- Members of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- Typical VOLP (Output Ground Bounce) < 1 V at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Impedance State During Power Up and Power Down
- Distributed VCC and GND Pin Configuration Minimizes High-Speed Switching Noise
- Flow-Through Architecture Optimizes PCB Layout
- High-Drive Outputs ($-32-\mathrm{mA} \mathrm{I}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{IOL}^{\text {) }}$
- Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors
- Latch-Up Performance Exceeds 500 mA Per JESD 17
- Package Options Include Plastic Shrink Small-Outline (DL), Thin Shrink
Small-Outline (DGG), and Thin Very Small-Outline (DGV) Packages and $380-\mathrm{mil}$ Fine-Pitch Ceramic Flat (WD) Package Using 25-mil Center-to-Center Spacings

description

The 'ABTH16245 devices are 16-bit noninverting 3 -state transceivers that provide synchronous two-way communication between data buses. The control-function implementation minimizes external timing requirements.
These devices can be used as two 8-bit transceivers or one 16-bit transceiver. They allow data transmission from the A bus to the B bus or from the B bus to the A bus, depending on the logic level at the direction-control (DIR) input. The output-enable ($\overline{\mathrm{OE}})$ input can be used to disable the devices so that the buses are effectively isolated.

When V_{C} is between 0 and 2.1 V , the device is in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 2.1 V , $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.
Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.
The SN54ABTH16245 is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABTH16245 is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.

FUNCTION TABLE
(each 8-bit section)

INPUTS		OPERATION
$\overline{\mathrm{OE}}$	DIR	
L	L	B data to A bus
L	H	A data to B bus
H	X	Isolation

logic symbol \dagger

\dagger This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

Input voltage range, V_{I} (except I/O ports) (see Note 1) .. -0.5 V to 7 V
Voltage range applied to any output in the high or power-off state, $\mathrm{V}_{\mathrm{O}} \ldots \ldots$.
Current into any output in the low state, I_{O} : SN54ABTH16245 ... 96 mA
SN74ABTH16245 .. 128 mA

Package thermal impedance, θ_{JA} (see Note 2): DGG package 890 C / W
DGV package 93²ㅇ/W
DL package ... $94^{\circ} \mathrm{C} / \mathrm{W}$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with JESD 51.
recommended operating conditions (see Note 3)

			SN54ABTH16245		SN74ABTH16245		UNIT
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\text {IOH }}$	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		10		10	ns/V
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the Tl application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABTH16245	SN74ABTH16245	UNIT		
		MIN	TYPt MAX	MIN MAX	MIN MAX					
$\mathrm{V}_{\text {IK }}$				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{I}=-18 \mathrm{~mA}$		-1.2	-1.2	-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.5		2.5	2.5	V		
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	3		3	3			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOH}=-24 \mathrm{~mA}$	2		2				
		$\mathrm{I} \mathrm{OH}=-32 \mathrm{~mA}$	2*			2				
V_{OL}			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$		0.55	0.55		V	
		$\mathrm{IOL}=64 \mathrm{~mA}$		0.55*			0.55			
$\mathrm{V}_{\text {hys }}$				100				mV		
1	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	± 1		± 1	± 1	$\mu \mathrm{A}$		
	A or B ports				± 100	± 100	± 100			
${ }^{1}$ (hold)		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{V}_{1}=0.8 \mathrm{~V}$	100		100	100	$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{I}}=2 \mathrm{~V}$	-100		-100					
IOZPU			$\mathrm{V}_{\mathrm{CC}}=0$ to 1.9 V	$\begin{aligned} \mathrm{V}_{\mathrm{Q}} & =0.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \\ \mathrm{OE} & =\mathrm{X} \end{aligned}$	$\pm 50^{* *}$		± 50 **		$\mu \mathrm{A}$	
		$\mathrm{V}_{\mathrm{CC}}=0$ to 2.1 V			± 50	± 50				
IOZPD		$\mathrm{V}_{\mathrm{CC}}=1.9 \mathrm{~V}$ to 0	$\begin{aligned} & \mathrm{V}_{\mathrm{Q}}=0.5 \mathrm{~V} \text { to } 2.7 \mathrm{~V}, \\ & \mathrm{OE}=\mathrm{X} \end{aligned}$	$\pm 50 * *$		$\pm 50 * *$		$\mu \mathrm{A}$		
		$\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$ to 0			± 50		± 50			
Ioff		$\mathrm{V}_{\mathrm{CC}}=0, \quad \mathrm{~V}_{\text {I or }} \mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$		± 100			± 100	$\mu \mathrm{A}$		
ICEX		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	Outputs high	50		50	50	$\mu \mathrm{A}$		
$1 \mathrm{O}^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50	-100 -180	-50 -180	-50 -180	mA		
${ }^{\text {I CC }}$	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{l}^{\mathrm{O}}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		2	2	2	mA		
			Outputs low		32	32	32			
			Outputs disabled		2	2	2			
${ }^{\Delta} \mathrm{CCC}{ }^{\text {§ }}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND		1.5		1.5	1.5	mA		
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V			3			pF		
C_{io}	A or B ports	$\mathrm{V}_{\mathrm{O}}=2.5 \mathrm{~V}$ or 0.5			6			pF		

