Reserved				
000240	$\begin{gathered} \text { DMACR [R/W] } \\ \text { B,H,W } \\ 00--0000 \end{gathered}$		Reserved		
$\begin{gathered} 000244 \mathrm{H} \\ \text { to } \\ 000254 \mathrm{H} \end{gathered}$					
$\begin{gathered} \hline 000258 \mathrm{H} \\ \text { to } \\ 000364 \mathrm{H} \end{gathered}$					

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000368н	IBCR2 [R/W] B,H 00000000	IBSR2 [R] B,H 00000000	ITBAH2 [R/W] B, H	ITBAL2 [R/W] B,H 00000000	
00036C ${ }_{\text {H }}$	ITMKH2 [R/W] B,H	$\underset{11111111}{\mid T M K L} \mid$	ISMK2 [R/W] B,H 01111111	ISBA2 [R/W] B,H -0000000	$1^{2} \mathrm{C} 2$
000370н	Reserved	$\begin{gathered} \text { IDAR2 [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{aligned} & \hline \text { ICCR2 [R/W] B } \\ & -0011111 \end{aligned}$	Reserved	
$\begin{array}{\|c} \hline 000374 \mathrm{H} \\ \text { to } \\ 0003 \mathrm{BC} \end{array}$	Reserved				Reserved
0003С0н	Reserved				
0003C4H	Reserved			$\underset{-----11}{ }$	Instruction cache
0003DOH	Reserved				Reserved
0003E4н	Reserved			$\begin{gathered} \text { ICHRC [R/W] B } \\ 0-000000 \end{gathered}$	Instruction cache
$\begin{array}{\|c} \hline 0003 E 8 \mathrm{H} \\ \text { to } \\ 0003 \mathrm{EC} \end{array}$	Reserved				Reserved
0003FOн	BSDO [W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				Bit search module
0003F4н	BSD1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003F8н	BSDC [W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
0003FCH	$\begin{gathered} \text { BSRR [R] W W } \\ \text { XXXXXXXX XXXXXXXXXXXXXXXXXXXXXX} \end{gathered}$				
$\begin{gathered} \hline 000400_{H} \\ \text { to } \\ 00043 C_{H} \end{gathered}$	Reserved				Reserved
000440н	$\begin{gathered} \text { ICROO [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR01 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR02 [R/W] } \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR03 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	Interrupt controller
000444н	$\begin{gathered} \text { ICR04 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR05 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR06 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR07 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
000448н	$\begin{gathered} \hline \text { ICR08 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR09 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	Reserved	$\begin{gathered} \hline \text { ICR11 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
00044CH	$\begin{gathered} \text { ICR12 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR13 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	Reserved		

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000450н	$\begin{gathered} \hline \text { ICR16 [R/W] } \\ \text { B,H,W } \\ --11111 \end{gathered}$	Reserved		$\begin{gathered} \hline \text { ICR19 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	Interrupt controller
000454н	$\begin{gathered} \hline \text { ICR20 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR21 [R/W] } \\ \mathrm{B}, \mathrm{H}, \mathrm{~W} \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR22 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR23 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
000458H	Reserved	$\begin{gathered} \hline \text { ICR25 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR26 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR27 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
00045CH	Reserved	$\begin{gathered} \text { ICR29 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	Reserved		
000460н	Reserved				
000464н	Reserved		$\begin{gathered} \hline \text { ICR38 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
000468	Reserved		$\begin{gathered} \text { ICR42 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR43 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
00046C ${ }_{\text {H }}$	Reserved				
000470н	$\begin{gathered} \hline \text { ICR48 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR49 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR50 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR51 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
000474	Reserved				
000478	Reserved		$\begin{gathered} \text { ICR58 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR59 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
00047С ${ }^{\text {¢ }}$		ved	$\begin{gathered} \hline \text { ICR62 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR63 [R/W] } \\ \text { B,H,W } \\ ---11111 \end{gathered}$	
000480н	$\begin{gathered} \hline \text { RSRR [R/W] } \\ \text { B,H,W } \\ 10000000 \end{gathered}$	$\begin{gathered} \hline \text { STCR [R/W] } \\ \text { B,H,W } \\ 00110011 \end{gathered}$	$\begin{gathered} \hline \text { TBCR [R/W] } \\ \text { B,H,W } \\ \text { X0000X00 } \end{gathered}$	CTBR [W] B,H,W XXXXXXXX	
000484н	$\begin{gathered} \text { CLKR [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	WPR [W] B,H,W XXXXXXXX	$\begin{gathered} \text { DIVRO [R/W] } \\ \text { B,H,W } \\ 000000011 \end{gathered}$	$\begin{gathered} \text { DIVR1 [R/W] } \\ \text { B,H,W } \\ 00000000 \end{gathered}$	Clock control
000488H		Res			Reserved

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
00048С ${ }^{\text {¢ }}$	$\begin{gathered} \hline \text { PLLDIVM [R/W] } \\ \text { B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \hline \text { PLLDIVN [R/W] } \\ \text { B,H } \\ ---00000 \end{gathered}$	Reserved		PLL interface
000490	Reserved				Reserved
$\begin{gathered} \hline 000494 н \\ \text { to } \\ 00049 \text { C }_{H} \end{gathered}$	Reserved				
0004AOн	Reserved	WTCER [R/W] B,H -----00	WTCR [R/W] B,H 00000000 000-00-0		Real-time clock
0004A4н	Reserved	WTBR [R/W] B, B,H ----XXXXX XXXXXXXX XXXXXXXX			
0004A8H	$\begin{gathered} \text { WTHR }[R / W] \text { B, } \\ -- \text {-XXXXX } \end{gathered}$	WTMR [R/W] B,H $--X X X X X X$	WTSR [R/W] B --XXXXXX	Reserved	
$\begin{gathered} 0004 \mathrm{AC}_{\mathrm{H}} \\ \text { to } \\ 0004 \mathrm{BC}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
0004C0н	$\begin{gathered} \hline \text { CANPRE [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	Reserved			CAN (clock control)
0004C4н	Reserved			$\begin{gathered} \text { HWDCS [R/W,W] } \\ \text { B } \\ 00011000 \end{gathered}$	Hardware watchdog
0004C8H	$\begin{gathered} \text { OSCR [R/W] B,H } \\ 00---000 \end{gathered}$	Reserved			Interval timer
0004ССн	Reserved				Reserved
0004D0н	Reserved				
0004D4н	$\begin{gathered} \text { SHDE [R/W] B } \\ 0------ \end{gathered}$	Reserved	$\begin{gathered} \text { EXTE [R/W] B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EXTF [R/W] B,H } \\ 00000000 \end{gathered}$	Shutdown controller
0004D8H	EXTLV [R/W] B,H		Reserved		
$\begin{array}{\|c} \hline 0004 \mathrm{DC} \\ \text { to } \\ 00063 \mathrm{C}_{\mathrm{H}} \end{array}$	Reserved				Reserved
000640	ASRO [R/W] B,H,W 0000000000000000		ACRO*2 [R/W] B,H,W 1111XX00 00000000		External bus
000644H	ASR1 [R/W] B,H,W XXXXXXXX XXXXXXXX		ACR1 [R/W] B,H,W XXXXXXXX XXXXXXXX		
000648	ASR2 [R/W] B,H,W XXXXXXXX XXXXXXXX		ACR2 [R/W] B,H,W XXXXXXXX XXXXXXXX		
00064CH	ASR3 [R/W] B,H,W XXXXXXXX XXXXXXXX		ACR3 [R/W] B,H,W XXXXXXXX XXXXXXXX		

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000650н	ASR4 [R/W] B,H,W XXXXXXXX XXXXXXXX		ACR4 [R/W] B,H,W XXXXXXXX XXXXXXXX		
000654н	Reserved				
000658н	Reserved				
00065Сн	Reserved				
000660н	AWRO [R/W] B,H,W 0111111111111011		AWR1 [R/W] B,H,W XXXXXXXX XXXXXXXX		
000664н	AWR2 [R/W] B,H,W XXXXXXXX XXXXXXXX		AWR3 [R/W] B,H,W XXXXXXXX XXXXXXXX		
000668H	AWR4 [R/W] B,H,W XXXXXXXX XXXXXXXX		Reserved		
00066CH	Reserved				
000670н	Reserved				External bus
000674н	Reserved				
000678н	$\begin{gathered} \text { IOWRO }[\mathrm{R} / \mathrm{W}] \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { IOWR1 [R/W] } \\ B, H, W \\ \text { XXXXXXXX } \end{gathered}$	$\begin{gathered} \text { IOWR2 [R/W] } \\ \text { B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	Reserved	
00067Сн	Reserved				
000680н	$\begin{aligned} & \text { CSER [R/W] } \\ & \text { B,H,W } \\ & 00000001 \end{aligned}$	$\begin{gathered} \hline \text { CHER [R/W] } \\ \text { B,H,W } \\ 11111111 \end{gathered}$	Reserved	$\begin{gathered} \text { TCR }[\mathrm{R} / \mathrm{W}]^{\star 3} \\ \mathrm{~B}, \mathrm{H}, \mathrm{~W} \\ 0000 X X X X \end{gathered}$	
000684н	Reserved				
$\begin{aligned} & \text { 000688н } \\ & \text { to } \\ & 0007 \mathrm{~F} 8 \mathrm{H} \end{aligned}$	Reserved				
0007FCH	Reserved	MODR [W] B XXXXXXXX	Reserved		Mode register
$\begin{aligned} & \text { 000800H } \\ & \text { to } \\ & 000 \mathrm{CFC} \end{aligned}$	Reserved				Reserved
000D00н	Reserved				
000D04 ${ }_{\text {H }}$	Reserved				
000D08H	Reserved				R-bus port data
000D0C ${ }_{\text {н }}$	Reserved		$\begin{gathered} \hline \text { PDRD14 [R] B,H } \\ ----X X X X \end{gathered}$	$\begin{gathered} \text { PDRD15 [R] B,H } \\ ----X X X X \end{gathered}$	
000D10н	$\begin{gathered} \text { PDRD16 [R] B,H } \\ \text { X------- } \end{gathered}$	$\begin{gathered} \text { PDRD17 [R] B,H } \\ \text { XXXXXXX } \end{gathered}$	$\begin{gathered} \text { PDRD18 [R] B,H } \\ ----\mathrm{XXX} \end{gathered}$	$\begin{aligned} & \text { PDRD19 [R] B,H } \\ & \text {-XXX-XXX } \end{aligned}$	

