TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74HC173AP,TC74HC173AF

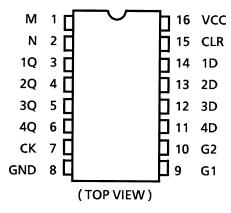
Quad D-Type Register (3-state)

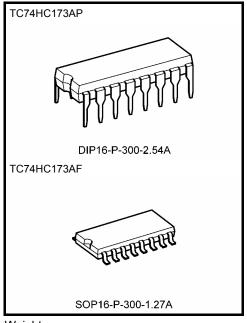
The TC74HC173A is a high speed CMOS D-TYPE REGISTER fabricated with silicon gate C^2MOS technology.

It achieves the high speed operation similar to equivalent LSTTL while maintaining the CMOS low power dissipation.

It consists a 4-bit register consisting of D-type flip-flops and 3-state buffers. The four flip-flops are controlled by a common clock input (CK) and a common clear input (CLR).

Signals applied to the data inputs (D1~D4) are stored in the respective flip-flops on the positive going transition of CK when clock control inputs (G1, G2) are held low.

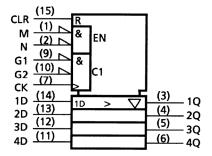

The clear function is asynchronous to CK and active on a high level. The stored data are enabled to each outputs when output control inputs $(M,\,N)$ are held low, else the outputs are high impedance state.


All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

- High speed: $f_{max} = 47 \text{ MHz}$ (typ.) at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 4 \mu A \text{ (max)}$ at $T_{a} = 25 \text{°C}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Output drive capability: 15 LSTTL loads
- Symmetrical output impedance: $|I_{OH}| = I_{OL} = 6 \text{ mA (min)}$
- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: VCC (opr) = 2~6 V
- Pin and function compatible with 74LS173

Pin Assignment

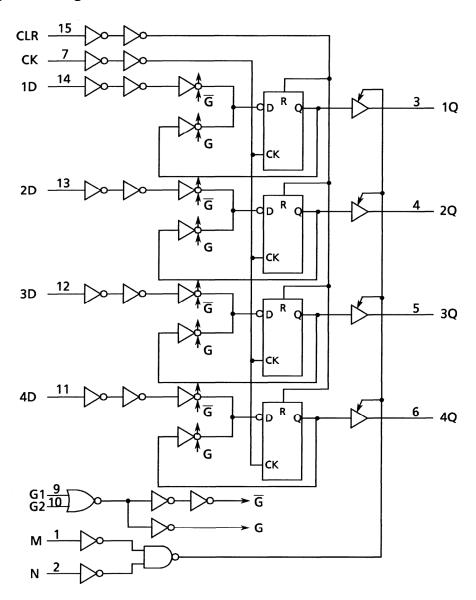


Weight

DIP16-P-300-2.54A : 1.00 g (typ.) SOP16-P-300-1.27A : 0.18 g (typ.)

2007-10-01

IEC Logic Symbol


Truth Table

CLR	СК	Data Inable		Dn	Out Cor	Qn	
		G1	G2		М	N	·
Х	Х	Х	Χ	Х	Н	Х	Z
Х	Х	Х	Χ	Х	Х	Н	Z
Н	Х	Х	Х	Х	L	L	L
L	\neg	Х	Χ	Х	L	L	Q0
L		Н	Х	Х	L	L	Q0
L		Х	Н	Х	L	L	Q0
L		L	L	Н	L	L	Н
L		L	L	L	L	L	L

X: Don't care

Z: High impedance

System Diagram

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V _{CC}	-0.5~7	V
DC input voltage	V _{IN}	-0.5~V _{CC} + 0.5	V
DC output voltage	Vout	-0.5~V _{CC} + 0.5	V
Input diode current	lık	±20	mA
Output diode current	lok	±20	mA
DC output current	lout	±35	mA
DC V _{CC} /ground current	Icc	±75	mA
Power dissipation	P _D	500 (DIP) (Note 2)/180 (SOP)	mW
Storage temperature	T _{stg}	-65~150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/"Derating Concept and Methods") and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = $-40 \text{ to } 65^{\circ}\text{C}$. From Ta = $65 \text{ to } 85^{\circ}\text{C}$ a derating factor of $-10 \text{ mW}/^{\circ}\text{C}$ shall be applied until 300 mW.

