

The UC3844A series of high performance fixed frequency current mode controllers are specifically designed for off-line and dc-to-dc converter applications offering the designer a cost effective solution with minimal external components. This integrated circuit features an oscillator, a temperature compensated reference, high gain error amplifier, current sensing comparator, and a high current totem pole output ideally suited for driving a power MOSFET.

Also included are protective features consisting of input and reference undervoltage lockouts each with hysteresis, cycle-by-cycle current limiting,

- Output Deadtime Adjustable from 50% to 70%
- Current Mode Operation to 500 kHz
- Automatic Feed Forward Compensation
- Latching PWM for Cycle-By-Cycle Current Limiting
- Internally Trimmed Reference with Undervoltage Lockout
- High Current Totem Pole Output
- Undervoltage Lockout with Hysteresis
- Low Startup and Operating Current

a latch for single pulse metering, and a flip-flop which blanks the output off every other oscillator cycle, allowing output deadtimes to be programmed for 50% to 70%.

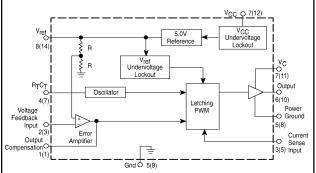
This device is available in an 8-pin dual-inline plastic package as well as the 14-pin plastic surface mount (SOP-14). The SOP-14 package has separate power and ground pins for the totem pole output stage.

The UC3844A has UVLO thresholds of 16V (on) and 10V (off), Ideally suited for off-line converters.

CDSUFFIX

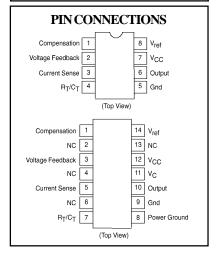
PLASTIC PACKAGE 8 DIP

D8 SUFFIX


PLASTIC PACKAGE 8 SOP

CSSUFFIX PLASTIC PACKAGE SOP-14

SIMPLIFIED BLOCK DIAGRAM



Pin numbers in parenthesis are for the S suffix SOP-14 package.

Pin numbers adjacent to terminals are for the D suffix 8-DIP package.

- NOTES: 1. Maximum Package power dissipation limits must be observed. 2. Adjust V_{CC} above the Startup threshold before setting to 15 V.

 - 3. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient as possible $T_{low} = 0$ °C, $T_{high} = +70$ °C.
 - 4. This parameter is measured at the latch trip point with $V_{EP} = 0V$.
 - 5. Comparator gain is defined as: $A_v = \frac{\Delta V \text{ Output Compensation}}{\Delta V \text{ Current Sense Input}}$

ABSOLUTE MAXIMUM RATINGS

Item	Symbol	Rating	Unit
Total Power Supply and Zener Current	$(I_{CC} + I_Z)$	30	mA
Output Current, Source or Sink (Note 1)	I_{O}	1.0	A
Output Energy (Capacitive Load per Cycle)	W	5.0	μЈ
Current Sense and Voltage Feedback Inputs	$V_{\rm in}$	-0.3 to +5.5	V
Error Amp Output Sink Current	I_{O}	10	mA
Power Dissipation and Thermal Characteristics CS, D8 Suffix, SOP-14, SOP-8 Package			
Maximum Power Dissipation	P_{D}	862	mW
Thermal Resistance, Junction to Air	$R_{ heta JA}$	145	°C/W
CD Suffix, 8-DIP Package			
Maximum Power Dissipation	P_{D}	1.25	W
Thermal Resistance, Junction to Air	$R_{ heta JA}$	100	°C/W
Operating Ambient Temperature Range	T_A	0 to 70	°C
Operating Junction Temperature	$T_{\rm J}$	150	℃
Storage Temperature Range	Ts	-65 to 150	℃

ELECTRICAL CHARACTERISTICS

 $V_{CC} = 15V$ (Note 2), $R_T = 10k$, CT = 3.3nF, $T_A = 0$ to $70^{\circ}C$ (Note 3) unless otherwise noted.