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000D14н	$\begin{gathered} \hline \text { PDRD20 [R] B,H } \\ \text {-XXX-XXX } \end{gathered}$	$\begin{aligned} & \hline \text { PDRD21 [R] B,H } \\ & \text {-XXX-XXX } \end{aligned}$	$\begin{gathered} \hline \text { PDRD22 [R] B,H } \\ \text { XXXXX-X } \end{gathered}$	$\begin{gathered} \hline \text { PDRD23 [R] B,H } \\ -X-X X X X X \end{gathered}$	R-bus port data direct read register
000D18H	$\begin{gathered} \hline \text { PDRD24 [R] B,H } \\ \text { XXXXXXX } \end{gathered}$	Reserved			
000D1С ${ }_{\text {н }}$	$\begin{gathered} \hline \text { PDRD28 [R] B,H } \\ ---X X X X X \end{gathered}$	PDRD29 [R] B,H XXXXXXX	Reserved		
000D20н	Reserved				
$\begin{gathered} \text { 000D24н } \\ \text { to } \\ 000 \mathrm{D} 3 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
000D40н	Reserved				R-bus port direction register
000D44	Reserved				
000D48 ${ }^{\text {H }}$	Reserved				
000D4С ${ }_{\text {H }}$	Reserved		$\underset{---0000}{\text { DDR14 }}$	$\underset{---0000}{\text { DR/W] B,H }}$	
000D50н	DDR16 [R/W] B, H $0-----$	DDR17 [R/W] B,H 00000000	DDR18 [R/W] B, ---000	$\begin{gathered} \text { DDR19 }[R / W] B, H \\ -000-000 \end{gathered}$	
000D54н	DDR20 $-000-000$	$\begin{gathered} \text { DDR21 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ -000-000 \end{gathered}$	DDR22 [R/W] B,H $000000-0$	$\begin{gathered} \text { DDR23 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ -0-00000 \end{gathered}$	
000D58н	$\begin{gathered} \text { DDR24 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ ---00000 \end{gathered}$	Reserved			
000D5CH	$\underset{---00000}{\text { DDR28 [R/W] B,H }}$	DDR29 [R/W] B,H 00000000	Reserved		
000D60н	Reserved				
$\begin{gathered} \hline 000 \mathrm{D} 64 \mathrm{H} \\ \text { to } \\ 000 \mathrm{D} 7 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				Reserved
000D80н	Reserved				R-bus port function register
000D84	Reserved				
000D88H	Reserved				
000D8CH	Reserved		$\begin{gathered} \text { PFR14 } \\ ----0000 \end{gathered}$	$\begin{gathered} \hline \text { PFR15 [R/W] B,H } \\ ---0000 \end{gathered}$	
000D90н	PFR16 [R/W] B, H $0-----$	PFR17 [R/W] B,H 00000000	PFR18 [R/W] B,---000	$\begin{gathered} \hline \text { PFR19 }[R / W] B, H \\ -000-000 \end{gathered}$	

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000D94н	$\begin{gathered} \hline \text { PFR20 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ -000-000 \end{gathered}$	$\begin{gathered} \text { PFR21 }[R / W] B, H \\ -000-000 \end{gathered}$	$\begin{gathered} \hline \text { PFR22 [R/W] B,H } \\ 000000-0 \end{gathered}$	$\begin{gathered} \hline \text { PFR23 }[R / W] B, H \\ -0-00000 \end{gathered}$	R-bus port function register
000D98н	$\begin{gathered} \hline \text { PFR24 }[R / W] B, H \\ 00000000 \end{gathered}$	Reserved	Reserved	Reserved	
000D9Cн	$\begin{gathered} \text { PFR28 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ --00000 \end{gathered}$	$\begin{gathered} \text { PFR29 [R/W] B,H } \\ 00000000 \end{gathered}$	Reserved	Reserved	
000DAOH	Reserved				
$\begin{gathered} \text { 000DA4н } \\ \text { to } \\ 000 \mathrm{DBC} \end{gathered}$	Reserved				Reserved
000DCOH	Reserved				R-bus expansion port function register
000DC4H	Reserved				
000DC8H	Reserved				
000DCCH	Reserved		$\begin{gathered} \text { EPFR14 [R/W] } \\ \text { B,H } \\ ---0000 \end{gathered}$	$\begin{gathered} \text { EPFR15 [R/W] } \\ \text { B,H } \\ ----0000 \end{gathered}$	
000DD0н	$\begin{gathered} \text { EPFR16 [R/W] } \\ \text { B,------ } \end{gathered}$	$\begin{gathered} \hline \text { EPFR17 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { EPFR18[R/W] } \\ \text { B,-H } \\ ----000 \end{gathered}$	$\begin{gathered} \hline \text { EPFR19 [R/W] } \\ \text { B,H } \\ -000-000 \end{gathered}$	
000DD4н	$\begin{gathered} \text { EPFR20 [R/W] } \\ \text { B,H } \\ -000-000 \end{gathered}$	$\begin{gathered} \text { EPFR21 [R/W] } \\ \text { B,H } \\ -000-000 \end{gathered}$	$\begin{gathered} \text { EPFR22 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	$\begin{gathered} \text { EPFR23 [R/W] } \\ \text { B,H } \\ -0-00000 \end{gathered}$	
000DD8н	EPFR24 [R/W] B,H 00000000		Reserved		
000DDCн	$\begin{gathered} \text { EPFR28 [R/W] } \\ \text { B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \text { EPFR29 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	Res	rved	
O00DEOH	Reserved				
$\begin{gathered} \text { 000DE4н } \\ \text { to } \\ \text { 000DFCн } \end{gathered}$	Reserved				Reserved
$\begin{gathered} \text { 000ЕООн } \\ \text { to } \\ 000 \text { ЕЗСн } \end{gathered}$	Reserved				

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000E40н	Reserved				R-bus pin input level selection register
000E44H	Reserved				
000E48 ${ }^{\text {H }}$	Reserved				
000E4Cн	Reserved		$\begin{gathered} \text { PILR14 }[\mathrm{R} / \mathrm{W}] \mathrm{B}, \mathrm{H} \\ ---0000 \end{gathered}$	$\begin{gathered} \text { PILR15 [R/W] B,H } \\ ---0000 \end{gathered}$	
000E50н	$\begin{array}{\|c} \hline \text { PILR16 [R/W] B,H } \\ 0------ \end{array}$	$\begin{array}{\|c\|} \hline \text { PILR17 }[R / W] B, H \\ 00000000 \end{array}$	$\begin{gathered} \hline \text { PILR18 [R/W] B,H } \\ ----000 \end{gathered}$	$\begin{gathered} \text { PILR19 [R/W] B,H } \\ -000-000 \end{gathered}$	
000E54н	PILR20 [R/W] B, H $-000-000$	PILR21 [R/W] B,H $-000-000$	PILR22 [R/W] B,H $000000-0$	PILR23 [R/W] B,H $-0-00000$	
000E58н	PILR24 [R/W] B,H 00000000		Reserved		
000E5CH	$\underset{---00000}{\text { PILR28 }[R / W] ~ B, H}$	$\begin{array}{\|c\|} \hline \text { PILR29 }[R / W] B, H \\ 00000000 \end{array}$	Rese	rved	
$\begin{gathered} \text { 000E60н } \\ \text { to } \\ 000 \text { EBCH } \end{gathered}$	Reserved				
000ECOH	Reserved				R-bus port pull-up/pull-down enable register
000EC4 4	Reserved				
000EC8H	Reserved				
000ECCH	Reserved		PPER14 [R/W] B,H ---0000	$\begin{gathered} \hline \text { PPER15 [R/W] } \\ \text { B,H } \\ ---0000 \end{gathered}$	
000EDOн	$\begin{gathered} \text { PPER16 [R/W] } \\ \text { B,------ } \end{gathered}$	$\begin{gathered} \hline \text { PPER17 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { PPER18 [R/W] } \\ \text { B,-H } \\ ----000 \end{gathered}$	$\begin{gathered} \hline \text { PPER19 [R/W] } \\ \text { B,H } \\ -000-000 \end{gathered}$	
000ED4н	$\begin{gathered} \hline \text { PPER20 [R/W] } \\ \text { B,H } \\ -000-000 \end{gathered}$	$\begin{gathered} \hline \text { PPER21 [R/W] } \\ \text { B,H } \\ -000-000 \end{gathered}$	$\begin{gathered} \hline \text { PPER22 [R/W] } \\ \text { B,H } \\ 000000-0 \end{gathered}$	$\begin{gathered} \hline \text { PPER23 }[\mathrm{R} / \mathrm{W}] \\ \text { B,H } \\ -0-00000 \end{gathered}$	
000ED8H	$\begin{gathered} \hline \text { PPER24 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$		Reserved		
000EDC	$\begin{gathered} \hline \text { PPER28 }[\mathrm{R} / \mathrm{W}] \\ \text { B,H } \\ ---00000 \end{gathered}$	$\begin{gathered} \hline \text { PPER29 [R/W] } \\ \text { B,H } \\ 00000000 \end{gathered}$	Rese	rved	
000EEOH	Reserved				