3 2007-10-01

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit
Supply voltage	V_{CC}	2~6	V
Input voltage	V _{IN}	0~V _{CC}	V
Output voltage	V _{OUT}	0~V _{CC}	V
Operating temperature	T _{opr}	-40~85	°C
		0~1000 (V _{CC} = 2.0 V)	
Input rise and fall time	t _r , t _f	0~500 (V _{CC} = 4.5 V)	ns
		0~400 (V _{CC} = 6.0 V)	

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition V _{CC} (V)		-	Ta = 25°0	2	Ta = -40~85°C		- Unit	
Characteristics	Symbol			V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic
High-level input voltage		_		2.0	1.50	_	_	1.50	_	
	V_{IH}			4.5	3.15	_	_	3.15	_	V
				6.0	4.20	_	_	4.20	_	
				2.0	_	_	0.50	_	0.50	
Low-level input voltage	V _{IL}		_	4.5	_	_	1.35	_	1.35	V
			-	6.0		_	1.80	_	1.80	
				2.0	1.9	2.0	_	1.9	_	
	Voн	V _{IN} = V _{IH} or V _{IL}	$I_{OH} = -20 \mu A$	4.5	4.4	4.5	_	4.4	_	
High-level output voltage				6.0	5.9	6.0	_	5.9	_	V
			I _{OH} = -6 mA	4.5	4.18	4.31	_	4.13	_	
			$I_{OH} = -7.8 \text{ mA}$	6.0	5.68	5.80	_	5.63	_	
	V _{OL}	V _{IN} = V _{IH} or V _{IL}		2.0	_	0.0	0.1	_	0.1	
			$I_{OL} = 20 \mu A$	4.5	_	0.0	0.1	_	0.1	
Low-level output voltage				6.0	_	0.0	0.1	_	0.1	V
			I _{OL} = 6 mA	4.5	_	0.17	0.26	_	0.33	
			$I_{OL} = 7.8 \text{ mA}$	6.0	_	0.18	0.26	_	0.33	
3-state output off-state current	I _{OZ}	$V_{IN} = V_{IH}$ or V_{IL} $V_{OUT} = V_{CC}$ or GND		6.0	_	_	±0.5	_	±5.0	μА
Input leakage current	I _{IN}	V _{IN} = V _{CC} or GND		6.0		_	±0.1	_	±1.0	μА
Quiescent supply current	Icc	V _{IN} = V _{CC} or	GND	6.0			4.0	_	40.0	μА

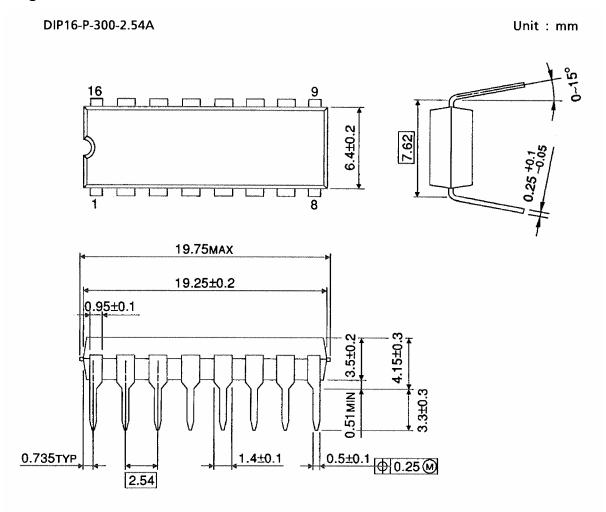
Timing Requirements (input: $t_r = t_f = 6 \text{ ns}$)

