TOSHIBA CMOS Digital Integrated Circuit Silicon Monolithic

TC74AC240P,TC74AC240F,TC74AC240FT TC74AC244P,TC74AC244F,TC74AC244FT

Octal Bus Buffer

TC74AC240P/F/FT Inverted, 3-State

Outputs

TC74AC244P/F/FT Non-Inverted, 3-State

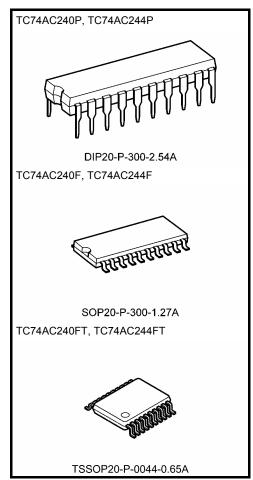
Outputs

The TC74AC240 and 244 are advanced high speed CMOS OCTAL BUS BUFFERs fabricated with silicon gate and double-layer metal wiring C²MOS technology.

They achieve the high speed operation similar to equivalent Bipolar Schottky TTL while maintaining the CMOS low power dissipation.

The 74AC240 is an inverting 3-state buffer while the 74AC244 is non-inverting. Both devices have two active-low output analyses

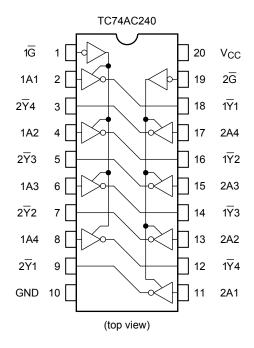
These devices are designed to be used in such applications as 3-state memory address drivers.

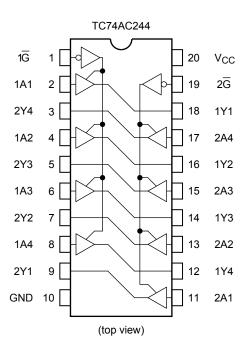

All inputs are equipped with protection circuits against static discharge or transient excess voltage.

Features

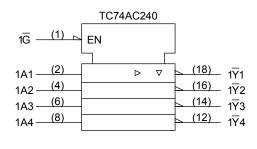
- High speed: $t_{pd} = 4.0 \text{ ns (typ.)}$ at $V_{CC} = 5 \text{ V}$
- Low power dissipation: $I_{CC} = 8 \mu A \text{ (max)}$ at $T_a = 25 \text{°C}$
- High noise immunity: V_{NIH} = V_{NIL} = 28% V_{CC} (min)
- Symmetrical output impedance: | I_{OH} | = I_{OL} = 24 mA (min)

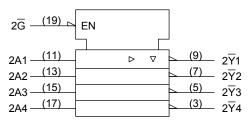
Capability of driving 50Ω transmission lines.

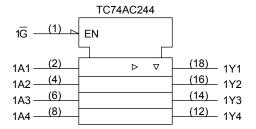

- Balanced propagation delays: $t_{pLH} \simeq t_{pHL}$
- Wide operating voltage range: $V_{CC \text{ (opr)}} = 2 \text{ to } 5.5 \text{ V}$
- Pin and function compatible with 74F240/244

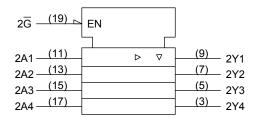


Weight


DIP20-P-300-2.54A : 1.30 g (typ.) SOP20-P-300-1.27A : 0.22 g (typ.) TSSOP20-P-0044-0.65A : 0.08 g (typ.)


Pin Assignment





IEC Logic Symbol

Truth Table

Inputs		Outputs				
G	An	Y _n (244)	¬ Y n (240)			
L	L	L	Н			
L	Н	Н	L			
Н	Х	Z	Z			

X: Don't care

Z: High impedance

Absolute Maximum Ratings (Note 1)

Characteristics	Symbol	Rating	Unit
Supply voltage range	V_{CC}	−0.5 to 7.0	V
DC input voltage	V _{IN}	-0.5 to V _{CC} + 0.5	V
DC output voltage	V _{OUT}	-0.5 to V _{CC} + 0.5	V
Input diode current	I _{IK}	±20	mA
Output diode current	lok	±50	mA
DC output current	lout	±50	mA
DC V _{CC} /ground current	I _{CC}	±200	mA
Power dissipation	PD	500 (DIP) (Note 2)/180 (SOP/TSSOP)	mW
Storage temperature	T _{stg}	−65 to 150	°C

Note 1: Exceeding any of the absolute maximum ratings, even briefly, lead to deterioration in IC performance or even destruction.