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
000EE4н to O00EFCH	Reserved				Reserved
000F00 ${ }_{\text {H }}$	Reserved				R-bus port pull-up/pull-down control register
000F04 ${ }_{\text {H }}$	Reserved				
000F08 ${ }_{\text {H }}$	Reserved				
000FOCH	Reserved		$\begin{gathered} \hline \text { PPCR14 [R/W] } \\ \text { B,H } \\ ----1111 \end{gathered}$	$\begin{gathered} \hline \text { PPCR15 [R/W] } \\ \text { B,H } \\ ---1111 \end{gathered}$	
000F10н	$\begin{gathered} \hline \text { PPCR16 [R/W] } \\ \text { B,------ } \\ 1--1 \end{gathered}$	$\begin{gathered} \hline \text { PPCR17 [R/W] } \\ \text { B,H } \\ -111-111 \end{gathered}$	$\begin{gathered} \hline \text { PPCR18 [R/W] } \\ \text { B,H } \\ 111111-1 \end{gathered}$	$\begin{gathered} \hline \text { PPCR19 [R/W] } \\ \text { B,H } \\ -1-11111 \end{gathered}$	
000F14 ${ }^{\text {H }}$	$\begin{gathered} \hline \text { PPCR20 [R/W] } \\ \text { B,H } \\ -111-111 \end{gathered}$	$\begin{gathered} \hline \text { PPCR21 [R/W] } \\ \text { B,H } \\ -111-111 \end{gathered}$	$\begin{gathered} \hline \text { PPCR22 [R/W] } \\ \text { B,H } \\ 111111-1 \end{gathered}$	$\begin{gathered} \hline \text { PPCR23 [R/W] } \\ \text { B,H } \\ -1-11111 \end{gathered}$	
000F18 ${ }^{\text {+ }}$	$\begin{gathered} \text { PPCR24 [R/W] } \\ \text { B,H } \\ ---11111 \end{gathered}$	Reserved			
000F1CH	$\begin{gathered} \hline \text { PPCR28 [R/W] } \\ \text { B,H } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { PPCR29 [R/W] } \\ \text { B,H } \\ 11111111 \end{gathered}$	Reserved		
000F20H	Reserved				
$\begin{aligned} & \hline \text { 000F24н } \\ & \text { to } \\ & 000 \mathrm{~F} 3 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				Reserved
001000н	DMASAO [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				DMAC
001004н					
001008н	DMASA1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
00100Сн	DMADA1 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
001010н	DMASA2 [R/W] WXXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				
001014	DMADA2 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX				

(Continued)

MB91460 Series

Address	Register			Block
	0	2	3	
001018	DMASA3 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX			DMAC
00101CH	DMADA3 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX			
001020н	DMASA4 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX			
001024н	DMADA4 [R/W] W XXXXXXXX XXXXXXXX XXXXXXXX XXXXXXXX			
$\begin{gathered} \hline 001028 \text { н } \\ \text { to } \\ 007 \text { FFC } \end{gathered}$	Reserved			Reserved
$\begin{gathered} 008000_{\mathrm{H}} \\ \text { to } \\ 00 \mathrm{BFFC} \end{gathered}$	Reserved			
00C000н	CTRLRO [R/W] B,H 0000000000000001	STATRO [R/W] B,H0000000000000000		CAN 0 control register
00C004н	ERRCNTO [R] B,H,W 0000000000000000	BTRO [R/W] B,H,W 0010001100000001		
00C008H	INTRO [R]B,H,W 0000000000000000	TESTRO [R/W]B,H,W 00000000 X0000000		
00 COOCH	BRPEO [R/W]B,H,W 0000000000000000	Reserved		
00C010н	IF1CREQ0 [R/W] B,H 0000000000000001	IF1CMSK0 [R/W] B,H 0000000000000000		CAN 0 IF 1 register
00C014H	$\begin{gathered} \text { IF1MSK20 [R/W] B,H,W } \\ 1111111111111111 \end{gathered}$	$\begin{gathered} \hline \text { IF1MSK10 [R/W] B,H,W } \\ 11111111 \text { 11111111 } \end{gathered}$		
00C018H	IF1ARB20 [R/W] B,H,W 0000000000000000	IF1ARB10 [R/W] B,H,W 0000000000000000		
00C01CH	IF1MCTR0 [R/W] B,H,W 0000000000000000	Reserved		
00CO20н	$\begin{aligned} & \text { IF1DTA10 [R/W] B,H,W } \\ & 0000000000000000 \end{aligned}$	$\begin{aligned} & \text { IF1D } \\ & 000 \end{aligned}$	$\begin{aligned} & 3, \mathrm{H}, \mathrm{~W} \\ & 000 \end{aligned}$	
00C024	IF1DTB10 [R/W] B,H,W 0000000000000000		$\begin{aligned} & \hline, \mathrm{H}, \mathrm{~W} \\ & 000 \end{aligned}$	
$\begin{gathered} \hline 00 \mathrm{CO28} \mathrm{H} \\ \text { to } \\ 00 \mathrm{CO2CH} \end{gathered}$				
00C030н	IF1DTA20 [R/W] B,H,W	$\begin{aligned} & \mathrm{IF1D} \\ & 000 \end{aligned}$	$\begin{aligned} & 3, \mathrm{H}, \mathrm{~W} \\ & 000 \end{aligned}$	
00C034	$\begin{aligned} & \text { IF1DTB20 [R/W] B,H,W } \\ & 0000000000000000 \end{aligned}$	IF1DTB10 [R/W] B,H,W 0000000000000000		

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
$\begin{gathered} \hline 00 \mathrm{CO38H} \\ \text { to } \\ 00 \mathrm{CO} 03 \mathrm{C}_{\mathrm{H}} \end{gathered}$	Reserved				CAN 0 IF 1 register
00С040н	IF2CREQ0 [R/W] B,H 0000000000000001		IF2CMSK0 [R/W] B,H 0000000000000000		CAN 0 IF 2 register
00С044н	$\begin{gathered} \text { IF2MSK2O [R/W] B,H,W } \\ 1111111111111111 \end{gathered}$		$\begin{gathered} \text { IF2MSK10 [R/W] B,H,W } \\ 1111111111111111 \end{gathered}$		
00C048H	IF2ARB20 [R/W] B,H,W		$\begin{gathered} \text { IF2ARB10 [R/W] B,H,W } \\ 000000000000000 \end{gathered}$		
00C04CH	IF2MCTRO [R/W] B,H,W0000000000000000		Reserved		
00C050н	IF2DTA10 [R/W] B,H,W 0000000000000000		IF2DTA20 [R/W] B,H,W000000000000000		
00C054н	IF2DTB10 [R/W] B,H,W 0000000000000000		IF2DTB20 [R/W] B,H,W 0000000000000000		
00С058н to $00 \mathrm{C} 05 \mathrm{C}_{\mathrm{H}}$	Reserved				
00C060н	$\begin{aligned} & \text { IF2DTA20 [R/W] B,H,W } \\ & 0000000000000000 \end{aligned}$		$\begin{aligned} & \text { IF2DTA10 [R/W] B,H,W } \\ & 000000000000000 \end{aligned}$		
00C064н	$\begin{gathered} \text { IF2DTB20 [R/W] B,H,W } \\ 0000000000000000 \end{gathered}$		$\begin{aligned} & \text { IF2DTB10 [R/W] B,H,W } \\ & 000000000000000 \end{aligned}$		
$\begin{aligned} & \text { 00C068н } \\ & \text { to } \\ & 00 \mathrm{Co} 07 \mathrm{C} \end{aligned}$	Reserved				
00С080н	TREQR20 [R] B,H,W 0000000000000000		TREQR10 [R] B,H,W 0000000000000000		CAN 0 status flag
00C084н	Reserved				
00C088H	Reserved				
$00 \mathrm{C08CH}$	Reserved				
00C090н	NEWDT20 [R] B,H,W 0000000000000000		NEWDT10 [R] B,H,W 0000000000000000		
00C094н	Reserved				
00C098H					
$00 \mathrm{CO9CH}$					

(Continued)

MB91460 Series

(Continued)

