3-V TO 5.5-V TWO-CHANNEL RS-232 1-MBIT/S LINE DRIVERS/RECEIVERS

STRUMENTS www.ti.com

FEATURES

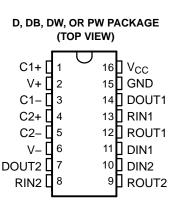
- Operate With 3-V to 5.5-V V_{CC} Supply
- Operate up to 1 Mbit/s
- Low Supply Current . . . 300 μA Typ
- External Capacitors . . . 4 \times 0.1 μ F
- Accept 5-V Logic Input With 3.3-V Supply
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection for RS-232 Pins
 - ±15-kV Human-Body Model (HBM)
 - \pm 15-kV IEC 61000-4-2 Air-Gap Discharge
 - ±8-kV IEC 61000-4-2 Contact Discharge

APPLICATIONS

- Battery-Powered Systems
- PDAs
- Notebooks
- Laptops
- Palmtop PCs
- Hand-Held Equipment

DESCRIPTION/ORDERING INFORMATION

The SN65C3232E and SN75C3232E consist of two line drivers, two line receivers, and a dual charge-pump circuit with \pm 15-kV ESD protection pin to pin (serial-port connection pins, including GND). These devices provide the electrical interface between an asynchronous communication controller and the serial-port connector. The charge pump and four small external capacitors allow operation from a single 3-V to 5.5-V supply. The devices operate at data signaling rates up to 1 Mbit/s and a driver output slew rate of 14 V/µs to 150 V/µs.


ORDERING INFORMATION

T _A	P	ACKAGE ⁽¹⁾	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	SOIC – D	Tube of 40	SN65C3232ED	65C3232
	3010 - 0	Reel of 2500	SN65C3232EDR	6502222
		Tube of 40	SN65C3232EDW	65C3232
–40°C to 85°C	SOIC – DW	Reel of 2000	SN65C3232EDWR	65C3232
	SSOP – DB	Reel of 2000	SN65C3232EDBR	CD2222
	TSSOP – PW	Tube of 90	SN65C3232EPW	CB3232
	1330P - PW	Reel of 2000	SN65C3232EPWR	7500000
	0010 D	Tube of 40	SN75C3232ED	75C3232
	SOIC – D	Reel of 2500	SN75C3232EDR	7500000
	SOIC - DW	Tube of 40	SN75C3232EDW	75C3232
0°C to 70°C	50IC - DW	Reel of 2000	SN75C3232EDWR	7500000
	SSOP – DB	Reel of 2000	SN75C3232EDBR	75C3232
		Tube of 90	SN75C3232EPW	C 4 2 2 2 2
	TSSOP – PW	Reel of 2000	SN75C3232EPWR	CA3232

