FEATURES

- 1-of-4 Bidirectional Translating Switches
- $I^{2} \mathrm{C}$ Bus and SMBus Compatible
- Four Active-Low Interrupt Inputs
- Active-Low Interrupt Output
- Active-Low Reset Input
- Two Address Pins, Allowing up to Four Devices on the $I^{2} C$ Bus
- Channel Selection Via $I^{2} C$ Bus, In Any Combination
- Power Up With All Switch Channels Deselected
- Low R_{ON} Switches
- Allows Voltage-Level Translation Between $1.8-\mathrm{V}, 2.5-\mathrm{V}, 3.3-\mathrm{V}$, and $5-\mathrm{V}$ Buses
- No Glitch on Power Up
- Supports Hot Insertion
- Low Standby Current
- Operating Power-Supply Voltage Range of 2.3 V to 5.5 V
- 5.5-V Tolerant Inputs
- 0 to $400-\mathrm{kHz}$ Clock Frequency
- Latch-Up Performance Exceeds 100 mA Per JESD 78
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 200-V Machine Model (A115-A)
- 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

The PCA9545A is a quad bidirectional translating switch controlled via the $I^{2} \mathrm{C}$ bus. The SCL/SDA upstream pair fans out to four downstream pairs, or channels. Any individual SCn/SDn channel or combination of channels can be selected, determined by the contents of the programmable control register. Four interrupt inputs (INT3-INT0), one for each of the downstream pairs, are provided. One interrupt (INT) output acts as an AND of the four interrupt inputs.

An active-low reset ($\overline{R E S E T}$) input allows the PCA9545A to recover from a situation in which one of the downstream $I^{2} C$ buses is stuck in a low state. Pulling RESET low resets the $I^{2} C$ state machine and causes all the channels to be deselected, as does the internal power-on reset function.

The pass gates of the switches are constructed such that the V_{CC} pin can be used to limit the maximum high voltage, which will be passed by the PCA9545A. This allows the use of different bus voltages on each pair, so that $1.8-\mathrm{V}, 2.5-\mathrm{V}$, or $3.3-\mathrm{V}$ parts can communicate with $5-\mathrm{V}$ parts, without any additional protection. External pullup resistors pull the bus up to the desired voltage level for each channel. All $1 / O$ pins are $5.5-\mathrm{V}$ tolerant.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	QFN - RGW	Reel of 3000	PCA9545ARGWR	PD545A
	QFN - RGY	Reel of 1000	PCA9545ARGYR	PD545A
	SOIC - DW	Tube of 25	PCA9545ADW	PCA9545A
		Reel of 2000	PCA9545ADWR	
		Reel of 250	PCA9545ADWT	PCA9545A
	TSSOP - PW	Tube of 70	PCA9545APW	PD545A
			PCA9545APWE4	
		Reel of 2000	PCA9545APWR	PD545A
			PCA9545APWRE4	
		Reel of 250	PCA9545APWT	PD545A
			PCA9545APWTE4	
	TVSOP - DGV	Reel of 2000	PCA9545ADGVR	PD545A
		Reel of 250	PCA9545ADGVT	
	VFBGA - GQN	Reel of 1000	PCA9545AGQNR	PD545A
	VFBGA - ZQN (Pb-free)	Reel of 1000	PCA9545AZQNR	PD545A

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

GQN OR ZQN PACKAGE
(TOP VIEW)
$\begin{array}{llll}1 & 2 & 3 & 4\end{array}$

TERMINAL ASSIGNMENTS

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
\mathbf{A}	A 1	A 0	$\mathrm{~V}_{\mathrm{CC}}$	SDA
\mathbf{B}	$\overline{\mathrm{NTT0}}$	$\overline{\mathrm{INT}}$	$\overline{\mathrm{RESET}}$	SCL
\mathbf{C}	SC 0	$\mathrm{SD0}$	$\mathrm{SD3}$	$\mathrm{SC3}$
\mathbf{D}	SD 1	SC 2	$\overline{\mathrm{NT1}}$	$\overline{\mathrm{NT} 3}$
\mathbf{E}	GND	SC 1	$\overline{\mathrm{NT} 2}$	SD 2