REFERENCESECTION

Item	Symbol	Min	Тур	Max	Unit
Reference Output Voltage ($I_O = 1.0 \text{mA}, T_J = 25^{\circ}\text{C}$)	V_{REF}	4.9	5.0	5.1	V
Line Regulation ($V_{CC} = 12V \text{ to } 25V$)	Reg _{line}		2.0	20	mV
Load Regulation (I _O = 1.0mA to 20mA)	Reg _{load}		3.0	25	mV
Temperature Stability	T_{S}		0.2		mV/°C
Total Output Variation over Line, Load, Temp.	V_{REF}	4.82		5.18	V
Output Noise Voltage ($f = 10$ Hz to 10 kHz, $T_J = 25$ °C)	V_n		50		μV
Long Term Stability (T _A = 125°C for 1000 Hours)	S		5.0		mV
Output Short Circuit Current	ISC	-30	-85	-180	mA

OSCILLATOR SECTION

Frequency	f_{OSC}				V
$T_J = 25^{\circ}C$		47	52	57	
$T_A = 0$ to 70° C		46		60	
Frequency Change with Voltage ($V_{CC} = 12V \text{ to } 25V$)	$\Delta f_{OSC}/\Delta V$		0.2	1.0	%
Frequency Change with Temperature	$\Delta f_{OSC}/\Delta T$		5.0		%
Oscillator Voltage Swing (Peak-to-Peak)	V_{OSC}		1.6		V
Discharge Current (V _{OSC} = 2.0V)	$I_{ m dischg}$				mA
$T_J = 25^{\circ}C$			10.8		

ELECTRICAL CHARACTERISTICS

FDDOD	л мрт	TETED 9	SECTION

	1		1	
Symbol	Min	Тур	Max	Unit
$V_{\scriptscriptstyle FB}$	2.42	2.5	2.58	V
I_{IB}		-0.1	-2.0	μΑ
A_{VOL}	65	90		dB
BW	0.7	1.0		MHz
PSRR	60	70		dB
				mA
I_{Sink}	2.0	12		
I _{Source}	-0.5	-1.0		
				V
V_{OH}	5.0	6.2		
V_{OL}		0.8	1.1	
•			•	
	IIB AVOL BW PSRR ISink ISource	V _{FB} 2.42 I _{IB} A _{VOL} 65 BW 0.7 PSRR 60 I _{Sink} 2.0 I _{Source} -0.5 V _{OH} 5.0	V _{FB} 2.42 2.5 I _{IB} 0.1 A _{VOL} 65 90 BW 0.7 1.0 PSRR 60 70 I _{Sink} 2.0 12 I _{Source} -0.5 -1.0 V _{OH} 5.0 6.2	V _{FB} 2.42 2.5 2.58 I _{IB} 0.1 -2.0 A _{VOL} 65 90 BW 0.7 1.0 PSRR 60 70 I _{Sink} 2.0 12 I _{Source} -0.5 -1.0 V _{OH} 5.0 6.2

Current Sense Input Voltage Gain (Notes 4 & 5)	A_{V}	2.85	3.0	3.15	V/V
Maximum Current Sense Input Threshold (Note 4)	V_{TH}	0.9	1.0	1.1	V
Power Supply Rejection Ratio ($V_{CC} = 12V \text{ to } 25V$)	PSRR		70		dB
Input Bias Current	I_{IB}		-2.0	-10	μΑ
Propagation Delay (Current Sense Input to Output)	t _{PLH(in/out)}		150	300	ns

OUTPUT SECTION

Output Voltage						V		
Low State	$(I_{Sink} = 20mA)$	V_{OL}		0.1	0.4			
	$(I_{Sink} = 200mA)$			1.6	2.2			
High State	$(I_{Sink} = 20mA)$	V_{OH}	13	13.5				
	$(I_{Sink} = 200mA)$		12	13.4				
Output Voltage with UVLO Activated		$V_{OL(UVLO)}$				V		
$(V_{CC} = 6.0V, I_{Si})$	$_{nk}$ = 1.0mA)			0.1	1.1			
Output Voltage	Rise Time ($C_L = 1.0 \text{nF}, T_J = 25^{\circ}\text{C}$)	$t_{\rm r}$		50	150	ns		
Output Voltage	Fall Time ($C_L = 1.0 \text{nF}, T_J = 25 ^{\circ}\text{C}$)	t_{f}		50	150	ns		
TRIBEDIOLE	THE DEPTH OF THE OFFICE OF THE							

UNDERVOLTAGE LOCKOUT SECTION

Startup Threshold	V _{th}	14.5	16	17.5	V
Minimum Operating Voltage After Turn-On	V _{CC(min)}	8.5	10	11.5	V

PWM SECTION

Min DC	Duty Cycle	Max.	DC_{max}	47	48	50	%
IVIII. DC _{min} 0		Min.	DC _{min}			0	

TOTAL DEVICE

Power Supply Current ($V_{CC} = 14V$) (Note 2)	I_{CC}				mA
Startup			0.17	0.3	
Operating			12	17	
Power Supply Zener Voltage	V _z	30	36		V