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN65C3232E, SN75C3232E

SLLS697-DECEMBER 2005

WITH ±15-kV IEC ESD PROTECTION

SN65C3232E, SN75C3232E 3-V TO 5.5-V TWO-CHANNEL RS-232 1-MBIT/S LINE DRIVERS/RECEIVERS WITH \pm 15-kV IEC ESD PROTECTION

SLLS697-DECEMBER 2005

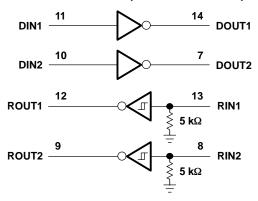
TEMPERATURE RANGE	PART NO.	NO. OF DRIVERS	NO. OF RECEIVERS	ESD	SUPPLY V _{CC} (V)	FEATURE	PIN/PACKAGE
	SN65C3221E	1	1	±15-kV Air-Gap, ±8-kV Contact, ±15-kV HBM	3.3 or 5	Auto powerdown	16-pin SOIC, SSOP, TSSOP
	SN65C3232E	2	2	±15-kV Air-Gap, ±8-kV Contact, ±15-kV HBM	3.3 or 5	Low pin count	16-pin SOIC, SSOP, TSSOP
	MAX3227I	1	1	±8-kV Air-Gap, ±8-kV Contact, ±15-kV HBM	3.3 or 5	Auto powerdown plus, ready signal	16-pin SSOP
–40°C to 85°C	SN65C3221	1	1	±15-kV HBM	3.3 or 5	Auto powerdown	16-pin SOIC, SSOP, TSSOP
	SN65C3223	2	2	±15-kV HBM	3.3 or 5	Auto powerdown, enable signal	20-pin SOIC, SSOP, TSSOP
	SN65C3222	2	2	±15-kV HBM	3.3 or 5	Enable, powerdown signal	20-pin SOIC, SSOP, TSSOP
	SN65C3232	2	2	±15-kV HBM	3.3 or 5	Low pin count	16-pin SOIC, SSOP, TSSOP
	SN65C3238	5	3	±15-kV HBM	3.3 or 5	Auto powerdown plus	28-pin SOIC, SSOP, TSSOP
	SN65C3243	3	5	±15-kV HBM	3.3 or 5	Auto powerdown	28-pin SOIC, SSOP, TSSOP
	SN75C3221E	1	1	±15-kV Air-Gap, ±8-kV Contact, ±15-kV HBM	3.3 or 5	Auto powerdown	16-pin SOIC, SSOP, TSSOP
	SN75C3232E	2	2	±15-kV Air-Gap, ±8-kV Contact, ±15-kV HBM	3.3 or 5	Low pin count	16-pin SOIC, SSOP, TSSOP
	MAX3227C	1	1	±8-kV Air-Gap, ±8-kV Contact, ±15-kV HBM	3.3 or 5	Auto powerdown plus, ready signal	16-pin SSOP
0°C to 70°C	SN75C3221	1	1	±15-kV HBM	3.3 or 5	Auto powerdown	16-pin SOIC, SSOP, TSSOP
0°C to 70°C	SN75C3223	2	2	±15-kV HBM	3.5 or 5	Auto powerdown, enable signal	20-pin SOIC, SSOP, TSSOP
	SN75C3222	2	2	±15-kV HBM	3.3 or 5	Enable, powerdown signal	20-pin SOIC, SSOP, TSSOP
	SN75C3232	2	2	±15-kV HBM	3.3 or 5	Low pin count	16-pin SOIC, SSOP, TSSOP
	SN75C3238	5	3	±15-kV HBM	3.3 or 5	Auto powerdown plus	28-pin SOIC, SSOP, TSSOP
	SN75C3243	3	5	±15-kV HBM	3.3 or 5	Auto powerdown	28-pin SOIC, SSOP, TSSOP

Table 1. 1-Mbit/s RS-232 F	Parts
----------------------------	-------

FUNCTION TABLES

EACH DRIVER⁽¹⁾

INPUT DIN	OUTPUT DOUT
L	Н
н	L


(1) H = high level, L = low level

EACH RECEIVER⁽¹⁾

INPUT RIN	OUTPUT ROUT
L	Н
н	L
Open	Н

 H = high level, L = low level, Open = input disconnected or connected driver off

LOGIC DIAGRAM (POSITIVE LOGIC)

SN65C3232E, SN75C3232E 3-V TO 5.5-V TWO-CHANNEL RS-232 1-MBIT/S LINE DRIVERS/RECEIVERS WITH ±15-kV IEC ESD PROTECTION

SLLS697-DECEMBER 2005

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range ⁽²⁾		-0.3	6	V
V+	Positive output supply voltage range ⁽²⁾		-0.3	7	V
V–	Negative output supply voltage range ⁽²⁾		0.3	-7	V
V+ - V-	Supply voltage difference ⁽²⁾			13	V
N/	V _I Input voltage range	Drivers	-0.3	6	
vi		Receivers	-25	25	V
		Drivers	-13.2	13.2	V
vo	V _O Output voltage range	Receivers	-0.3	V _{CC} + 0.3	V
		D package		82	
0	Decline we there we have a decree $(3)(4)$	DB package		46	°C/W
θ_{JA}	Package thermal impedance ⁽³⁾⁽⁴⁾	DW package		57	°C/W
		PW package		108	
TJ	Operating virtual junction temperature			150	°C
T _{stg}	Storage temperature range		-65	150	°C

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

All voltages are with respect to network GND.