TERMINAL FUNCTIONS

NO.			NAME	DESCRIPTION
DGV, DW, PW, AND RGY	RGW	$\begin{aligned} & \text { GQN AND } \\ & \text { ZQN } \end{aligned}$		
1	19	A2	A0	Address input 0 . Connect directly to V_{CC} or ground.
2	20	A1	A1	Address input 1. Connect directly to $\mathrm{V}_{C C}$ or ground.
3	1	B3	RESET	Active-low reset input. Connect to V_{CC} through a pullup resistor, if not used.
4	2	B1	INTO	Active-low interrupt input 0 . Connect to V_{CC} through a pullup resistor.
5	3	C2	SD0	Serial data 0 . Connect to $\mathrm{V}_{C C}$ through a pullup resistor.
6	4	C1	SC0	Serial clock 0 . Connect to V_{CC} through a pullup resistor.
7	5	D3	INT1	Active-low interrupt input 1. Connect to V_{CC} through a pullup resistor.
8	6	D1	SD1	Serial data 1. Connect to V_{CC} through a pullup resistor.
9	7	E2	SC1	Serial clock 1. Connect to V_{CC} through a pullup resistor.
10	8	E1	GND	Ground
11	9	E3	INT2	Active-low interrupt input 2. Connect to V_{CC} through a pullup resistor.
12	10	E4	SD2	Serial data 2. Connect to V_{CC} through a pullup resistor.
13	11	D2	SC2	Serial clock 2. Connect to V_{CC} through a pullup resistor.
14	12	D4	INT3	Active-low interrupt input 3 . Connect to V_{CC} through a pullup resistor.
15	13	C3	SD3	Serial data 3. Connect to V_{CC} through a pullup resistor.
16	14	C4	SC3	Serial clock 3. Connect to V_{CC} through a pullup resistor.
17	15	B2	INT	Active-low interrupt output. Connect to V_{CC} through a pullup resistor.
18	16	B4	SCL	Serial clock line. Connect to V_{CC} through a pullup resistor.
19	17	A4	SDA	Serial data line. Connect to V_{CC} through a pullup resistor.
20	18	A3	V_{CC}	Supply power

BLOCK DIAGRAM

Pin numbers shown are for DGV, DW, PW, and RGY packages.

Device Address

Following a start condition, the bus master must output the address of the slave it is accessing. The address of the PCA9545A is shown in Figure 1. To conserve power, no internal pullup resistors are incorporated on the hardware-selectable address pins, and they must be pulled high or low.

Figure 1. PCA9545A Address
The last bit of the slave address defines the operation to be performed. When set to a logic 1, a read is selected, while a logic 0 selects a write operation.

Control Register

Following the successful acknowledgment of the slave address, the bus master sends a byte to the PCA9545A, which is stored in the control register (see Figure 2). If multiple bytes are received by the PCA9545A, it saves the last byte received. This register can be written and read via the $I^{2} \mathrm{C}$ bus.

Figure 2. Control Register

Control Register Definition

One or several SCn/SDn downstream pairs, or channels, are selected by the contents of the control register (see Table 11). After the PCA9545A has been addressed, the control register is written. The four LSBs of the control byte are used to determine which channel or channels are to be selected. When a channel is selected, the channel becomes active after a stop condition has been placed on the $I^{2} \mathrm{C}$ bus. This ensures that all SCn/SDn lines are in a high state when the channel is made active, so that no false conditions are generated at the time of connection. A stop condition must occur always right after the acknowledge cycle.