Using continuously under heavy loads (e.g. the application of high temperature/current/voltage and the significant change in temperature, etc.) may cause this product to decrease in the reliability significantly even if the operating conditions (i.e. operating temperature/current/voltage, etc.) are within the absolute maximum ratings and the operating ranges.

Please design the appropriate reliability upon reviewing the Toshiba Semiconductor Reliability Handbook ("Handling Precautions"/Derating Concept and Methods) and individual reliability data (i.e. reliability test report and estimated failure rate, etc).

Note 2: 500 mW in the range of Ta = -40 to 65°C. From Ta = 65 to 85°C a derating factor of -10 mW/°C should be applied up to 300 mW.

Operating Ranges (Note)

Characteristics	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.0 to 5.5	V	
Input voltage	V _{IN}	0 to V _{CC}	٧	
Output voltage	V _{OUT}	0 to V _{CC}	V	
Operating temperature	T _{opr}	−40 to 85	°C	
Input rise and fall time	dt/dV	0 to 100 (V _{CC} = 3.3 ± 0.3 V)	ns/V	
input rise and rail tille	ui/uv	0 to 20 (V _{CC} = 5 ± 0.5 V)	115/ V	

Note: The operating ranges must be maintained to ensure the normal operation of the device. Unused inputs must be tied to either VCC or GND.

3

Electrical Characteristics

DC Characteristics

Characteristics	Symbol	Test Condition			Ta = 25°C		Ta = -40 to 85°C		Unit		
Sharastonistics	Зупівої			V _{CC} (V)	Min	Тур.	Max	Min	Max	Offic	
	V _{IH}	_		2.0	1.50	_	_	1.50	_	V	
High-level input voltage				3.0	2.10	_	_	2.10	_		
				5.5	3.85	_	_	3.85	_		
		_		2.0	_	_	0.50	_	0.50		
Low-level input voltage	V_{IL}			3.0	_	_	0.90	_	0.90	V	
o de la companya de l					5.5	-	_	1.65	_	1.65	
					2.0	1.9	2.0	_	1.9	_	
			I _{OH} = -50 μA		3.0	2.9	3.0	_	2.9	_	
High-level output	Voн	V _{IN} = V _{IH} or			4.5	4.4	4.5	_	4.4	_	V
voltage		VIL VIH OI	I _{OH} = -4 mA		3.0	2.58	_	_	2.48	_	V
			I _{OH} = −24 mA		4.5	3.94	_	_	3.80	_	
			I _{OH} = −75 mA	(Note)	5.5	_	_	_	3.85	_	
	VoL	V _{IN} = V _{IH} or V _{IL}			2.0	_	0.0	0.1	_	0.1	- V
			I _{OL} = 50 μA		3.0	_	0.0	0.1	_	0.1	
Low-level output					4.5	_	0.0	0.1	_	0.1	
voltage			I _{OL} = 12 mA		3.0	_	_	0.36	_	0.44	
			I _{OL} = 24 mA		4.5	_	_	0.36	_	0.44	
			I _{OL} = 75 mA	(Note)	5.5	-	_	1	_	1.65	
3-state output off-state current	I _{OZ}	V _{IN} = V _{IH} or V _{IL} V _{OUT} = V _{CC} or GND		5.5	_	_	±0.5	_	±5.0	μA	
Input leakage							_				
current	I _{IN}	V _{IN} = V _{CC} or GND			5.5		_	±0.1	_	±1.0	μA
Quiescent supply current	I _{CC}	V _{IN} = V _{CC} or GND			5.5	_	_	8.0	_	80.0	μΑ

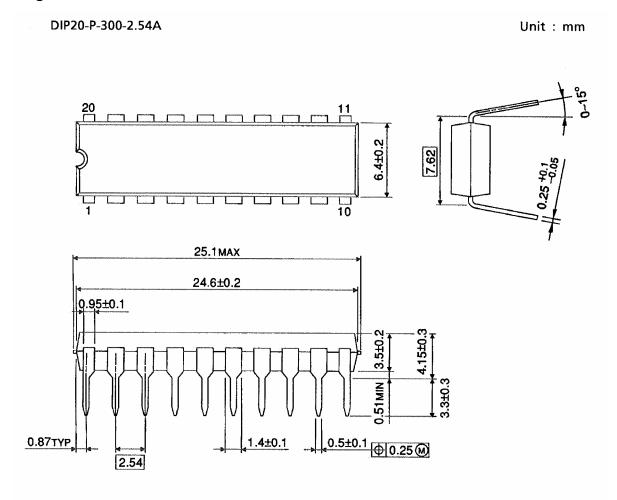
Note: This spec indicates the capability of driving 50 Ω transmission lines.

One output should be tested at a time for a 10 ms maximum duration.

