FEATURES - ESD Protection for RS-232 I/O Pins - ±15 kV (Human-Body Model) - ±8 kV (IEC 61000, Contact Discharge) - ±8 kV (IEC 61000, Air-Gap Discharge) - 300-μA Operating Supply Current - 1-μA Low-Power Standby (With Receivers Active) Mode - Designed to Transmit at a Data Rate of 460 kbps - Auto-Power-Down Plus Option Features Flexible Power-Saving Mode - Operates From a Single 2.25-V to 3-V V_{CC} Supply #### **APPLICATIONS** - Battery-Powered Systems - PDAs - Cellular Phones - Notebooks - Hand-Held Equipment - Pagers #### DB OR PW PACKAGE (TOP VIEW) #### **DESCRIPTION/ORDERING INFORMATION** The MAX3318 is a dual-driver, dual-receiver, RS-232 compatible transceiver. The device features auto-power-down plus and enhanced electrostatic discharge (ESD) protection integrated into the chip. Driver output and receiver input are protected to ± 8 kV using the IEC 61000 Air-Gap Discharge method, ± 8 kV using the IEC 61000 Contact Discharge method, and ± 15 kV using the Human-Body Model (HBM). The device operates at a data rate of 460 kbps. The transceiver has a proprietary low-dropout driver output stage enabling RS-232-compatible operation from a 2.25-V to 3-V supply with a dual charge pump. The charge pump requires only four $0.1-\mu F$ capacitors and features a logic-level output (READY) that asserts when the charge pump is regulating and the device is ready to begin transmitting. The MAX3318 achieves a $1-\mu A$ supply current using the auto-power-down feature. This device automatically enters a low-power power-down mode when the RS-232 cable is disconnected or the drivers of the connected peripherals are inactive for more than 30 s. The device turns on again when it senses a valid transition at any driver or receiver input. Auto power down saves power without changes to the existing BIOS or operating system. This device is available in two space-saving packages: 20-pin SSOP and 20-pin TSSOP. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. ## MAX3318 2.5-V 460-kbps RS-232 TRANSCEIVER WITH ±15-kV ESD PROTECTION SLLS687-OCTOBER 2005 #### ORDERING INFORMATION | T _A | PACKA | GE ⁽¹⁾ | ORDERABLE PART NUMBER | TOP-SIDE MARKING | |----------------|------------|-------------------|-----------------------|------------------| | | SSOP – DB | Tube of 70 | MAX3318CDB | MA3318C | | –0°C to 70°C | 330F - DB | Reel of 2000 | MAX3318CDBR | WASSING | | -0 C to 70 C | TSSOP – PW | Tube of 70 | MAX3318CPW | MA3318C | | | 1330P – PW | Reel of 2000 | MAX3318CPWR | WA3316C | | | 0000 00 | Tube of 70 | MAX3318IDB | MA3318I | | -40°C to 85°C | SSOP – DB | Reel of 2000 | MAX3318IDBR | WASSIOI | | -40 C to 65 C | TSSOP – PW | Tube of 70 | MAX3318IPW | MA3318I | | | 1330F - FW | Reel of 2000 | MAX3318IPWR | IVIAGGIOI | ⁽¹⁾ Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package. #### **DETAILED DESCRIPTION** Flexible control options for power management are featured when the serial port and driver inputs are inactive. The auto-power-down plus feature functions when FORCEON is low and $\overline{\text{FORCEOFF}}$ is high. During this mode of operation, if the device does not sense valid signal transitions on all receiver and driver inputs for approximately 30 s, the built-in charge pump and drivers are powered down, reducing the supply current to 1 μ A. By disconnecting the serial port or placing the peripheral drivers off, auto-power-down plus can be disabled when FORCEON and $\overline{\text{FORCEOFF}}$ are high. With auto-power-down plus enabled, the device activates automatically when a valid signal is applied to any receiver or driver input. $\overline{\text{INVALID}}$ is high (valid data) if any receiver input voltage is greater than 2.7 V or less than -2.7 V, or has been between -0.3 V and 0.3 V for less than 30 μ s (typical number). $\overline{\text{INVALID}}$ is low (invalid data) if all receiver input voltage are between -0.3 V and 0.3 V for more than 30 μ s (typical number). # FUNCTION TABLE⁽¹⁾ | | INPUT CONDITIONS | | | | OUTPUT | STATES | | | |---------|----------------------------|--|--|-------------|-----------|---------|-------|---| | FORCEON | FORCEOFF | RECEIVER
OR DRIVER
EDGE
WITHIN 30 s | VALID
RS-232
LEVEL
PRESENT AT
RECEIVER | DRIVER | RECEIVER | INVALID | READY | OPERATING
MODE | | | | | Auto-Power-D | own Plus Co | onditions | | | | | Н | Н | No | No | Active | Active | L | Н | Normal operation,
auto-power-down