MB91460 Series

Address	Register				Block
	0	1	2	3	
$\begin{aligned} & \hline 00 \mathrm{C} 128 \mathrm{H} \\ & \text { to } \\ & 00 \mathrm{C} 12 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				CAN 1 IF 1 register
00C130н	IF1DTA21 [R/W] B,H,W 0000000000000000		IF1DTA11 [R/W] B,H,W 0000000000000000		
00C134	IF1DTB21 [R/W] B,H,W 0000000000000000		IF1DTB11 [R/W] B,H,W 0000000000000000		
$\begin{aligned} & \hline 00 \mathrm{C} 138 \mathrm{H} \\ & \text { to } \\ & 00 \mathrm{C} 13 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				
00C140н	IF2CREQ1 [R/W]B,H		IF2CMSK1 [R/W]B,H		CAN 1 IF 2 register
00C144н	$\begin{gathered} \hline \text { IF2MSK21 [R/W]B,H,W } \\ 1111111111111111 \end{gathered}$		$\begin{gathered} \hline \text { IF2MSK11 [R/W]B,H,W } \\ 11111111 \text { 11111111 } \end{gathered}$		
00C148н	IF2ARB21 [R/W]B,H,W 0000000000000000		$\begin{aligned} & \text { IF2ARB11 [R/W]B,H,W } \\ & 0000000000000000 \end{aligned}$		
00C14CH	IF2MCTR1 [R/W]B,H,W 0000000000000000		Reserved		
00C150н	IF2DTA11 [R/W]B,H,W 0000000000000000		IF2DTA21 [R/W]B,H,W 0000000000000000		
00C154H	$\begin{aligned} & \text { IF2DTB11[R/W]B,H,W } \\ & \text { 000000000 00000000 } \end{aligned}$		$\begin{gathered} \hline \text { IF2DTB21 [R/W]B,H,W } \\ 000000000000000 \end{gathered}$		
$\begin{aligned} & 00 \mathrm{C} 158 \mathrm{H} \\ & \text { to } \\ & 00 \mathrm{C} 15 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				
00C160н	IF2DTA21 [R/W]B,H,W 0000000000000000		IF2DTA11 [R/W]B,H,W00000000 0000000		
00C164н	$\begin{gathered} \hline \text { IF2DTB21 [R/W]B,H,W } \\ 0000000000000000 \end{gathered}$		IF2DTB11 [R/W]B,H,W 0000000000000000		
$\begin{aligned} & \hline 00 \mathrm{C} 168 \mathrm{H} \\ & \text { to } \\ & 00 \mathrm{C} 17 \mathrm{C}_{\mathrm{H}} \end{aligned}$	Reserved				
00C180н	TREQR21 [R]B,H,W 0000000000000000		TREQR11 [R]B,H,W 0000000000000000		CAN 1 status flag
00C184н	Reserved				
00C188н	Reserved				
$00 \mathrm{Cl} 18 \mathrm{CH}_{\text {H }}$	Reserved				

(Continued)

MB91460 Series

(Continued)

MB91460 Series

(Continued)

Address	Register				Block
	0	1	2	3	
$\begin{array}{\|c\|} \hline 020000_{\mathrm{H}} \\ \text { to } \\ \text { 02FFFCC } \end{array}$	Reserved				Reserved
$\begin{array}{\|c\|} \hline 030000 \text { н } \\ \text { to } \\ \text { 03FFFC } \end{array}$	I/D-RAM: 64 Kbytes (instruction access is 0 wait cycle, data access is 1 wait cycle)				I/D-RAM 64 Kbytes
$\begin{gathered} 040000 \text { н } \\ \text { to } \\ 07 F F F C_{H} \end{gathered}$	External memory area (256 Kbytes)				External bus
$\begin{array}{\|c} \hline 080000_{\boldsymbol{H}} \\ \text { to } \\ \text { 0BFFFCH } \end{array}$	External memory area (256 Kbytes)				
$\begin{aligned} & \hline 0 \mathrm{COOOOH} \\ & \text { to } \\ & \text { OFFFF4н } \end{aligned}$	External memory area (256 Kbytes)				
0FFFF8\%	FMV [R]				Reset vector/ mode vector
OFFFFCH	FRV [R]				
$\begin{gathered} 100000_{\mathrm{H}} \\ \text { to } \\ 13 F F F C_{H} \end{gathered}$	External memory area (256 Kbytes)				External bus
$\begin{aligned} & 140000_{\mathrm{H}} \\ & \text { to } \\ & 17 \mathrm{FFFC} \end{aligned}$	External memory area (256 Kbytes)				
$\begin{gathered} \text { 180000н } \\ \text { to } \\ 1 \text { BFFFC } \end{gathered}$	External memory area (256 Kbytes)				
$\begin{gathered} \hline 1 \mathrm{COOOOH} \\ \text { to } \\ 1 \text { 1FFFFC } \end{gathered}$	External memory area (256 Kbytes)				
$\begin{gathered} 200000_{\mathrm{H}} \\ \text { to } \\ 2 F F F F C_{H} \end{gathered}$	External memory area (1 Mbyte)				
$\begin{gathered} 300000_{H} \\ \text { to } \\ \text { 3FFFFCH } \end{gathered}$	External memory area (1 Mbyte)				

*1 : The lower 16 bits (DTC15 to DTC0) of DMACA0 to DMACA4 cannot be accessed in bytes.
*2 : ACRO[11:10] depends on the mode vector fetch information on bus width.
*3 : TCR[3:0] INIT value $=0000$, the value is kept after RST.

MB91460 Series

INTERRUPT SOURCE TABLE

Interrupt source	Interrupt number		Interrupt level		Offset	TBR default address	Resource number*1
	Decimal	Hexadecimal	Setting register	Register address			
Reset	0	00	-	-	3FCH	000FFFFFC ${ }_{\text {H }}$	2
Mode vector	1	01	-	-	3F8H	000FFFFF8н	3
System reserved	2	02	-	-	3F4 ${ }_{\text {H }}$	000FFFFF4н	-
System reserved	3	03	-	-	3FOH	000FFFFF0н	-
System reserved	4	04	-	-	3ECH	000FFFEC ${ }_{\text {H }}$	-
System reserved	5	05	-	-	3E8н	000FFFE8н	-
System reserved	6	06	-	-	3E4н	000FFFE4 ${ }_{\text {н }}$	-
Coprocessor absent trap	7	07	-	-	3E0н	000FFFEE0н	-
Coprocessor error trap	8	08	-	-	3DCH	000FFFDCH	-
INTE instruction	9	09	-	-	3D8н	000FFFD8н	-
Instruction break exception	10	OA	-	-	3D4н	000FFFD 4 н	-
Operand break trap	11	0B	-	-	3D0н	000FFFD0н	-
Step trace trap	12	OC	-	-	3СС ${ }_{\text {H }}$	000FFFCCH	-
NMI request (tool)	13	OD	-	-	3С8н	000FFFFC8	-
Undefined instruction exception	14	OE	-	-	3C4H	000FFFFC4 ${ }_{\text {н }}$	-
NMI request	15	OF	$\begin{aligned} & 15(F) \\ & \text { fixed } \end{aligned}$	15 (F) fixed	3 COH	000FFFFCOH	-
External interrupt 0	16	10	ICR00	440 ${ }_{\text {H }}$	ЗВСн	000FFFBCH	-
External interrupt 1	17	11			3B8н	000FFFB8 ${ }_{\text {н }}$	-
External interrupt 2	18	12	ICR01	441H	3В4н	000FFFB44	-
External interrupt 3	19	13			3B0н	000FFFBOH	-
External interrupt 4	20	14	ICR02	442н	3 ACH	000FFFACH	-
External interrupt 5	21	15			3A8H	000FFFA8н	-
External interrupt 6	22	16	ICR03	443 ${ }_{\text {H }}$	3А4н	000FFFA4 ${ }_{\text {¢ }}$	-
External interrupt 7	23	17			ЗАОн	000FFFAOH	-
External interrupt 8	24	18	ICR04	444 ${ }^{\text {H}}$	39С ${ }_{\text {H }}$	000FFF9Cн	-
External interrupt 9	25	19			398н	000FFF98н	-
External interrupt 10	26	1A	ICR05	445H	394н	000FFF94н	-
External interrupt 11	27	1B			390 H	000FFF90н	-
External interrupt 12	28	1C	ICR06	446н	38С ${ }_{\text {H }}$	000FFF8C ${ }_{\text {н }}$	-
External interrupt 13	29	1D			388н	000FFF88н	-
External interrupt 14	30	1E	ICR07	447 ${ }^{\text {H }}$	384 ${ }_{\text {н }}$	000FFF884	-
External interrupt 15	31	1F			380H	000FFF80н	-

(Continued)