Table 1. Control Register Write (Channel Selection), Control Register Read (Channel Status) ${ }^{(1)}$

INT3	$\overline{\text { INT2 }}$	$\overline{\text { INT1 }}$	INTO	D3	B2	B1	B0	COMMAND
X	X	X	X	X	X	X	0	Channel 0 disabled
							1	Channel 0 enabled
X	X	X	X	X	X	0	X	Channel 1 disabled
						1		Channel 1 enabled
X	X	X	X	X	0	X	X	Channel 2 disabled
					1			Channel 2 enabled
X	X	X	X	0	X	X	X	Channel 3 disabled
				1				Channel 3 enabled
0	0	0	0	0	0	X	0	No channel selected, power-up/reset default state

(1) Several channels can be enabled at the same time. For example, $\mathrm{B} 3=0, \mathrm{~B} 2=1, \mathrm{~B} 1=1, \mathrm{~B} 0=0$ means that channels 0 and 3 are disabled, and channels 1 are 2 and enabled. Care should be taken not to exceed the maximum bus capacity.

Interrupt Handling

The PCA9545A provides four interrupt inputs (one for each channel) and one open-drain interrupt output (see Table 2). When an interrupt is generated by any device, it is detected by the PCA9545A and the interrupt output is driven low. The channel does not need to be active for detection of the interrupt. A bit also is set in the control register.
Bits 4-7 of the control register correspond to channels $0-3$ of the PCA9545A, respectively. Therefore, if an interrupt is generated by any device connected to channel 1, the state of the interrupt inputs is loaded into the control register when a read is accomplished. Likewise, an interrupt on any device connected to channel 0 would cause bit 4 of the control register to be set on the read. The master then can address the PCA9545A and read the contents of the control register to determine which channel contains the device generating the interrupt. The master then can reconfigure the PCA9545A to select this channel and locate the device generating the interrupt and clear it.

It should be noted that more than one device can provide an interrupt on a channel, so it is up to the master to ensure that all devices on a channel are interrogated for an interrupt.
The interrupt inputs can be used as general-purpose inputs if the interrupt function is not required.
If unused, interrupt input(s) must be connected to V_{CC}.
Table 2. Control Register Read (Interrupt) ${ }^{(1)}$

INT3	INT2	INT1	INTO	D3	B2	B1	B0	COMMAND
X	X	X	0	X	X	X	X	No interrupt on channel 0
			1					Interrupt on channel 0
X	X	0	X	X	X	X	X	No interrupt on channel 1
		1						Interrupt on channel 1
X	0	X	X	X	X	X	X	No interrupt on channel 2
	1							Interrupt on channel 2
0	X	X	X	X	X	X	X	No interrupt on channel 3
1								Interrupt on channel 3

(1) Several interrupts can be active at the same time. For example, $\overline{\mathbb{N T} 3}=0, \overline{\mathbb{N T} 2}=1, \overline{\mathrm{NT} 1}=1, \overline{\mathrm{NTO}}=0$ means that there is no interrupt on channels 0 and 3 , and there is interrupt on channels 1 and 2.

RESET Input

The RESET input can be used to recover the PCA9545A from a bus-fault condition. The registers and the $I^{2} \mathrm{C}$ state machine within this device initialize to their default states if this signal is asserted low for a minimum of t_{WL}. All channels also are deselected in this case. RESET must be connected to V_{CC} through a pullup resistor.

Power-On Reset

When power is applied to V_{cc}, an internal power-on reset holds the PCA9545A in a reset condition until V_{CC} has reached $\mathrm{V}_{\text {POR }}$. At this point, the reset condition is released and the PCA9545A registers and $\mathrm{I}^{2} \mathrm{C}$ state machine are initialized to their default states, all zeroes, causing all the channels to be deselected. Thereafter, V_{CC} must be lowered below 0.2 V to reset the device.