FIGURE 1 - TIMING RESISTOR versus OSCILLATOR FREQUENCY

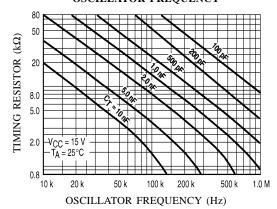


FIGURE 2 - OUTPUT DEADTIME versus OSCILLATOR FREQUENCY

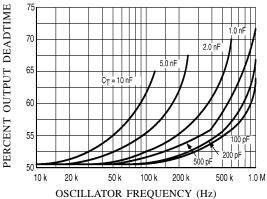


FIGURE 3 - ERROR AMP SMALL SIGNAL TRANSIENT RESPONSE

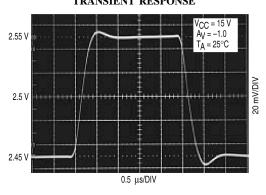


FIGURE 4 - ERROR AMP LARGE SIGNAL TRANSIENT RESPONSE

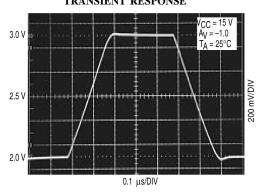


FIGURE 5 - ERROR AMP OPEN-LOOP GAIN AND PHASE versus FREQUENCY

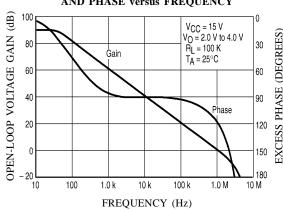


FIGURE 6 - CURRENT SENSE INPUT THRESHOLD versus ERROR AMP OUTPUT VOLTAGE

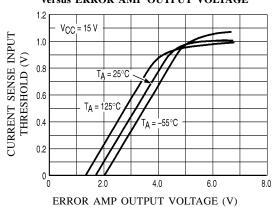
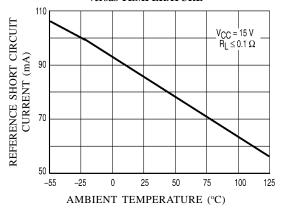


FIGURE 7 - REFERENCE VOLTAGE CHANGE versus SOURCE CURRENT REFERENCE VOLTAGE CHANGE (mV) V_{CC} = 15 V -4.0 -8.0 -12-16 T_A = 125°C T_A = 55°C -20 T_A = 25°C

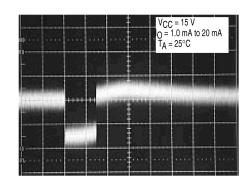
60 REFERENCE SOURCE CURRENT (mA)

80

100


120

40


20

OUTPUT VOLTAGE CHANGE (2.0mV/DIV)

FIGURE 8 - REFERENCE SHORT CIRCUIT CURRENT versus TEMPERATURE

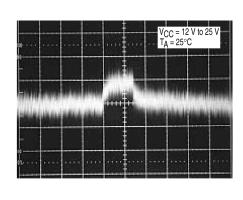


FIGURE 9 - REFERENCE LOAD REGULATION

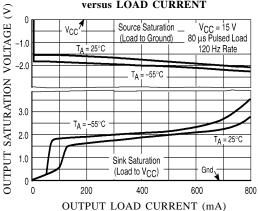
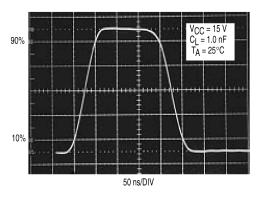

2.0 mS/DIV

FIGURE 10 - REFERENCE LINE REGULATION OUTPUT VOLTAGE CHANGE (2.0mV/DIV)



2.0 mS/DIV

FIGURE 11 - OUTPUT SATURATION VOLTAGE versus LOAD CURRENT

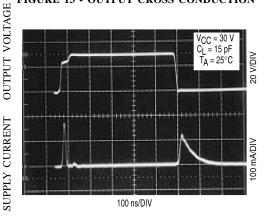


FIGURE 12 - OUTPUT WAVEFORM

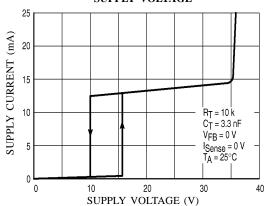


FIGURE 13 - OUTPUT CROSS CONDUCTION

FIGURE 14 - SUPPLY CURRENT versus SUPPLY VOLTAGE