AC Characteristics (C_L = 50 pF, R_L = 500 Ω , input: t_r = t_f = 3 ns)

Characteristics	Symbol	Test Condition		Ta = 25°C		Ta = -40 to 85°C		Unit	
	<i>- - - - - - - - - -</i>		V _{CC} (V)	Min	Тур.	Max	Min	Max	
Propagation delay	t _{pLH}		3.3 ± 0.3	_	6.3	10.5	1.0	12.0	ns
time (Note 2)	t_{pHL}	_	5.0 ± 0.5	_	4.8	7.0	1.0	8.0	
Propagation delay	t _{pLH}	-	3.3 ± 0.3	_	7.0	11.4	1.0	13.0	ns
time (Note 3)	t_{pHL}		5.0 ± 0.5	_	5.2	7.5	1.0	8.5	
Output enable time	t _{pZL}		3.3 ± 0.3	_	8.4	14.0	1.0	16.0	ns
Output enable time	t _{pZH}		5.0 ± 0.5	_	5.9	8.7	1.0	10.0	
Outrot dischle times	t _{pLZ}	_	3.3 ± 0.3	_	6.4	10.5	1.0	12.0	ns
Output disable time	t_{pHZ}	_	5.0 ± 0.5	_	5.5	7.9	1.0	9.0	
Input capacitance	C _{IN}	_		_	5	10	_	10	pF
Output capacitance	C _{OUT}	_		_	10	_	_	_	pF
Power dissipation capacitance	C _{PD}		(Note 1)	_	30	_	_	_	pF

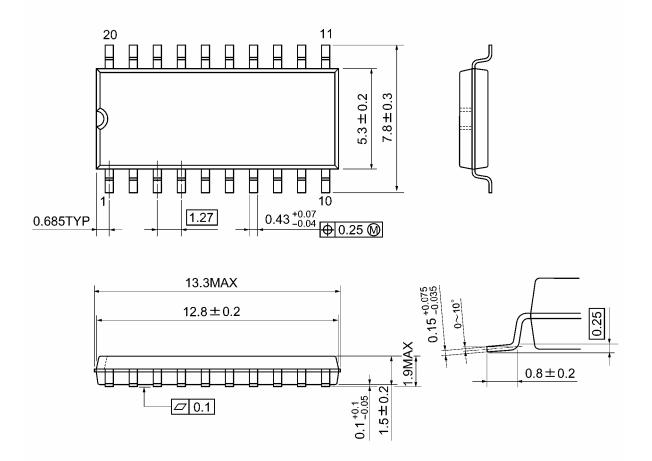
Note 1: C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load.


5

Average operating current can be obtained by the equation:

 $I_{CC (opr)} = C_{PD} \cdot V_{CC} \cdot f_{IN} + I_{CC}/8 (per bit)$

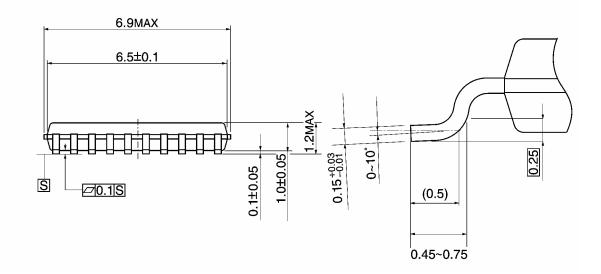
Note 2: For TC74AC240 only Note 3: For TC74AC244 only


Package Dimensions

Weight: 1.30 g (typ.)

Package Dimensions

SOP20-P-300-1.27A Unit: mm


Weight: 0.22 g (typ.)

Package Dimensions

TSSOP20-P-0044-0.65A

Unit: mm

20
11
10
10
10
0.325TYP
0.65
0.22^{+0.09}
0.00
10
0.325TYP

8

Weight: 0.08 g (typ.)

RESTRICTIONS ON PRODUCT USE

20070701-EN GENERAL

- The information contained herein is subject to change without notice.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property. In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability Handbook" etc.
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in his document shall be made at the customer's own risk.
- The products described in this document shall not be used or embedded to any downstream products of which manufacture, use and/or sale are prohibited under any applicable laws and regulations.
- The information contained herein is presented only as a guide for the applications of our products. No
 responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which
 may result from its use. No license is granted by implication or otherwise under any patents or other rights of
 TOSHIBA or the third parties.
- Please contact your sales representative for product-by-product details in this document regarding RoHS
 compatibility. Please use these products in this document in compliance with all applicable laws and regulations
 that regulate the inclusion or use of controlled substances. Toshiba assumes no liability for damage or losses
 occurring as a result of noncompliance with applicable laws and regulations.

9