Voltage Translation

The pass-gate transistors of the PCA9545A are constructed such that the V_{CC} voltage can be used to limit the maximum voltage that is passed from one $\mathrm{I}^{2} \mathrm{C}$ bus to another.
Figure 3 shows the voltage characteristics of the pass-gate transistors (note that the graph was generated using data specified in the electrical characteristics section of this data sheet). In order for the PCA9545A to act as a voltage translator, the $\mathrm{V}_{\text {pass }}$ voltage must be equal to or lower than the lowest bus voltage. For example, if the main bus is running at 5 V and the downstream buses are 3.3 V and $2.7 \mathrm{~V}, \mathrm{~V}_{\text {pass }}$ must be equal to or below 2.7 V to effectively clamp the downstream bus voltages. As shown in Figure 3, $\mathrm{V}_{\text {pass }}$ (max) is at 2.7 V when the PCA9545A supply voltage is 3.5 V or lower, so the PCA9545A supply voltage could be set to 3.3 V . Pullup resistors then can be used to bring the bus voltages to their appropriate levels (see Figure 13).

Figure 3. $\mathrm{V}_{\text {pass }}$ Voltage vs V_{cc}

$I^{2} \mathrm{C}$ Interface

The $I^{2} \mathrm{C}$ bus is for two-way two-line communication between different ICs or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pullup resistor when connected to the output stages of a device. Data transfer can be initiated only when the bus is not busy.
One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the high period of the clock pulse, as changes in the data line at this time are interpreted as control signals (see Figure 4).

SCPS147C-OCTOBER 2005-REVISED OCTOBER 2006

Figure 4. Bit Transfer

Both data and clock lines remain high when the bus is not busy. A high-to-low transition of the data line while the clock is high is defined as the start condition (S). A low-to-high transition of the data line while the clock is high is defined as the stop condition (P) (see Figure 5).

Figure 5. Definition of Start and Stop Conditions
A device generating a message is a transmitter; a device receiving a message is the receiver. The device that controls the message is the master, and the devices that are controlled by the master are the slaves (see Figure 6).

Figure 6. System Configuration

The number of data bytes transferred between the start and the stop conditions from transmitter to receiver is not limited. Each byte of eight bits is followed by one acknowlege (ACK) bit. The transmitter must release the SDA line before the receiver can send an ACK bit.

When a slave receiver is addressed, it must generate an ACK after the reception of each byte. Also, a master must generate an ACK after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull down the SDA line during the ACK clock pulse so that the SDA line is stable low during the high pulse of the ACK-related clock period (see Figure 7). Setup and hold times must be taken into account.

Figure 7. Acknowledgment on the $I^{2} C$ Bus
A master receiver must signal an end of data to the transmitter by not generating an acknowledge (NACK) after the last byte has been clocked out of the slave. This is done by the master receiver by holding the SDA line high. In this event, the transmitter must release the data line to enable the master to generate a stop condition.
Data is transmitted to the PCA9545A control register using the write mode shown in Figure 8.

Figure 8. Write Control Register
Data is read from the PCA9545A control register using the read mode shown in Figure 9.

Figure 9. Read Control Register

WITH INTERRUPT LOGIC AND RESET FUNCTIONS
SCPS147C-OCTOBER 2005-REVISED OCTOBER 2006

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	7	V
V_{1}	Input voltage range ${ }^{(2)}$		-0.5	7	V
I_{1}	Input current			± 20	mA
I_{0}	Output current			± 25	mA
	Continuous current through V_{CC}			± 100	mA
	Continuous current through GND			± 100	mA
		DGV package		92	
		DW package		58	
		GQN/ZQN package		78	
θ_{JA}	Package thermal impedance ${ }^{(3)}$	PW package		83	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		RGW package		TBD	
		RGY package		47	
$\mathrm{P}_{\text {tot }}$	Total power dissipation			400	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {A }}$	Operating free-air temperature range		-40	85	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

			MIN	MAX	UNIT
V_{CC}	Supply voltage		2.3	5.5	V
V_{11}	dh-level input voltage	SCL, SDA	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	6	V
$V_{\text {IH }}$	put voltage	A1, A0, INT3-INT0, $\overline{\text { RESET }}$	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	
		SCL, SDA	-0.5	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	
VIL	Low-level input voltage	A1, A0, INT3-INTO, $\overline{\text { RESET }}$	-0.5	$0.3 \times \mathrm{V}_{\mathrm{CC}}$	V
$\mathrm{T}_{\text {A }}$	Operating free-air tempe		-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER			TEST CONDITIONS		V_{cc}	MIN	TYP(1)	MAX	UNIT	
$\mathrm{V}_{\text {POR }}$	Power-on reset voltage ${ }^{(2)}$		No load,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	$\mathrm{V}_{\text {POR }}$		1.6	2.1	V	
$\mathrm{V}_{\text {pass }}$	Switch output voltage		$\mathrm{V}_{\mathrm{SW} \text { in }}=\mathrm{V}_{\mathrm{CC}}$,	$\mathrm{I}_{\text {SWout }}=-100 \mu \mathrm{~A}$	5 V		3.6		V	
			4.5 V to 5.5 V		2.6		4.5			
			3.3 V		1.9					
			3 V to 3.6 V		1.6		2.8			
			2.5 V		1.5					
			2.3 V to 2.7 V		1.1		2			
I_{OH}	INT			$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$		2.3 V to 5.5 V			10	$\mu \mathrm{A}$
loL	SCL, SDA			$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		2.3 V to 5.5 V	3	7		mA
			$\mathrm{V}_{\mathrm{OL}}=0.6 \mathrm{~V}$		6		10			
	INT			$\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$			3			
1	SCL, SDA			$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND		2.3 V to 5.5 V			± 1	$\mu \mathrm{A}$
	SC3-SC0, SD3-SD0							± 1		
	A1, A0						± 1			
	INT3-INTO						± 1			
	RESET						± 1			
Icc	Operating mode	$\mathrm{f}_{\mathrm{SCL}}=100 \mathrm{kHz}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND, $\mathrm{I}_{\mathrm{O}}=0$		5.5 V			3	12	$\mu \mathrm{A}$
					3.6 V			3	11	
					2.7 V			3	10	
	Standby mode	Low inputs	$\mathrm{V}_{1}=\mathrm{GND}$,	$\mathrm{I}_{0}=0$	5.5 V			0.3	1	
					3.6 V		0.1	1		
					2.7 V		0.1	1		
		High inputs	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$,	$\mathrm{I}_{\mathrm{O}}=0$	5.5 V		0.3	1		
					3.6 V		0.1	1		
					2.7 V		0.1	1		
$\Delta \mathrm{l}_{\mathrm{CC}}$	Supply-current change	INT3-INTO	One INT3-INTO input at 0.6 V , Other inputs at V_{CC} or GND		2.3 V to 5.5 V		8	15	$\mu \mathrm{A}$	
			One INT3-INTO input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND				8	15		
		SCL, SDA	SCL or SDA input at 0.6 V , Other inputs at V_{CC} or GND				8	15		
			SCL or SDA input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, Other inputs at V_{CC} or GND				8	15		
C_{i}	A1, A0		$V_{1}=V_{C C}$ or GND		2.3 V to 5.5 V		4.5	6	pF	
	INT3-INTO					4.5	6			
	RESET					4.5	5.5			
$\mathrm{C}_{\mathrm{io}(\mathrm{OFF})^{(3)}}$	SCL, SDA		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND, Switch OFF			2.3 V to 5.5 V		15	19	pF
	SC3-SC0, SD3-SD0						6	8		
R_{ON}	Switch on-state resistance		$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$,$\mathrm{V}_{\mathrm{O}}=0.4 \mathrm{~V}$,	$\mathrm{l}_{0}=15 \mathrm{~mA}$		4.5 V to 5.5 V	4	9	16	Ω
			3 V to 3.6 V		5	11	20			
			$\mathrm{I}_{\mathrm{O}}=10 \mathrm{~mA}$	2.3 V to 2.7 V	7	16	45			