(3)Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) - T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.

The package thermal impedance is calculated in accordance with JESD 51-7. (4)

Recommended Operating Conditions⁽¹⁾

				MIN	NOM	MAX	UNIT
	Supply voltage		$V_{CC} = 3.3 V$	3	3.3	3.6	V
	Supply voltage		$V_{CC} = 5 V$	4.5	5	5.5	v
V	Driver high-level input voltage	DIN	$V_{CC} = 3.3 V$	2			V
VIH		DIN	$V_{CC} = 5 V$	2.4			v
V_{IL}	Driver low-level input voltage		DIN			0.8	V
V	Driver low-level input voltage Driver input voltage		DIN	0		5.5	V
VI	Receiver input voltage		-25		25	v	
т	Operating free air temperature		SN65C3232E	-40		85	°C
T _A	Operating nee-an temperature	Operating free-air temperature				70	Ĵ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4).

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDITIONS		MIN	TYP ⁽²⁾	MAX	UNIT
I _{CC}	Supply current	No load,	$V_{CC} = 3.3 \text{ V or } 5 \text{ V}$		0.3	1	mA

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4). All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

DRIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

PARAMETER		TEST CONDIT	MIN	TYP ⁽²⁾	MAX	UNIT	
V _{OH}	High-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	DIN = GND	5	5.5		V
V _{OL}	Low-level output voltage	DOUT at $R_L = 3 \text{ k}\Omega$ to GND,	$DIN = V_{CC}$	-5	-5.4		V
I _{IH}	High-level input current	$V_{I} = V_{CC}$			±0.01	±1	μA
I_{IL}	Low-level input current	V _I at GND			±0.01	±1	μA
1 (3)	Short-circuit output current	V _{CC} = 3.6 V,	$V_0 = 0 V$		±35	±60	~ ^
I _{OS} ⁽³⁾	Shoh-circuit output current	V _{CC} = 5.5 V,	$V_0 = 0 V$		±35	±90	mA
r _o	Output resistance	V_{CC} , V+, and V- = 0 V,	$V_0 = \pm 2 V$	300	10M		Ω

(1)

(2)

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4) . All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one (3)output should be shorted at a time.

Switching Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TI	EST CONDITIONS	MIN	TYP ⁽²⁾ MA	VINIT
	Maximum data rate	$R_{L} = 3 k\Omega,$	$C_{L} = 250 \text{ pF}, \qquad V_{CC} = 3 \text{ V to } 4.5 \text{ V}$	1000		kbit/s
	(see Figure 1)	One DOUT switching	$C_L = 1000 \text{ pF}, \qquad V_{CC} = 3.5 \text{ V to } 5.5 \text{ V}$	1000		KDIVS
t _{sk(p)}	Pulse skew ⁽³⁾	C_L = 150 pF to 2500 pF, R_L	= 150 pF to 2500 pF, R_L = 3 kΩ to 7 kΩ, See Figure 2 300			ns
SR(tr)	Slew rate, transition region (see Figure 1)	$R_L = 3 k\Omega$ to 7 k Ω , $C_L = 150$	0 pF to 1000 pF, V_{CC} = 3.3 V	14	15	Ο V/μs

Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4). All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C. (1)

(2)

(3)Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device.