MB91460 Series

Interrupt source	Interrupt number		Interrupt level		Offset	TBR default address	Resource number*1
	Decimal	Hexadecimal	Setting register	Register address			
Reload timer 0	32	20	ICR08	448H	$37 \mathrm{C}_{\mathrm{H}}$	000FFF7CH	4
Reload timer 1	33	21			378 ${ }^{\text {+ }}$	000FFF78н	5
Reload timer 2	34	22	ICR09	449	374н	000FFF74	-
Reload timer 3	35	23			370	000FFF70н	-
System reserved	36	24	ICR10	44Ан	$36 \mathrm{CH}_{\mathrm{H}}$	000FFF6CH	-
System reserved	37	25			368 H	000FFF68н	-
System reserved	38	26	ICR11	44B ${ }_{\text {H }}$	364	000FFF64н	-
Reload timer 7	39	27			360 ${ }^{\text {H}}$	000FFF60н	-
Free-run timer 0	40	28	ICR12	$44 \mathrm{CH}_{\mathrm{H}}$	$35 \mathrm{CH}_{\mathrm{H}}$	000FFF5CH	-
Free-run timer 1	41	29			358н	000FFF58н	-
Free-run timer 2	42	2A	ICR13	44D	354	000FFF54	-
Free-run timer 3	43	2B			350 H	000FFF50н	-
System reserved	44	2C	ICR14	44E ${ }_{\text {н }}$	$34 \mathrm{C}_{\mathrm{H}}$	000FFF4Cн	-
System reserved	45	2D			348н	000FFF48н	-
System reserved	46	2E	ICR15	44FH	344	000FFF44н	-
System reserved	47	2 F			340 ${ }^{\text {H}}$	000FFF40н	-
CAN0	48	30	ICR16	450 ${ }^{\text {H}}$	$33 \mathrm{CH}_{\text {}}$	000FFF3C ${ }_{\text {н }}$	-
CAN1	49	31			338н	000FFF38н	-
System reserved	50	32	ICR17	451H	334 ${ }_{\text {¢ }}$	000FFF34н	-
System reserved	51	33			330 ${ }^{\text {H}}$	000FFF30н	-
System reserved	52	34	ICR18	452н	$32 \mathrm{C}_{\mathrm{H}}$	000FFF2CH	-
System reserved	53	35			328H	000FFF28н	-
LIN-USART 0 RX	54	36	ICR19	453 ${ }_{\text {H }}$	324 H	000FFF24н	6
LIN-USART 0 TX	55	37			320 ${ }^{\text {+ }}$	000FFF20н	7
LIN-USART 1 RX	56	38	ICR20	454	31 CH	000FFF1CH	8
LIN-USART 1 TX	57	39			318 H	000FFF18н	9
LIN-USART 2 RX	58	3A	ICR21	455 ${ }^{\text {H }}$	314H	000FFF14н	-
LIN-USART 2 TX	59	3B			310 H	000FFF10н	-
LIN-USART 3 RX	60	3C	ICR22	456H	30 CH	000FFF0CH	-
LIN-USART 3 TX	61	3D			308H	000FFF08\%	-
System reserved	62	3E	ICR23*3	457	304	000FFF04н	-
Delay interrupt	63	3F			300 H	000FFF00н	-

(Continued)

MB91460 Series

Interrupt source	Interrupt number		Interrupt level		Offset	TBR default address	Resource number*1
	Decimal	Hexadecimal	Setting register	Register address			
System reserved*2	64	40	(ICR24)	458H	2 FCH	000FFEFCH	-
System reserved*2	65	41			2 F 8 H	000FFEF8 ${ }_{\text {н }}$	-
LIN-USART 4 RX	66	42	ICR25	459 ${ }_{\text {H }}$	2F4н	000FFEF4 ${ }_{\text {н }}$	10
LIN-USART 4 TX	67	43			2FOH	000FFEFFOн	11
LIN-USART 5 RX	68	44	ICR26	45Ан	2ЕСн	000FFEEC ${ }_{\text {н }}$	12
LIN-USART 5 TX	69	45			2E8н	000FFEE8н	13
LIN-USART 6 RX	70	46	ICR27	45B ${ }_{\text {H }}$	2E4H	000FFEE4 ${ }_{\text {н }}$	-
LIN-USART 6 TX	71	47			2E0н	000FFEE0н	-
System reserved	72	48	ICR28	45CH	2DCH	000FFEDCH	-
System reserved	73	49			2D8н	000FFED8н	-
$\mathrm{I}^{2} \mathrm{C}$ _0/ $/{ }^{2} \mathrm{C}$ _2	74	4A	ICR29	45D	2D4н	000FFED4н	-
$\mathrm{I}^{2} \mathrm{C}$ _ $1 /{ }^{2} \mathrm{C}$ _3	75	4B			2D0н	000FFED0н	-
System reserved	76	4C	ICR30	45E ${ }_{\text {H }}$	2 CCH	000FFECCH	-
System reserved	77	4D			2С8\%	000FFEC8н	-
System reserved	78	4E	ICR31	45FH	2С4н	000FFEC4 ${ }_{\text {н }}$	-
System reserved	79	4F			2 COH	000FFECOH	-
System reserved	80	50	ICR32	460 ${ }^{\text {H}}$	2BCH	000FFEBCн	-
System reserved	81	51			2В8н	000FFEB8н	-
System reserved	82	52	ICR33	461н	2B4н	000FFEB4 ${ }_{\text {H }}$	-
System reserved	83	53			2B0н	000FFEB0н	-
System reserved	84	54	ICR34	462н	2 ACH	000FFEACH	-
System reserved	85	55			2A8H	000FFEA8H	-
System reserved	86	56	ICR35	463H	2A4н	000FFEA4 ${ }_{\text {н }}$	-
System reserved	87	57			2 AOH	000FFEAOH	-
System reserved	88	58	ICR36	464H	29 CH	000FFE9C ${ }_{\text {H }}$	-
System reserved	89	59			298H	000FFE98н	-
System reserved	90	5A	ICR37	465 ${ }^{\text {H }}$	294	000FFE94 ${ }_{\text {¢ }}$	-
System reserved	91	5B			290 H	000FFE90н	-
Input capture 0	92	5C	ICR38	466H	28 CH	000FFE8C ${ }_{\text {H }}$	-
Input capture 1	93	5D			288H	000FFE88н	-
Input capture 2	94	5E	ICR39	467H	284 ${ }_{\text {H }}$	000FFE84н	-
Input capture 3	95	5F			280 H	000FFE80н	-

(Continued)

MB91460 Series

Interrupt source	Interrupt number		Interrupt level		Offset	TBR default address	Resource number*1
	Decimal	Hexadecimal	Setting register	Register address			
System reserved	96	60	ICR40	468H	$27 \mathrm{C}_{\mathrm{H}}$	000FFE7CH	-
System reserved	97	61			278H	000FFE78н	-
System reserved	98	62	ICR41	469н	274	000FFE74	-
System reserved	99	63			270 H	000FFE70н	-
Output compare 0	100	64	ICR42	46Ан	26С н $^{\text {}}$	000FFE6C ${ }_{\text {H }}$	-
Output compare 1	101	65			268H	000FFE68н	-
Output compare 2	102	66	ICR43	46B ${ }_{\text {н }}$	264 ${ }_{\text {H }}$	000FFE64н	-
Output compare 3	103	67			260 H	000FFE60н	-
System reserved	104	68	ICR44	46 CH	$25 \mathrm{C}_{\mathrm{H}}$	000FFE5CH	-
System reserved	105	69			258н	000FFE58н	-
System reserved	106	6A	ICR45	46D	254	000FFE54н	-
System reserved	107	6B			250 ${ }^{\text {H}}$	000FFE50н	-
System reserved	108	6C	ICR46	46E ${ }_{\text {H }}$	24 CH	000FFE4C ${ }_{\text {н }}$	-
System reserved	109	6D			248 ${ }^{\text {H}}$	000FFE48н	-
System reserved	110	6E	ICR47*3	46FH	244	000FFE44н	-
System reserved	111	6F			240 H	000FFE40н	-
PPG0	112	70	ICR48	470 ${ }^{\text {H}}$	$23 \mathrm{CH}_{\mathrm{H}}$	000FFE3C ${ }_{\text {H }}$	15
PPG1	113	71			238 ${ }^{\text {+ }}$	000FFE38н	-
PPG2	114	72	ICR49	471H	234 ${ }_{\text {¢ }}$	000FFE34н	-
PPG3	115	73			230H	000FFE30н	-
PPG4	116	74	ICR50	472н	22 CH	000FFE2CH	-
PPG5	117	75			228H	000FFE28н	-
PPG6	118	76	ICR51	473 ${ }^{\text {H }}$	224 ${ }_{\text {н }}$	000FFE24н	-
PPG7	119	77			220 H	000FFE20н	-
System reserved	120	78	ICR52	474H	21 CH	000FFE1CH	-
System reserved	121	79			218н	000FFE18н	-
System reserved	122	7A	ICR53	475 ${ }_{\text {H }}$	214 ${ }_{\text {H }}$	000FFE14н	-
System reserved	123	7B			210 H	000FFE10н	-
System reserved	124	7C	ICR54	476н	20 CH	000FFE0C ${ }_{\text {H }}$	-
System reserved	125	7D			208н	000FFE08н	-
System reserved	126	7E	ICR55	477 ${ }^{\text {H}}$	204н	000FFE04н	-
System reserved	127	7F			200 H	000FFE00н	-

(Continued)

MB91460 Series

(Continued)