(1) All typical values are at nominal supply voltage (2.5-V, $3.3-\mathrm{V}$, or $\left.5-\mathrm{V} \mathrm{V}_{\mathrm{CC}}\right), \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) The power-on reset circuit resets the $I^{2} \mathrm{C}$ bus logic with $\mathrm{V}_{\mathrm{CC}}<\mathrm{V}_{\mathrm{POR}}$. V_{CC} must be lowered to 0.2 V to reset the device.
(3) $\mathrm{C}_{\mathrm{io}(\mathrm{ON})}$ depends on the device capacitance and load that is downstream from the device.

WITH INTERRUPT LOGIC AND RESET FUNCTIONS
SCPS147C-OCTOBER 2005-REVISED OCTOBER 2006

$I^{2} \mathrm{C}$ Interface Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 10)

			STANDARD MODE $\mathrm{I}^{2} \mathrm{C}$ BUS	FAST MODE $1^{2} \mathrm{C}$ BUS		UNIT
			MIN MAX	MIN	MAX	
$\mathrm{f}_{\mathrm{scl}}$	$\mathrm{I}^{2} \mathrm{C}$ clock frequency		$0 \quad 100$	0	400	kHz
$\mathrm{t}_{\text {sch }}$	${ }^{12} \mathrm{C}$ clock high time		4	0.6		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{scl}}$	$1^{2} \mathrm{C}$ clock low time		4.7	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {sp }}$	$1^{2} \mathrm{C}$ spike time		50		50	ns
$\mathrm{t}_{\text {sds }}$	$\mathrm{I}^{2} \mathrm{C}$ serial-data setup time		250	100		ns
$\mathrm{t}_{\text {sdh }}$	$1^{2} \mathrm{C}$ serial-data hold time		$0^{(1)}$	$0^{(1)}$		$\mu \mathrm{s}$
$\mathrm{t}_{\text {icr }}$	$1^{2} \mathrm{C}$ input rise time		1000	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)}$	300	ns
$\mathrm{t}_{\text {icf }}$	${ }^{2} \mathrm{C}$ input fall time		300	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)}$	300	ns
$\mathrm{t}_{\text {ocf }}$	$1^{2} \mathrm{C}$ output fall time	10-pF to 400-pF bus	300	$20+0.1 \mathrm{C}_{\mathrm{b}}{ }^{(2)}$	300	ns
$\mathrm{t}_{\text {buf }}$	${ }^{2} \mathrm{C}$ bus free time between stop and	d start	4.7	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {sts }}$	${ }^{1}{ }^{2} \mathrm{C}$ start or repeated start condition	setup	4.7	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {sth }}$	${ }^{1} \mathrm{C}$ C start or repeated start condition	hold	4	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {sps }}$	$1^{2} \mathrm{C}$ stop condition setup		4	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {val(}}$ (ata)	Valid-data time (high to low) ${ }^{(3)}$	SCL low to SDA output low valid	1		1	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{vdH}}$ (Data)	Valid-data time (low to high) ${ }^{(3)}$	SCL low to SDA output high valid	0.6		0.6	$\mu \mathrm{s}$
$\mathrm{t}_{\mathrm{vd} \text { (ack) }}$	Valid-data time of ACK condition	ACK signal from SCL low to SDA output low	1		1	$\mu \mathrm{s}$
C_{b}	$1^{2} \mathrm{C}$ bus capacitive load		400		400	pF

(1) A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to as the V_{H} min of the SCL signal), in order to bridge the undefined region of the falling edge of SCL.
(2) $\mathrm{C}_{\mathrm{b}}=$ total bus capacitance of one bus line in pF
(3) Data taken using a $1-\mathrm{k} \Omega$ pullup resistor and $50-\mathrm{pF}$ load (see Figure 10)

Switching Characteristics

over recommended operating free-air temperature range, $\mathrm{C}_{\mathrm{L}} \leq 100 \mathrm{pF}$ (unless otherwise noted) (see Figure 12)

PARAMETER			FROM (INPUT)	TO (OUTPUT)	MIN MAX	UNIT
$\mathrm{tpd}^{(1)}$	Propagation delay time	$\mathrm{R}_{\text {ON }}=20 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	SDA or SCL	SDn or SCn	0.3	ns
		$\mathrm{R}_{\mathrm{ON}}=20 \Omega, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$			1	
$\mathrm{t}_{\text {iv }}$	Interrupt valid time ${ }^{(2)}$		$\overline{\text { INTn }}$	INT	4	$\mu \mathrm{s}$
$\mathrm{t}_{\text {ir }}$	Interrupt reset delay time ${ }^{(2)}$		$\overline{\text { NTn }}$	INT	2	$\mu \mathrm{s}$

(1) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
(2) Data taken using a $4.7-\mathrm{k} \Omega$ pullup resistor and $100-\mathrm{pF}$ load (see Figure 12)

Interrupt and Reset Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 12)

PARAMETER		MIN	MAX	UNIT
$\mathrm{t}_{\text {PWRL }}$	Low-level pulse duration rejection of INTn inputs	1		$\mu \mathrm{s}$
$\mathrm{t}_{\text {PWRH }}$	High-level pulse duration rejection of $\overline{\text { NTn }}$ inputs	0.5		$\mu \mathrm{s}$
t_{WL}	Pulse duration, $\overline{\text { RESET }}$ low	6		ns
$\mathrm{trst}^{(1)}$	$\overline{\text { RESET }}$ time (SDA clear)		500	ns
$\mathrm{t}_{\text {REC }}(\mathrm{STA})$	Recovery time from RESET to start	0		ns

(1) $t_{\text {rst }}$ is the propagation delay measured from the time the RESET pin is first asserted low to the time the SDA pin is asserted high, signaling a stop condition. It must be a minimum of t_{WL}.

PARAMETER MEASUREMENT INFORMATION

$I^{2} \mathrm{C}$ PORT LOAD CONFIGURATION

BYTE	DESCRIPTION
1	I $^{2} \mathrm{C}$ address + $\mathrm{R} / \overline{\mathrm{W}}$
2	Control register data

VOLTAGE WAVEFORMS
A. $\quad C_{L}$ includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}=30 \mathrm{~ns}$.
C. The outputs are measured one at a time, with one transition per measurement.

Figure 10. ${ }^{2}$ C Interface Load Circuit, Byte Descriptions, and Voltage Waveforms

PARAMETER MEASUREMENT INFORMATION (continued)

Figure 11. Reset Timing

INTERRUPT LOAD CONFIGURATION

A. $\quad C_{L}$ includes probe and jig capacitance.
B. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$, $\mathrm{t}_{\mathrm{r}} / \mathrm{t}_{\mathrm{f}}=30 \mathrm{~ns}$.

Figure 12. Interrupt Load Circuit and Voltage Waveforms

SCPS147C-OCTOBER 2005-REVISED OCTOBER 2006

APPLICATION INFORMATION

Figure 13 shows an application in which the PCA9545A can be used.

A. If the device generating the interrupt has an open-drain output structure or can be 3 -stated, a pullup resistor is required. If the device generating the interrupt has a totem-pole output structure and cannot be 3 -stated, a pullup resistor is not required. The interrupt inputs should not be left floating.
B. Pin numbers shown are for DGV, DW, PW, and RGY packages.

Figure 13. Typical Application
www.ti.com

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
PCA9545ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9545ADGVT	PREVIEW	TVSOP	DGV	20	250	TBD	Call TI	Call TI
PCA9545ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9545ADWR	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
PCA9545ADWT	PREVIEW	SOIC	DW	20	250	TBD	Call TI	Call TI
PCA9545AGQNR	NRND	BGA MI CROSTA R JUNI OR	GQN	20	1000	TBD	SNPB	Level-1-240C-UNLIM
PCA9545APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
PCA9545APWE4	ACTIVE	TSSOP	PW	20	70	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
PCA9545APWR	ACTIVE	TSSOP	PW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
PCA9545APWRE4	ACTIVE	TSSOP	PW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
PCA9545APWT	ACTIVE	TSSOP	PW	20	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
PCA9545APWTE4	ACTIVE	TSSOP	PW	20	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
PCA9545ARGWR	PREVIEW	QFN	RGW	20	3000	TBD	Call TI	Call TI
PCA9545ARGYR	ACTIVE	QFN	RGY	20	1000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-2-260C-1YEAR
PCA9545ARGYRG4	ACTIVE	QFN	RGY	20	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-2-260C-1YEAR
PCA9545AZQNR	ACTIVE	$\begin{gathered} \hline \text { BGA MI } \\ \text { CROSTA } \\ \text { R JUNI } \\ \text { OR } \end{gathered}$	ZQN	20	1000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	SNAGCU	Level-1-260C-UNLIM

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.

[^0]${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

GQN (R-PBGA-N20)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-225 variation BC.
D. This package is tin-lead (SnPb). Refer to the 20 ZQN package (drawing 4204492) for lead-free.

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Falls within JEDEC MO-225 variation BC.
D. This package is lead-free. Refer to the 20 GQN package (drawing 4200704) for tin-lead (SnPb).

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

DW (R-PDSO-G2O)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AC.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. QFN (Quad Flatpack No-Lead) package configuration.

The package thermal pad must be soldered to the board for thermal and mechanical performance
Pin 1 identifiers are located on both top and bottom of the package and within the zone indicated. The Pin 1 identifiers are either a molded, marked, or metal feature.
F. Package complies to JEDEC MO-241 variation BC.

THERMAL PAD MECHANICAL DATA
RGY (R-PQFP-N2O)

THERMAL INFORMATION

This package incorporates an exposed thermal pad that is designed to be attached directly to an external heatsink. The thermal pad must be soldered directly to the printed circuit board (PCB), the PCB can be used as a heatsink. In addition, through the use of thermal vias, the thermal pad can be attached directly to a ground plane or special heatsink structure designed into the PCB. This design optimizes the heat transfer from the integrated circuit (IC).
For information on the Quad Flatpack No-Lead (QFN) package and its advantages, refer to Application Report, Quad Flatpack No-Lead Logic Packages, Texas Instruments Literature No. SCBA017. This document is available at www.ti.com

The exposed thermal pad dimensions for this package are shown in the following illustration.

Bottom View

NOTE: All linear dimensions are in millimeters

RGY (R-PQFP-N2O)

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Publication IPC -7351 is recommended for alternate designs.
D. This package is designed to be soldered to a thermal pad on the board. Refer to Application Note, Quad Flat-Pack Packages, Texas Instruments Literature No. SCBA017, SLUA271, and also the Product Data Sheets for specific thermal information, via requirements, and recommended board layout. These documents are available at www.ti.com <http: //www.ti.com>.
E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
F. Customers should contact their board fabrication site for minimum solder mask web tolerances between signal pads.

NOTES: A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5-1994.
B. This drawing is subject to change without notice.
C. Quad Flat pack, No-leads (QFN) package configuration

D The package thermal pad must be soldered to the board for thermal and mechanical performance..
See the Product Data Sheet for details regarding the exposed thermal pad dimensions.
E. Falls within JEDEC MO-220.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers
Data Converters
DSP
Interface
Logic
Power Mgmt
Microcontrollers
Low Power Wireless

Applications

Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

[^0]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The Pb-Free/Green conversion plan has not been defined.
 Pb -Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
 Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
 Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