* On products compliant to MIL-PRF-38535, this parameter does not apply.
** On products compliant to MIL-PRF-38535, this parameter is not production tested.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than $V_{C C}$ or GND.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ABTH16245					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
tPLH	A or B	B or A	1	2.2	3.6	0.5	4.1	ns
tPHL			1	2.3	3.8	0.5	4.4	
tPZH	$\overline{O E}$	B or A	1	3.6	5.2	0.8	6.4	ns
tPZL			1	3.7	6.1	0.9	6.5	
tPHZ	$\overline{O E}$	B or A	2	4.4	6.7	1.3	7.9	ns
tplZ			1.5	3.3	4.7	1.4	5.6	

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN74ABTH16245					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
tPLH	A or B	B or A	1	2.2	3.4	1	3.9	ns
tPHL			1	2.3	3.7	1	4.2	
tPZH	$\overline{\mathrm{OE}}$	B or A	1	3.6	5.2	1	6.3	ns
tPZL			1	3.7	5.4	1	6.4	
tphz	$\overline{\mathrm{OE}}$	B or A	2	4.4	5.8	2	6.3	ns
tPLZ			1.5	3.3	4.7	1.5	5.2	

PARAMETER MEASUREMENT INFORMATION

TEST	S1
${ }^{\text {tPLH }} /$ tPHL $^{\text {P }}$ tpLZ/tpZL $\mathrm{t}_{\mathrm{PHz}} / \mathrm{t}^{\mathrm{P}} \mathrm{ZH}$	$\begin{aligned} & \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

VOLTAGE WAVEFORMS
PROPAGATION DELAY TIMES
INVERTING AND NONINVERTING OUTPUTS

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 5962-9762501QXA | ACTIVE | CFP | WD | 48 | 1 | TBD | A42 SNPB | N/A for Pkg Type |
| 74ABTH16245DGGRE4 | ACTIVE | TSSOP | DGG | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| 74ABTH16245DGVRE4 | ACTIVE | TVSOP | DGV | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| 74ABTH16245DLRG4 | ACTIVE | SSOP | DL | 48 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABTH16245DGGR | ACTIVE | TSSOP | DGG | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABTH16245DGVR | ACTIVE | TVSOP | DGV | 48 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABTH16245DL | ACTIVE | SSOP | DL | 48 | 25 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABTH16245DLG4 | ACTIVE | SSOP | DL | 48 | 25 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74ABTH16245DLR | ACTIVE | SSOP | DL | 48 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SNJ54ABTH16245WD | ACTIVE | CFP | WD | 48 | 1 | TBD | A42 SNPB | N/A for Pkg Type |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only
E. Falls within MIL STD 1835: GDFP1-F48 and JEDEC MO-146AA

GDFP1-F56 and JEDEC MO-146AB

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^0]Copyright © 2006, Texas Instruments Incorporated

[^0]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