ESD Protection

TERM	IINAL	TEST CONDITIONS	ТҮР	UNIT
NAME	NO.	TEST CONDITIONS	ITF	UNIT
		НВМ	±15	
DOUT	7, 14	IEC 61000-4-2 Air-Gap Discharge	±15	kV
		IEC 61000-4-2 Contact Discharge	±8	

SN65C3232E, SN75C3232E 3-V TO 5.5-V TWO-CHANNEL RS-232 1-MBIT/S LINE DRIVERS/RECEIVERS WITH ±15-kV IEC ESD PROTECTION

SLLS697-DECEMBER 2005

RECEIVER SECTION

Electrical Characteristics⁽¹⁾

over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP ⁽²⁾	MAX	UNIT
V_{OH}	High-level output voltage	I _{OH} = -1 mA	$V_{CC} - 0.6$	$V_{CC} - 0.1$		V
V_{OL}	Low-level output voltage	I _{OL} = 1.6 mA			0.4	V
V _{IT+}	Positive going input threshold voltage	$V_{CC} = 3.3 V$		1.5	2.4	V
	Positive-going input threshold voltage	$V_{CC} = 5 V$		1.8	2.4	v
v		V _{CC} = 3.3 V	0.6	1.2		V
V _{IT}	Negative-going input threshold voltage	$V_{CC} = 5 V$	0.8	1.5		V
V_{hys}	Input hysteresis (V _{IT+} – V _{IT} –)			0.3		V
r _i	Input resistance	$V_1 = \pm 3 \text{ V to } \pm 25 \text{ V}$	3	5	7	kΩ

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4). (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

Switching Characteristics⁽¹⁾

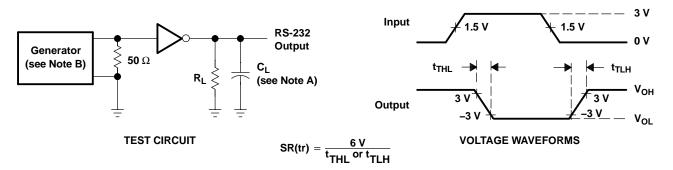
over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	TYP ⁽²⁾	UNIT
t _{PLH}	Propagation delay time, low- to high-level output	C 150 pF	300	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 150 pF	300	ns
t _{sk(p)}	Pulse skew ⁽³⁾		300	ns

(1) Test conditions are C1–C4 = 0.1 μ F at V_{CC} = 3.3 V ± 0.3 V; C1 = 0.047 μ F, C2–C4 = 0.33 μ F at V_{CC} = 5 V ± 0.5 V (see Figure 4). (2) All typical values are at V_{CC} = 3.3 V or V_{CC} = 5 V, and T_A = 25°C.

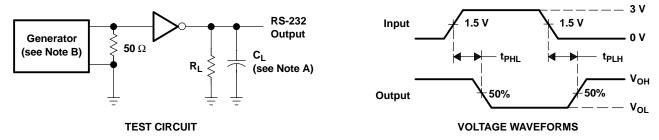
(3) Pulse skew is defined as |t_{PLH} - t_{PHL}| of each channel of the same device.

ESD Protection


TERMINAL		TEST CONDITIONS		UNIT
NAME	NO.	TEST CONDITIONS	ТҮР	UNIT
	8, 13	НВМ	±15	
RIN		IEC 61000-4-2 Air-Gap Discharge	±15	kV
		IEC 61000-4-2 Contact Discharge	±8	

SN65C3232E, SN75C3232E 3-V TO 5.5-V TWO-CHANNEL RS-232 1-MBIT/S LINE DRIVERS/RECEIVERS WITH ± 15 -kV IEC ESD PROTECTION

SLLS697-DECEMBER 2005


PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_L includes probe and jig capacitance.

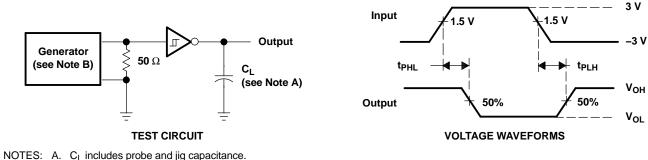
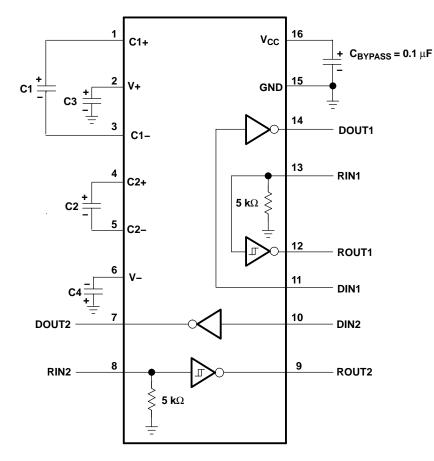

B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_0 = 50 \Omega$, 50% duty cycle, $t_f \le 10$ ns, $t_f \le 10$ ns.