Interrupt source	Interrupt number		Interrupt level		Offset	TBR default address	Resource number*1
	Decimal	Hexadecimal	Setting register	Register address			
System reserved	128	80	ICR56	478	1FCH	000FFDFCH	-
System reserved	129	81			1F8H	000FFDF8н	-
System reserved	130	82	ICR57	479н	1F4 ${ }^{\text {H }}$	000FFDF4н	-
System reserved	131	83			1FOH	000FFDFOH	-
Real-time clock	132	84	ICR58	47Ан	1 ECH	000FFDECH	-
System reserved	133	85			1Е8н	000FFDE8 ${ }_{\text {H }}$	-
A/D converter 0	134	86	ICR59	47Вн	1Е4 ${ }^{\text {H }}$	000FFDE4 ${ }_{\text {H }}$	14
System reserved	135	87			1Е0н	000FFDEOH	-
System reserved	136	88	ICR60	47С ${ }_{\text {H }}$	1DC	000FFDDCH	-
System reserved	137	89			1D8н	000FFDD8н	-
System reserved	138	8A	ICR61	47D	1D4 ${ }^{\text {¢ }}$	000FFDD4н	-
System reserved	139	8B			1D0н	000FFDDOH	-
Time base overflow	140	8C	ICR62	47Ен	$1 \mathrm{CCH}^{\text {}}$	000FFDCCH	-
PLL clock gear	141	8D			$1 \mathrm{C8H}$	000FFDC8 ${ }_{\text {- }}$	-
DMA controller	142	8E	ICR63	47F	$1 \mathrm{C4H}$	000FFDC4 ${ }_{\text {¢ }}$	-
Main/sub oscillation stabilization wait	143	8F			1 COH	000FFDCOH	-
System reserved	144	90	-	-	$1 \mathrm{BCH}_{4}$	000FFDBCH	-
Used by INT instruction	$\begin{gathered} \hline 145 \\ \vdots \\ 255 \end{gathered}$	$\begin{gathered} 91 \\ \vdots \\ \text { FF } \end{gathered}$	-	-	$\begin{gathered} \hline \text { 1В8н } \\ \vdots \\ 000 \text { н } \end{gathered}$	$\begin{gathered} \text { 000FFDB8н } \\ \vdots \\ \text { 000FFC00н } \end{gathered}$	-

*1: The peripheral resources to which RN (Resource Number) is assigned are capable of being DMA transfer activation sources. In addition, RN has a one-to-one correspondence with an IS (Input Source) of the DMAC channel control register A(DMACA0 to DMACA4), and the IS (Input Source) can be obtained by representing RN in a binary number and adding " 1 " to the head of it.
*2: Used by REALOS
*3 : ICR23 and ICR47 are interchangeable by setting REALOS bit (address 0C03н ISO[0]).

MB91460 Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute maximum rating

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage 1*1	Vcc3	Vss - 0.5	Vss +4.0	V	
Power supply voltage 2*1	Vcc5	Vss - 0.5	V ss +6.0	V	
Analog power supply voltage*1	AVcc3	Vss - 0.5	$\mathrm{Vss}+4.0$	V	*2
Analog power supply voltage*1	AVRH	Vss - 0.5	V ss +4.0	V	*2
Input voltage 1*1	V_{11}	Vss - 0.3	$\mathrm{Vcc} 3+0.3$	V	
Input voltage 2*1	V_{12}	Vss-0.3	$\mathrm{Vcc} 5+0.3$	V	
Analog pin input voltage*1	$V_{\text {IA }}$	Vss - 0.3	$\mathrm{AVcc} 3+0.3$	V	
Output voltage 1*1	Vo1	Vss - 0.3	$\mathrm{Vcc} 3+0.3$	V	
Output voltage 2*1	Vo2	Vss-0.3	$\mathrm{Vcc} 3+0.3$	V	
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	*6
Total maximum clamp current	$\Sigma \mid$ Iclamp \mid	-	20	mA	*6
"L" level maximum output current	lol	-	10	mA	*3
"L" level average output current	lolav	-	8	mA	*4
"L" level total maximum output current	Slob	-	100	mA	
"L" level total average output current	Σ lolav	-	50	mA	*5
"H" level maximum output current	lob	-	-10	mA	*3
"H" level average output current	Іоhav	-	-4	mA	*4
"H" level total maximum output current	Σ loh	-	- 50	mA	
"H" level total average output current	Σ lohav	-	-20	mA	*5
Power consumption	PD	-	1000	mW	
Operation temperature	T_{A}	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	- 55	+ 125	${ }^{\circ} \mathrm{C}$	

*1: The parameter is based on $\mathrm{V}_{\mathrm{ss}}=\mathrm{AV}$ ss $=0.0 \mathrm{~V}$.
*2 : Do not let AV cc3 and AVRH exceed $\mathrm{Vcc}+0.3$ [V], for example, when the power is turned on. Also, do not let AV cc 3 exceed Vcc 3 .
*3: Maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
*4: Average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 100 ms period.
*5: Total average output current is defined as the value of the average current flowing through all of the corresponding pins for a 100 ms period.
(Continued)

MB91460 Series

(Continued)

*6 : •Corresponding pins: Pin number 2, 3, 116, 117, 120 to 125, 134 to 145, 148 to 160, 163 to 175

- Use within recommended operating conditions.
- Use at DC voltage (current).
- The + B signal is an input signal exceeding V_{cc} voltage. The +B signal should always be applied by connecting a limiting resistor between the +B signal and the microcontroller.
- The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed rated values at any time regardless of instantaneously or constantly when the $+B$ signal is input.
- Note that when the microcontroller drive current is low, such as in the low power consumption modes, the $+B$ input potential can increase the potential at the Vcc pin via a protective diode, possibly affecting other devices.
- Note that if the +B signal is input when the microcontroller is off (not fixed at 0 V), since the power is supplied through the pin, the microcontroller may operate incompletely.
- Note that if the $+B$ signal is input at power-on, since the power is supplied through the pin, the power supply voltage may become the voltage at which a power-on reset does not work.
- Do not leave +B input pin open.
- Note that analog input/output pins cannot accept +B signal input.
- Example of recommended circuit :

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91460 Series

2. Recommended operating conditions

$$
\left(\mathrm{V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0.0 \mathrm{~V}\right)
$$

Parameter	Symbol	Value			Unit	Remarks
		Min	Typ	Max		
Power supply voltage	Vcc5	4.5	-	5.5	V	
	Vcc3	3.0	-	3.6	V	
	AVcc3	3.0	-	3.6	V	
Smoothing capacitor	Cs	-	$\begin{gathered} 4.7 \\ \text { (accuracy } \\ \text { within } \pm 50 \% \text {) } \end{gathered}$	-	$\mu \mathrm{F}$	Use a ceramic capacitor or a capacitor having the similar frequency characteristic. For a smoothing capacitor of VCC pin, use one having a capacitance value greater than Cs.
Operating temperature	TA	-40	-	+ 85	${ }^{\circ} \mathrm{C}$	

WARNING: : The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91460 Series

3. DC characteristics

$\left(\mathrm{Vcc} 5=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vcc} 3=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Typ	Max		

(Continued)

MB91460 Series

$\left(\mathrm{Vcc} 5=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 3=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"L" level input voltage	VL1	P14_0 to P14_3, P15_0 to P15_3, P16_7, P17_0 to P17_7, P18_0 to P18_2, P19_0 to P19_2, P19_4 to P19_6, P20_0 to P20_2, P20_4 to P20_6, P21_0 to P21_2, P21_4 to P21_6, P22_0, P22_2, P22_3, P23_0 to P23_4, P23_6, P24_0 to P24_3, P24_6, P24_7, P28_0 to P28_4, P29_0 to P29_7, NMI, BREAK, MD0 to MD3	-	Vss-0.3	-	$0.2 \times \mathrm{Vcc}$	V	CMOS hysteresis input*1
	VIL2	$\begin{aligned} & \text { P14_0 to P14_3, } \\ & \text { P15_0 to P15_3, } \\ & \text { P16_7, } \\ & \text { P17_0 to P17_7, } \\ & \text { P18_0 to P18_2, } \\ & \text { P19_0 to P19_2, } \\ & \text { P19_4 to P19_6, } \\ & \text { P20_0 to P20_2, } \\ & \text { P20_4 to P20_6, } \\ & \text { P21_0 to P21_, }, \\ & \text { P21_4 to P21_6, } \\ & \text { P22_0, P22_2, } \\ & \text { P22_3, } \\ & \text { P23_0 to P23_4, } \\ & \text { P23_6, } \\ & \text { P24_0 to P24_3, } \\ & \text { P24_6, P24_7, } \\ & \text { P28_0 to P28_4, } \\ & \text { P29_0 to P29_7, } \\ & \text { D16 to D31, } \\ & \text { DREQ0, RDY, } \\ & \text { BRQ, } \\ & \text { ICD0 to ICD3 } \end{aligned}$	-	Vss-0.3	-	$0.3 \times \mathrm{Vcc}$	V	CMOS input* ${ }^{\star}$
	Vıı	$\begin{aligned} & \text { P22_4 to P22_7, } \\ & \text { P24_4, P24_5 } \end{aligned}$	-	Vss-0.3	-	$0.3 \times \mathrm{Vcc} 3$	V	$1^{2} \mathrm{C}$ input*2

(Continued)

MB91460 Series

$\left(\mathrm{V}\right.$ cc5 $=4.5 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{Cc} 3=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V}$ ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"H" level output voltage	Vон1	P14_0 to P14_3, P15_0 to P15_3, P17_0 to P17_3, P18_0 to P18_2, P19_0 to P19_2, P19_4 to P19_6, P20_0 to P20_2, P20_4 to P20_6, P21_0 to P21_2, P21_4 to P21_6, P22_0, P22_2, P22_3, P23_0 to P23_4, P23_6, P24_0 to P24_3, P24_6, P24_7	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \mathrm{loH}=4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{cc}}=3.3 \mathrm{~V}, \\ & \mathrm{loH}=2.0 \mathrm{~mA} \end{aligned}$	Vcc-0.5	-	-	V	$3.3 \mathrm{~V}, 5 \mathrm{~V}$ switch pin*3
	Vон2	P16_7, P17_4 to P17_7, P28_0 to P18_4, P29_0 to P19_7, D16 to D31, ICDO to ICD3, A00 to A23, $\overline{\text { AS, }} \overline{\text { BGRNT, }}$ CSO to CS4, DACKO, DEOPO, ICLK, ICSO to ICS2, IORD, $\overline{\text { IOWR, }} \overline{\mathrm{RD}}$, SYSCLK, WDRESET, $\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$	$\begin{aligned} & \mathrm{V} c \mathrm{C} 3=3.3 \mathrm{~V}, \\ & \mathrm{loH}=4.0 \mathrm{~mA} \end{aligned}$	Vcc3-0.5	-	-	V	3.3 V dedicated pin

(Continued)

MB91460 Series

$\left(\mathrm{Vcc} 5=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 3=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
"L" level output voltage	Volı	$\begin{aligned} & \hline \text { P14_0 to P14_3, } \\ & \text { P15_0 to P15_3, } \\ & \text { P17_0 to P17_3, } \\ & \text { P18_0 to P18_2, } \\ & \text { P19_0 to P19_2, } \\ & \text { P19_4 to P19_6, } \\ & \text { P20_0 to P202, } \\ & \text { P20_4 to P20_6, } \\ & \text { P21_0 to P21_2, } \\ & \text { P21_4 to P21_6, } \\ & \text { P22_0, P22_2, } \\ & \text { P22_3, } \\ & \text { P23_0 to P23_4, } \\ & \text { P23_6, } \\ & \text { P24_0 to P24_3, } \\ & \text { P24_6, P24_7 } \end{aligned}$	$\begin{aligned} & \mathrm{V} c \mathrm{cc}=5.0 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \\ & \mathrm{~V} \mathrm{Cc}=3.3 \mathrm{~V}, \\ & \mathrm{loL}=2.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	$3.3 \mathrm{~V}, 5 \mathrm{~V}$ switch pin*3
	Vol2	```P16_7, P17_4 to P17_7, P28_0 to P28_4, P29_0 to P29_7, D16 to D31, ICDO to ICD3, A00 to A23, \(\overline{\text { AS, }} \overline{\text { BGRNT, }}\) CS0 to CS4, DACKO, DEOPO, ICLK, ICSO to ICS2, IORD, \(\overline{\text { IOWR, }} \overline{\mathrm{RD}}\), SYSCLK, WDRESET, WRO, WR1```	$\begin{aligned} & \mathrm{Vcc} 3=3.3 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	3.3 V dedicated pin
	Vol3	$\begin{aligned} & \text { P22_4 to P22_7, } \\ & \text { P24_4, P24_5 } \end{aligned}$	$\begin{aligned} & \mathrm{Vcc} 3=3.3 \mathrm{~V}, \\ & \mathrm{loL}=3.0 \mathrm{~mA} \end{aligned}$	-	-	0.4	V	${ }^{2} \mathrm{C}$ output
Input leak current	IIL	All input pins	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=\mathrm{DV} \mathrm{~V}_{\mathrm{cc}}= \\ & \mathrm{A} \mathrm{~V}_{\mathrm{cc}}=5.0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{ss}}<\mathrm{VI}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$	- 5	-	+5	$\mu \mathrm{A}$	
Pull-up resistance value	Pup	INIT, pull-up pin	-	25	50	100	k Ω	
Pull-down resistance value	Pdown	$\overline{\text { INIT, pull-up pin }}$	-	25	50	100	$\mathrm{k} \Omega$	

(Continued)

MB91460 Series

(Continued)
$\left(\mathrm{Vcc} 5=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vcc} 3=3.0 \mathrm{~V}$ to 3.6 V , V ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current	Icc3	VCC3	CPU core : 80 MHz , External bus : 40 MHz (no-load) Peripheral macro : 10 MHz CAN : 20 MHz	-	120	150	mA	
	Icc5	VCC5	-		15	20	mA	
		VCC3	$\mathrm{T}_{\mathrm{A}}=+85^{\circ} \mathrm{C}$	-	1	3	mA	At stop
	Icch	VCC3	$\mathrm{T}_{\mathrm{A}}=+8{ }^{\circ} \mathrm{C}$	-	10	50	$\mu \mathrm{A}$	At shutdown
Input capacitance	Cin	Except VCC3, VCC5, VSS, AVCC, AVSS, AVRH	$\mathrm{f}=1 \mathrm{MHz}$	-	5	15	pF	

*1 : For a pin which can select the I/O power supply between 3.3 V and 5 V , the value is based on the power supply voltage currently used.
Although 5 V input is possible for TRST, the input becomes CMOS hysteresis based on the input threshold value Vcc 3.
*2 : Although 5 V input is possible for $\mathrm{I}^{2} \mathrm{C}$ pin, the input is made based on the input threshold value Vcc 3 .
*3 : For a pin which can select the I/O power supply between 3.3 V and 5 V , the drive capability changes depending on the power supply voltage.

MB91460 Series

4. AC characteristics

(1) Clock timing

$$
\left(\mathrm{Vcc} 5=4.5 \mathrm{~V} \text { to } 5.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 3=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{ss}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	fc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		10	18.5	20	MHz	
Clock cycle time	tc	$\begin{aligned} & \hline \mathrm{X0} \\ & \mathrm{X} 1 \end{aligned}$		50	54	100	ns	
Internal operation clock frequency	fcp	-	-	4.6	-	80	MHz	CPU
	f.pp			4.6	-	20	MHz	Peripheral
	fcpt			4.6	-	40	MHz	External bus
	fcan			-	-	20	MHz	Clock after divided by CAN prescaler
Internal operation clock cycle time	tcp	-		12.5	-	217	ns	CPU
	topp			50	-	217	ns	Peripheral
	tcpt			26.7	-	217	ns	External bus
	tcan			50	-	-	ns	Clock after divided by CAN prescaler

Note : These values are assumed based on the division setting of each clock set to 16.

- Conditions for measuring the clock timing ratings

Output pin

MB91460 Series

(2) Clock output timing
$\left(\mathrm{Vcc} 5=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 3=3.0 \mathrm{~V}$ to 3.6 V , V ss $=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
Cycle time	toyc	SYSCLK	-	tcpt	-	ns	
SYSCLK $\uparrow \rightarrow$ SYSCLK \downarrow	tchcı	SYSCLK		12.5	108.5	ns	
SYSCLK $\downarrow \rightarrow$ SYSCLK \uparrow	tcLCH	SYSCLK		12.5	108.5	ns	

*: tcyc is the frequency of 1 clock cycle.

(3) Reset input ratings
$\left(\mathrm{Vcc} 5=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{Vcc} 3=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{ss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
INIT input time (at power-on, at return from shutdown mode)	tintı	$\overline{\mathrm{INIT}}$	-	8	-	ms
INIT input time (other than the above)				20	-	$\mu \mathrm{s}$

MB91460 Series

(4) Normal bus access read/write operation
$\left(\mathrm{Vcc} 3=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Condition	Value		Unit	Remarks
				Min	Max		
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 4}$ setup	tcsich	$\frac{\text { SYSCLK }}{\text { CSO to }}$	-	3	-	ns	
	tcsolch			-3	-	ns	
CS0 to CS4 hold	tchesh			3	tcyc/2 + 6	ns	
Address setup	tasch	$\begin{gathered} \text { SYSCLK } \\ \text { A23 to A00 } \end{gathered}$		3	-	ns	
	tasw	WR0, $\overline{\text { WR1 }}$ A23 to A00		3	-	ns	
	$\mathrm{taskl}^{\text {l }}$	$\begin{gathered} \overline{\mathrm{RD}} \\ \text { A23 to A00 } \end{gathered}$		3	-	ns	
Address hold	tchax	$\begin{gathered} \text { SYSCLK } \\ \text { A23 to A00 } \end{gathered}$		3	tcyc/2 + 6	ns	
	twhax	$\overline{\text { WR0, }} \overline{\text { WR1 }}$ A23 to A00		3	-	ns	
	trhax	$\begin{gathered} \overline{R D} \\ \text { A23 to A00 } \end{gathered}$		3	-	ns	
Valid address/valid data input time	tavdv	$\begin{aligned} & \text { A23 to A00 } \\ & \text { D31 to D16 } \end{aligned}$		-	$3 / 2 \times$ tcrc -15	ns	*
$\overline{\text { WRO }}$ WR1 delay time	tchwL	SYSCLK		-	6	ns	
WRO, Wri delay time	tchwn	WR0, WR1		-	6	ns	
Data setup time (WRn rising)	toswh	$\begin{aligned} & \hline \text { D31 to D16 } \\ & \overline{\text { WR0, }}, \overline{\text { WR1 }} \end{aligned}$		tovc - 3	-	ns	
Data hold time (WRn rising)	twhox	$\begin{aligned} & \text { D31 to D16 } \\ & \hline \text { WR0, } \overline{\text { WR1 }} \end{aligned}$		3	-	ns	
$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$ minimum pulse width	twwwh	$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$		tcyc - 3	-	ns	
$\overline{\mathrm{RD}}$ delay time	tchri	$\underset{\overline{R D}}{\substack{\text { SYSCLK }}}$		-	6	ns	
	tснrн			-	6	ns	
Data setup time ($\overline{\mathrm{RD}}$ rising)	tosk	$\frac{\text { D31 to D16 }}{\frac{\mathrm{RD}}{}}$		20	-	ns	
Data hold time ($\overline{\mathrm{RD}}$ rising)	trhdx	$\begin{gathered} \text { D31 to D16 } \\ \frac{\mathrm{RD}}{} \end{gathered}$		0	-	ns	
$\overline{\mathrm{RD}}$ minimum pulse width	trLRH	$\overline{\mathrm{RD}}$		tcyc - 3	-	ns	
$\overline{\overline{A S}}$ setup	tastch	$\frac{\text { SYSCLK }}{\overline{\text { AS }}}$		3	-	ns	
$\overline{\text { AS }}$ hold	tchash			3	tovc/2+6	ns	

*: When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc \times the number of cycles added for the delay) to this rating.

MB91460 Series

MB91460 Series

(5) Ready input timing

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
RDY setup time \rightarrow SYSCLK \downarrow	trdys	SYSCLK RDY	-	10	-	ns
SYSCLK \uparrow \rightarrow RDY hold time	trovh	SYSCLK RDY		0	-	ns

MB91460 Series

(6) Hold timing

$$
\left(\mathrm{V} \mathrm{cc} 3=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{ss}}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
$\overline{\text { BGRNT }}$ delay time	tснвGL	SYSCLK BGRN		-	10	ns
	tснвян			-	10	ns
BGRNT rising from pin floating	txhal	-		tcre - 10	tcre +10	ns
$\overline{\text { BGRNT }}$ rising from pin valid	thatv	$\overline{\text { BGRNT }}$		tcrc - 10	tcyc +10	ns

Note : After a BRQ is captured, a minimum of 1 cycle is required before $\overline{\text { BGRNT }}$ changes.

MB91460 Series

(7) LIN-UART timing
$\left(\mathrm{V} c \mathrm{C} 5=4.5 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V} \mathrm{cc} 3=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Serial clock cycle time	tscyc	SCK0 to SCK6	Internal shift clock mode	5tcrcp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK6, SOT0 to SOT6		- 50	+50	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK6, SIN0 to SIN6		tcycp +80	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK6, SINO to SIN6		0	-	ns
Serial clock "H" pulse width	tshsL	SCK0 to SCK6	External shift clock mode	tcycp + 10	-	ns
Serial clock "L" pulse width	tsısh	SCK0 to SCK6		3 tcycp	-	ns
SCK $\downarrow \rightarrow$ SOT delay time	tstov	SCK0 to SCK6, SOT0 to SOT6		-	150	ns
Valid SIN \rightarrow SCK \uparrow	tivsh	SCK0 to SCK6, SIN0 to SIN6		30	-	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshix	SCK0 to SCK6, SIN0 to SIN6		tcycp +30	-	ns
SCK rising time	tF	SCK0 to SCK6		-	10	ns
SCK falling time	tr	SCK0 to SCK6		-	10	ns

Notes: - Above values are AC characteristics for CLK synchronous mode.

- toycp is the cycle time of the peripheral clock.

MB91460 Series

- Internal shift clock mode

- External shift clock mode

MB91460 Series

(8) DMA controller timing

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
DREQ0 input pulse	torwh	DREQ0	-	-	10	ns
DACK0 delay time	tcld	DACK0		-	10	ns
	tclor			-	10	ns
DEOP0 delay time	tclel	DEOP0		-	10	ns
	tcleh			-	10	ns
$\overline{\text { IORD }}$ delay time	tchirl	$\overline{\text { ORD }}$		-	10	ns
	tchire			-	10	ns
$\overline{\text { IOWR }}$ delay time	tcHiwL	$\overline{\text { IOWR }}$		-	10	ns
	tсніwн			-	10	ns

Note : After a BREQ is captured, a minimum of 1 cycle is required before BGRNT changes.

MB91460 Series

(9) Free-run timer clock

Parameter	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
Input pulse width	tтiwn ttiwn	FRCK0 to FRCK3	-	4tcycp	-	ns

Note : tcycp is the cycle time of the peripheral clock.

(10) Trigger input timing

	Symbol	Pin name	Condition	Value		Unit
				Min	Max	
r	tinp	ICU0 to ICU3	-	5tcycp	-	ns
	tatgx	$\overline{\text { ATG }}$	-	5tcycp	-	ns

Note : tcycp is the cycle time of the peripheral clock.
ICUO to ICU3,

MB91460 Series

5. A/D converter

(1) Electrical characteristics

Parameter	Symbol	Pin name	$\left(\mathrm{Vcc} 3=3.0 \mathrm{~V}\right.$ to 3.6 V, $\mathrm{V}_{\text {ss }}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)				
			Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	10	bit	
Total error*1	-	-	-	-	± 3	LSB	$\begin{aligned} & \mathrm{At} \mathrm{AVcc} 3=3.3 \mathrm{~V}, \\ & \mathrm{AVRH}=3.3 \mathrm{~V} \end{aligned}$
Linearity error*1	-	-	-	-	± 2.5	LSB	
Differential linearity error* ${ }^{*}$	-	-	-	-	± 1.9	LSB	
Zero transition voltage*1	Vот	AN0 to AN12	AVRL-1.5	AVRL-0.5	AVRL-2.5	LSB	
Full transition voltage*1	$\mathrm{V}_{\text {fst }}$	AN0 to AN12	AVRH-3.5	AVRH-1.5	AVRH-0.5	LSB	
Conversion time	-	-	$1{ }^{\text {*2 }}$	-	-	$\mu \mathrm{s}$	
Analog port input current	Iain	AN0 to AN12	-	-	10	$\mu \mathrm{A}$	
Analog input voltage	$V_{\text {AIN }}$	AN0 to AN12	AVss	-	AVRH	V	
Reference voltage	-	AVRH	AVss	-	AVcc3	V	Including reference supply
Analog power supply current (analog + digital)	IA	AVCC3	-	1.5	2.5	mA	
	$\mathrm{IAH}^{* 3}$		-	-	10	$\mu \mathrm{A}$	
Analog input equivalent capacity	Cin	AN0 to AN12	-	-	14.7	pF	
Analog input equivalent resistance	Rin	AN0 to AN12	-	-	1.9	$\mathrm{k} \Omega$	$\mathrm{AV} \mathrm{cc} 3 \geq 2.7 \mathrm{~V}$
Output impedance of analog signal source	Rext	-	-	-	1.9	k Ω	$\mathrm{AV} \mathrm{cc} 3 \geq 2.7 \mathrm{~V}$

*1 : Measured in the CPU sleep state
*2 : Set the peripheral clock and conversion time setting register to set a time equal to or longer than this time.
*3 : The current when A/D converter is not operating, or in the CPU stop mode (at $\mathrm{Vcc} 3=\mathrm{AVcc} 3=\mathrm{AVRH}=3.3 \mathrm{~V}$).

MB91460 Series

(2) Cautions Relating to the A/D Converter

The diagram below shows the equivalent circuit of the sampling circuit in the A/D converter.
The output impedance of the external circuit connected to the analog input must satisfy the following criteria.

- The recommended output impedance for the external circuit is $1.9 \mathrm{k} \Omega$ or less.
- If an external capacitor is used, remember to consider the capacitive voltage divider effect due to the external capacitor and the internal capacitor in the chip. Accordingly, an external capacitance several thousand times that of the internal capacitance is recommended.
- The analog voltage sampling period may be too short if the output impedance of the external circuit is high. In this case, select Rext and Tsamp such that they satisfy the following condition.

Rext $=$ Tsamp/ ($7 \times$ Cin) - Rin
Rext : Output impedance of the analog signal source
Tsamp : Sampling time
Cin : Equivalent capacitance of analog input
Rin : Equivalent resistance of analog input

MB91460 Series

(3) Definition of A/D converter terms

- Resolution

Analog variation that is recognizable by an A/D converter.

- Linearity error

Deviation between actual conversion characteristics and a straight line connecting zero transition point (00 $00000000 \leftrightarrow 000000$ 0001) and full scale transition point (11 $11111110 \leftrightarrow 111111$ 1111).

- Differential linearity error

Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.

- Total error

This error indicates the difference between actual and theoretical values, including the zero transition error/ full scale transition error/linearity error.

$1 L S B^{\prime}$ (ideal value) $=\frac{\mathrm{AVRH}-\mathrm{AV} \text { ss }}{1024}[\mathrm{~V}]$

Total error of digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\left\{1 \mathrm{LSB}^{\prime} \times(\mathrm{N}-1)+0.5 \mathrm{LSB}^{\prime}\right\}}{1 \mathrm{LSB}^{\prime}}$
$\mathrm{N}: \mathrm{A} / \mathrm{D}$ converter digital output value
Vот' (ideal value) $=\mathrm{AVss}+0.5 \mathrm{LSB}$ [V]
$\mathrm{V}_{\mathrm{FSt}}{ }^{\prime}$ (ideal value) $=\mathrm{AV}-1.5 \mathrm{LSB}$ [V]
V_{NT} : A voltage at which digital output transits from $(\mathrm{N}+1)$ н to N_{H}

MB91460 Series

MB91460 Series

■ ORDERING INFORMATION

Part number	Package	Remarks
MB91461PMC-GSE1	176-pin, plastic LQFP (FPT-176P-M07)	Lead-free package

MB91460 Series

PACKAGE DIMENSION

176-pin plastic LQFP	Lead pitch	0.50 mm
	Package width \times package length	$24.0 \times 24.0 \mathrm{~mm}$
	Lead shape	Gullwing
	Sealing method (FPT-176P-M07)	Mounting height (Reference)

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/j/DATASHEET/ef-ovpklv.html

MB91460 Series

The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.