plus disabled | | Н | Н | No | Yes | Active | Active | Н | Н | Normal operation, auto-power-down plus disabled | | L | Н | Yes | No | Active | Active | L | Н | Normal operation, auto-power-down plus enabled | | L | Н | Yes | Yes | Active | Active | Н | Н | Normal operation, auto-power-down plus enabled | | L | Н | No | No | Z | Active | L | L | Power down,
auto-power-down
plus enabled | | L | Н | No | Yes | Z | Active | Н | L | Power down,
auto-power-down
plus enabled | | X | L | Х | No | Z | Active | L | L | Manual power down | | X | L | Х | Yes | Z | Active | Н | L | Manual power down | | | Auto-Power-Down Conditions | | | | | | | | | INVALID | ĪNVALID | Х | No | Z | Active | L | L | Power down, auto power down enabled | | INVALID | ĪNVALID | х | Yes | Active | Active | Н | Н | Normal operation, auto power down enabled | ⁽¹⁾ H = high level, L = low level, X = irrelevant, Z = high impedance ## **LOGIC DIAGRAM (POSITIVE LOGIC)** ## **TERMINAL FUNCTIONS** | TERMIN | NAL | DESCRIPTION | |-----------------|--------|---| | NAME | NO. | DESCRIPTION | | C1+ | 2 | Positive voltage-doubler charge-pump capacitor | | C1- | 4 | Negative voltage-doubler charge-pump capacitor | | C2+ | 5 | Positive inverting charge-pump capacitor | | C2- | 6 | Negative inverting charge-pump capacitor | | DIN | 12, 13 | CMOS driver inputs | | DOUT | 8, 17 | RS-232 driver outputs | | FORCEOFF | 20 | Force-off input, active low. Drive low to power down transmitters, receivers, and charge pump. This overrides auto power down and FORCEON (see Function Table). | | FORCEON | 14 | Force-on input, active high. Drive high to override auto power down, keeping transmitters and receivers on (FORCEOFF must be high) (see Function Table). | | GND | 18 | Ground | | INVALID | 11 | Valid signal detector output, active low. A logic high indicates that a valid RS-232 level is present on a receiver input. | | READY | 1 | Ready to transmit output, active high. READY is enabled high when V– goes below –3.5 V and the device is ready to transmit. | | RIN | 9, 16 | RS-232 receiver inputs | | ROUT | 10, 15 | CMOS receiver outputs | | V+ | 3 | $2 \times V_{CC}$ generated by the charge pump | | V- | 7 | $-2 \times V_{CC}$ generated by the charge pump | | V _{CC} | 19 | 2.25-V to 3-V single-supply voltage | # MAX3318 2.5-V 460-kbps RS-232 TRANSCEIVER WITH \pm 15-kV ESD PROTECTION SLLS687-OCTOBER 2005 # Absolute Maximum Ratings⁽¹⁾ over operating free-air temperature range (unless otherwise noted) | | | MIN | MAX | UNIT | |--|--|---|-----------------------|------| | V _{CC} to GND | | -0.3 | 6 | V | | V+ to GND ⁽²⁾ | | -0.3 | 7 | V | | V- to GND ⁽²⁾ | | -7 | 0.3 | V | | V+ + IV-I ⁽²⁾ | | | 13 | V | | Input voltogo | DIN, FORCEON, FORCEOFF to GND | -0.3 | 6 | V | | Input voltage | RIN to GND | -0.3 | " | | | Outrot valta as | DOUT to GND | | V | | | Output voltage | ROUT, INVALID, READY to GND | -0.3 | V _{CC} + 0.3 | V | | Short-circuit duration | DOUT to GND | | Continuous | | | | 16-pin SSOP (derate 7.14 mW/°C above 70°C) | | 571 | | | Continuous power dissipation (T _A = 70°C) | 20-pin SSOP (derate 8 mW/°C above 70°C | | 640 | mW | | | 20-pin TSSOP (derate 7 mW/°C above 70°C) | 13 -0.3 6 ±25 ±13.2 -0.3 V _{CC} + 0.3 Continuous 571 | | | | Storage temperature range | | -65 | 150 | °C | | Lead temperature (soldering, 10 s) | | | 300 | °C | ⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. ## **Recommended Operating Conditions** See Figure 4 | | | | | MIN | NOM | MAX | UNIT | |-----------------|---|------------------------|--------------------------------|---------------------|-----|---------------------|------| | | Supply voltage | | | 2.25 | 2.5 | 3 | V | | V _{IH} | Driver and control high-level input voltage | DIN, FORCEOFF, FORCEON | V _{CC} = 2.5 V to 3 V | $0.7 \times V_{CC}$ | | 5.5 | ٧ | | V _{IL} | Driver and control low-level input voltage | DIN, FORCEOFF, FORCEON | V _{CC} = 2.5 V to 3 V | 0 | | $0.3 \times V_{CC}$ | ٧ | | V_{I} | Receiver input voltage | | | -25 | | 25 | ٧ | | т | Operating free-air temperature | MAX3318C | | 0 | | 70 | ĵ | | IA | | MAX3318I | | -40 | | 85 | | ⁽²⁾ V+ and V- can have maximum magnitudes of 7 V, but their absolute difference cannot exceed 13 V. # **Supply Current Section Electrical Characteristics** V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μF , T_{A} = T_{MIN} to T_{MAX} (unless otherwise noted) | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |--|--|-----|--------------------|-----|------| | DC Characteristics ($V_{CC} = 2.5 \text{ V}, T_A$ | = 25°C) | | | | | | Auto-power-down plus supply current | FORCEON = GND, FORCEOFF = V _{CC} , All RIN and DIN idle | | 1 | 10 | μΑ | | Auto-power-down supply current | FORCEOFF = GND | | 1 | 10 | μΑ | | Supply current | FORCEON = FORCEOFF = V _{CC} , No load | | 0.3 | 2 | mA | ⁽¹⁾ Typical values are at V_{CC} = 2.5 V, T_A = 25°C. ## **ESD Protection** | PARAMETER | TEST CONDITIONS | TYP | UNIT | |-----------|--|-----|------| | | Human-Body Model (HBM) | ±15 | | | RIN, DOUT | IEC G1000-4-2 Air-Gap Discharge method | ±8 | kV | | | IEC G1000-4-2 Contact Discharge method | ±8 | | # **MAX3318** 2.5-V 460-kbps RS-232 TRANSCEIVER WITH ±15-kV ESD PROTECTION #### **Driver Section Electrical Characteristics** over recommended ranges of supply voltage and operating free-air temperature, V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4) | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |---|--|------|--------------------|-----|------| | Driver input hysteresis | | | 0.3 | | V | | Input leakage current | FORCEON, DIN, FORCEOFF | | ±0.01 | ±1 | μΑ | | Output voltage swing | All driver outputs loaded with 3 kΩ to ground | ±3.7 | ±4 | | V | | Output resistance | $V_{CC} = 0$, Driver output = $\pm 2 \text{ V}$ | 300 | 10M | | Ω | | Output short-circuit current ⁽²⁾ | | | ±25 | ±60 | mA | | Output leakage current | V_{CC} = 0 or 2.25 V to 3 V, V_{OUT} = ±12 V, Drivers disabled | | | ±25 | μΑ | Typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. ## **Driver Section Switching Characteristics** over recommended ranges of supply voltage and operating free-air temperature, V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 1) | | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |-------------------------------------|-----------------------------|--|-----|--------------------|-----|------| | | Maximum data rate | $R_L = 3 \text{ k}\Omega$, $C_L = 1000 \text{ pF}$, One transmitter switching | 460 | | | kbps | | t _{PHL} - t _{PLH} | Driver skew ⁽²⁾ | | | 100 | | ns | | | Transition-region slew rate | $V_{CC} = 2.5 \text{ V}, T_A = 25^{\circ}\text{C}, R_L = 3 \text{ k}\Omega \text{ to } 7 \text{ k}\Omega,$ Measured from 3 V to -3 V or -3 V to 3 V, $C_L = 150 \text{ pF}$ to 2500 pF | 4 | | 30 | V/μs | Short-circuit durations should be controlled to prevent exceeding the device absolute power dissipation ratings, and not more than one output should be shorted at a time. ⁽¹⁾ Typical values are at V_{CC} = 2.5 V, T_A = 25°C. (2) Pulse skew is defined as $|t_{PLH} - t_{PHL}|$ of each channel of the same device. #### **Receiver Section Electrical Characteristics** over recommended ranges of supply voltage and operating free-air temperature, V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4) | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |------------------------|-----------------------------|-----------------------|--------------------|---------------------|------| | Input voltage range | | -25 | | 25 | V | | Input threshold low | T _A = 25°C | | | $0.3 \times V_{CC}$ | V | | Input threshold high | T _A = 25°C | $0.7 \times V_{CC}$ | | | V | | Input hysteresis | | | 0.3 | | V | | Input resistance | T _A = 25°C | 3 | 5 | 7 | kΩ | | Output leakage current | | | ±0.05 | ±10 | μΑ | | Output voltage low | I _{OUT} = 0.5 mA | | | $0.1 \times V_{CC}$ | V | | Output voltage high | $I_{OUT} = -0.5 \text{ mA}$ | 0.9 × V _{CC} | | | V | ⁽¹⁾ Typical values are at V_{CC} = 2.5 V, T_A = 25°C. ## **Receiver Section Switching Characteristics** over recommended ranges of supply voltage and operating free-air temperature, V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4) | | PARAMETER | TEST CONDITIONS | TYP ⁽¹⁾ | UNIT | |-------------------------------------|------------------------------|--------------------------------------|--------------------|------| | t _{PHL} | Descriver propagation delay | DIN to DOUT C 450 of | 0.175 | | | t _{PLH} | Receiver propagation delay | RIN to ROUT, C _L = 150 pF | 0.175 | μs | | t _{PHL} - t _{PLH} | Receiver skew ⁽²⁾ | | 50 | ns | Typical values are at V_{CC} = 2.5 V, T_A = 25°C. Pulse skew is defined as $|t_{PLH}-t_{PHL}|$ of each channel of the same device. #### **Auto-Power-Down Plus Section Electrical Characteristics** over recommended ranges of supply voltage and operating free-air temperature, V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4) | PARAMETER | TEST CONDITIONS | MIN | MAX | UNIT | |--|-----------------------------|---------------------|---------------------|------| | Receiver input threshold to INVALID high | Positive threshold | | 2.7 | \/ | | Receiver input threshold to invalid high | Negative threshold | -2.7 | V | | | Receiver input threshold INVALID low | | -0.3 | 0.3 | V | | ĪNVALID, READY voltage low | I _{OUT} = 0.5 mA | | $0.1 \times V_{CC}$ | V | | ĪNVALID, READY voltage high | $I_{OUT} = -0.5 \text{ mA}$ | $0.8 \times V_{CC}$ | | V | ## **Auto-Power-Down Plus Section Switching Characteristics** over recommended ranges of supply voltage and operating free-air temperature, V_{CC} = 2.25 V to 3 V, C1–C4 = 0.1 μ F, T_A = T_{MIN} to T_{MAX} (unless otherwise noted) (see Figure 4) | | PARAMETER | TEST CONDITIONS | MIN | TYP ⁽¹⁾ | MAX | UNIT | |-----------------------|---|-------------------------|-----|--------------------|-----|------| | t _{INVH} | Receiver positive or negative threshold to INVALID high | V _{CC} = 2.5 V | | 1 | | μs | | t _{INVL} | Receiver positive or negative threshold to INVALID low | V _{CC} = 2.5 V | | 30 | | μs | | t _{WU} | Receiver or driver edge to driver enabled | V _{CC} = 2.5 V | | 100 | | μs | | t _{AUTOPRDN} | Receiver or driver edge to driver shutdown | V _{CC} = 2.5 V | 15 | 30 | 60 | S | (1) Typical values are at $V_{CC} = 2.5 \text{ V}$, $T_A = 25^{\circ}\text{C}$. #### PARAMETER MEASUREMENT INFORMATION NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, $Z_O = 50~\Omega$, 50% duty cycle, $t_r \le 10$ ns, $t_f \le 10$ ns. Figure 1. Driver Slew Rate NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: PRR = 250 kbit/s, Z_{O} = 50 Ω , 50% duty cycle, t_{f} \leq 10 ns, t_{f} \leq 10 ns. Figure 2. Driver Pulse Skew NOTES: A. C_L includes probe and jig capacitance. B. The pulse generator has the following characteristics: $Z_0 = 50 \ \Omega$, 50% duty cycle, $t_f \le 10 \ ns$. Figure 3. Receiver Propagation Delay Times ### PARAMETER MEASUREMENT INFORMATION Figure 4. INVALID Propagation Delay Times and Supply Enabling Time **Figure 5. Typical Application Circuit** #### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | e Eco Plan ⁽²⁾ | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|---------------------------|------------------|------------------------------| | MAX3318CDB | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318CDBE4 | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318CDBR | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318CDBRE4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318CPW | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318CPWE4 | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318CPWR | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318CPWRE4 | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IDB | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IDBE4 | ACTIVE | SSOP | DB | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IDBR | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IDBRE4 | ACTIVE | SSOP | DB | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IPW | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IPWE4 | ACTIVE | TSSOP | PW | 20 | 70 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IPWR | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | | MAX3318IPWRE4 | ACTIVE | TSSOP | PW | 20 | 2000 | Green (RoHS & no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM | ⁽¹⁾ The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. **NRND:** Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. **PREVIEW:** Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. **TBD:** The Pb-Free/Green conversion plan has not been defined. **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) ⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. ## PACKAGE OPTION ADDENDUM 18-Jul-2006 (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. ## DB (R-PDSO-G**) ## PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 ## PW (R-PDSO-G**) #### 14 PINS SHOWN ## PLASTIC SMALL-OUTLINE PACKAGE NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-153 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |--------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | Low Power Wireless | www.ti.com/lpw | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | | | | | | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2006, Texas Instruments Incorporated