Figure 1. Driver Slew Rate

NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.

Figure 2. Driver Pulse Skew

B. The pulse generator has the following characteristics: $Z_0 = 50 \Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns.


Figure 3. Receiver Propagation Delay Times

SN65C3232E, SN75C3232E 3-V TO 5.5-V TWO-CHANNEL RS-232 1-MBIT/S LINE DRIVERS/RECEIVERS WITH \pm 15-kV IEC ESD PROTECTION

SLLS697-DECEMBER 2005

APPLICATION INFORMATION

V_{CC} vs CAPACITOR VALUES

V _{CC}	C1	C2, C3, C4
3.3 V ± 0.3 V	0.1 μF	0.1 μF
5 V ± 0.5 V	0.047 μF	0.33 μF
3 V to 5.5 V	0.1 μF	0.47 μF

A. C3 can be connected to $V_{CC} \mbox{ or GND}.$

Figure 4. Typical Operating Circuit and Capacitor Values

6-Dec-2006

TEXAS INSTRUMENTS www.ti.com

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN65C3232ED	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EDB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN65C3232EPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232ED	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EDB	ACTIVE	SSOP	DB	16	80	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EDBR	ACTIVE	SSOP	DB	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EDE4	ACTIVE	SOIC	D	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EDR	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EDRE4	ACTIVE	SOIC	D	16	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EPW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EPWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EPWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN75C3232EPWRE4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

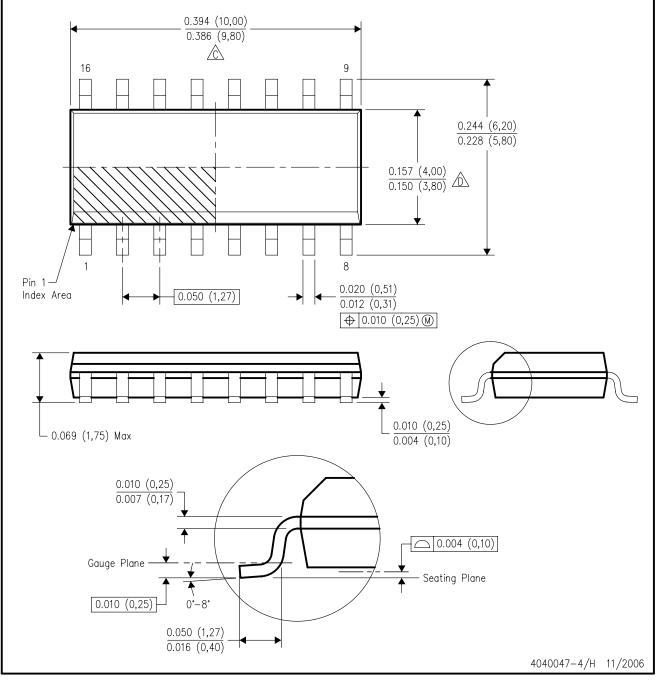
OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