Characteristics	Symbol	Test Condition	Ta = 25°C		Ta = -40 ~85°C	Unit	
			V _{CC} (V)	Тур.	Limit	Limit	
Minimum pulse width	to a		2.0	_	75	95	
(CK)	tw (L)	_	4.5	_	15	19	ns
(OR)	t _{W (H)}		6.0	_	13	16	
Minimum pulse width			2.0	_	75	95	
(CLR)	t _{W (H)}	_	4.5	_	15	19	ns
(CLR)			6.0	_	13	16	
Minimum oot un timo			2.0	_	100	125	
Minimum set-up time (G1, G2)	ts	_	4.5	_	20	25	ns
(61, 62)			6.0	_	17	21	
National control of the control of t			2.0	_	75	95	
Minimum set-up time	ts	_	4.5	_	15	19	ns
(D)			6.0	_	13	16	
National una la chalation o			2.0	_	0	0	
Minimum hold time	t _h	_	4.5	_	0	0	ns
(G1, G2, D)			6.0	_	0	0	
			2.0	_	5	5	
Minimum removal time	t _{rem}	_	4.5	_	5	5	ns
(CLR)			6.0	_	5	5	
			2.0	_	9	7	
Clock frequency	f	_	4.5	_	43	34	ns
			6.0	_	51	40	

AC Characteristics (input: $t_r = t_f = 6$ ns)

Characteristics	Symbol	Test Condition		-	Га = 25°0)	Ta = -40~85°C		- Unit	
Characteristics	Symbol		CL (pF)	V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic
Output transition time	t			2.0	_	20	60	_	75	
	t _{TLH}	_	50	4.5	_	6	12	_	15	ns
	t _{THL}			6.0	_	5	10	_	13	
				2.0	_	50	115	_	145	
			50	4.5	_	15	23	_	29	
Propagation delay time	t_{pLH}			6.0	_	12	20	_	25	
(CK-Q)	t_{pHL}	_		2.0	_	65	155	_	195	ns
,			150	4.5	_	20	31	_	39	
				6.0	_	16	26	_	33	
				2.0	_	50	115	_	145	
		_	50	4.5	_	15	23	_	29	ns
Propagation delay time	t _{pHL}			6.0	_	12	20	_	25	
(CLR-Q)			150	2.0	_	63	155	_	195	115
,				4.5	_	20	31	_	39	
				6.0	_	16	26	_	33	
	t _p zL t _p zH	R _L = 1 kΩ		2.0	_	50	115	_	145	- ns
			50	4.5	_	15	23	_	29	
Output enable time				6.0	_	12	20	_	25	
Output enable time			150	2.0	_	63	115	_	195	115
				4.5	_	20	31	_	39	
				6.0	_	16	26	_	33	
	+ . -			2.0	_	36	135	_	170	
Output disable time	t _{pLZ}	$R_L = 1 \text{ k}\Omega$	50	4.5	_	17	27	_	34	ns
	t _{pHZ}			6.0	_	15	23		29	
				2.0	9	20		7	_	
Maximum clock frequency	f _{max}	_	50	4.5	43	67	_	34	_	MHz
, ,				6.0	51	84	_	40		
Input capacitance	C _{IN}	_	_		_	5	10	_	10	pF
Output capacitance	C _{OUT}				_	10	_			pF
Power dissipation capacitance	C _{PD} (Note)	_	_		_	45	_	_	_	pF

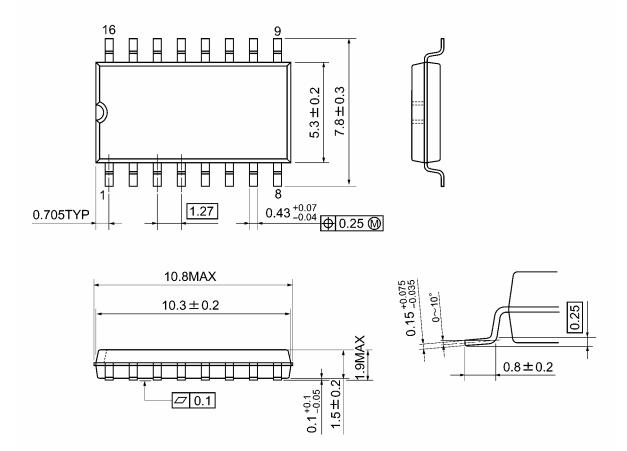
Note: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


Average operating current can be obtained by the equation:

$$I_{CC}$$
 (opr) = $C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/4$ (per flip flop)

And the total C_{PD} when n pcs of flip flop operate be gained by the following equation:

TOSHIBA


Package Dimensions

Weight: 1.00 g (typ.)

Package Dimensions

SOP16-P-300-1.27A Unit: mm

Weight: 0.18 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patents or other rights of TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.