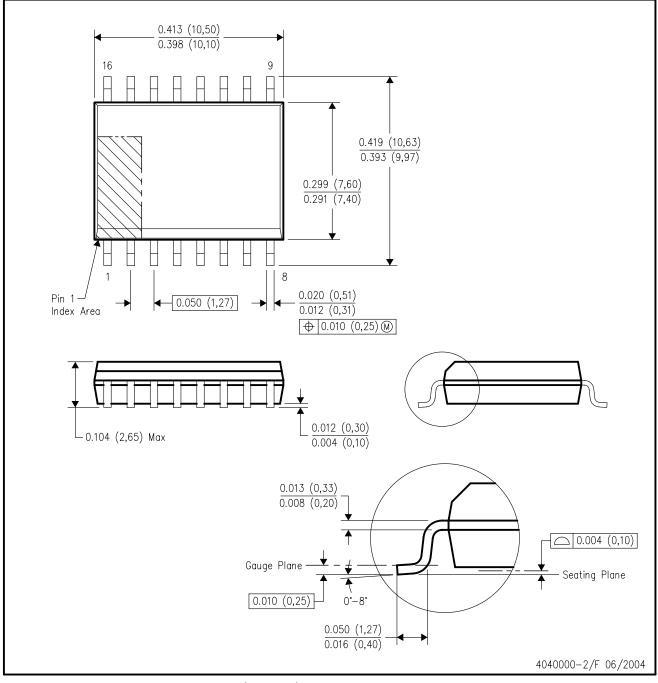

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE


NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 (0,15) per end.
- Body width does not include interlead flash. Interlead flash shall not exceed .017 (0,43) per side.
- E. Reference JEDEC MS-012 variation AC.

DW (R-PDSO-G16)

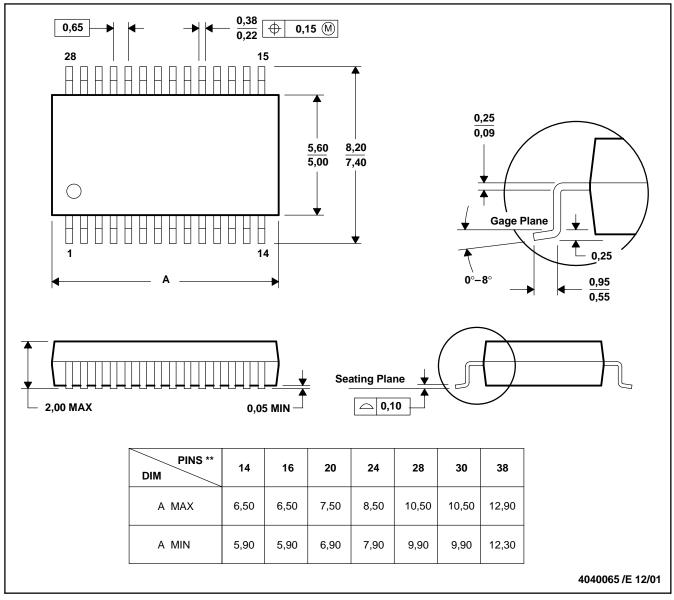
PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AA.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

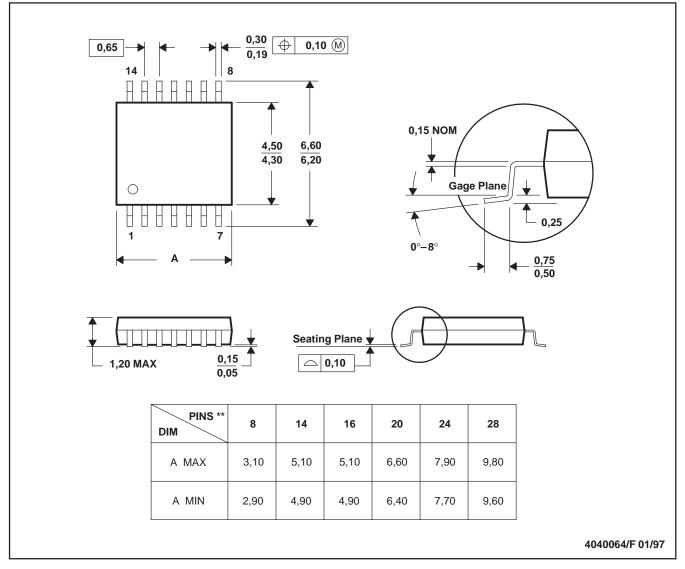
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated