SN54ABT543A, SN74ABT543A OCTAL REGISTERED TRANSCEIVERS
 WITH 3-STATE OUTPUTS

SCBS157F - JANUARY 1991 - REVISED MAY 1997

- State-of-the-Art EPIC-IIB ${ }^{\text {TM }}$ BiCMOS Design Significantly Reduces Power Dissipation
- ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model ($\mathbf{C}=\mathbf{2 0 0} \mathrm{pF}, \mathrm{R}=\mathbf{0}$)
- Typical $\mathrm{V}_{\text {OLP }}$ (Output Ground Bounce) $<1 \mathrm{~V}$ at $V_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- High-Drive Outputs (-32 -mA $\mathrm{IOH}_{\mathrm{OH}}, 64-\mathrm{mA} \mathrm{IOL}^{\text {) }}$
- Package Options Include Plastic Small-Outline (DW), Shrink Small-Outline (DB), and Thin Shrink Small-Outline (PW) Packages, Ceramic Chip Carriers (FK), Ceramic Flat (W) Package, and Plastic (NT) and Ceramic (JT) DIPs

description

The 'ABT543A octal transceivers contain two sets of D-type latches for temporary storage of data flowing in either direction. Separate latch-enable ($\overline{\mathrm{LEAB}}$ or $\overline{\mathrm{LEBA}}$) and output-enable ($\overline{\mathrm{OEAB}}$ or $\overline{O E B A})$ inputs are provided for each register to permit independent control in either direction of data flow.

The A-to-B enable ($\overline{\mathrm{CEAB}}$) input must be low to enter data from A or to output data from B. If $\overline{C E A B}$ is low and LEAB is low, the A-to-B latches are transparent; a subsequent low-to-high transition of $\overline{\text { LEAB }}$ puts the A latches in the storage mode. With CEAB and OEAB both low, the 3 -state B outputs are active and reflect the data present at the output of the A latches. Data flow from B to A is similar, but requires using the $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$ inputs.
To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

SN54ABT543A . . . JT OR W PACKAGE
SN74ABT543A ... DB, DW, NT, OR PW PACKAGE
(TOP VIEW)

$\overline{\text { LEBA }} 1$	\cup_{24}	V_{CC}
OEBA 2	23	CEBA
A1 ${ }^{3}$	22	B1
A2 4	21	B2
A3 5	20	B3
A4 ${ }^{6}$	19	B4
A5 ${ }^{\text {7 }}$	18	B5
A6 [8	17	B6
A7 ${ }^{\text {a }}$	16	B7
A8 10	15	B8
CEAB 11	14	LEAB
GND 12	13	$\overline{O E A B}$

SN54ABT543A... FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN54ABT543A is characterized for operation over the full military temperature range of $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$. The SN74ABT543A is characterized for operation from $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$.
FUNCTION TABLE \dagger

INPUTS				
	OUTPUT			
B				
CEAB	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	A	
H	X	X	X	Z
X	X	H	X	Z
L	H	L	X	$\mathrm{B}_{0} \ddagger$
L	L	L	L	L
L	L	L	H	H

\dagger A-to-B data flow is shown; B-to-A flow control is the same except that it uses $\overline{C E B A}, \overline{L E B A}$, and $\overline{O E B A}$.
\ddagger Output level before the indicated steady-state input conditions were established

logic symbol§

§ This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.
Pin numbers shown are for the DB, DW, JT, NT, PW, and W packages.

logic diagram (positive logic)

Pin numbers shown are for the $\mathrm{DB}, \mathrm{DW}, \mathrm{JT}, \mathrm{NT}, \mathrm{PW}$, and W packages.
absolute maximum ratings over operating free-air temperature range (unless otherwise noted) \dagger

$$
\begin{aligned}
& \text { Input voltage range, } \mathrm{V}_{\mathrm{I}} \text { (except I/O ports) (see Note 1) ... }-0.5 \mathrm{~V} \text { to } 7 \mathrm{~V} \\
& \text { Voltage range applied to any output in the high or power-off state, } \mathrm{V}_{\mathrm{O}} \ldots \ldots \\
& \text { Current into any output in the low state, } \mathrm{I}_{\mathrm{O}} \text { : SN54ABT543A ... } 96 \mathrm{~mA} \\
& \text { SN74ABT543A } 128 \text { mA } \\
& \text { Input clamp current, } \mathrm{I}_{\mathrm{IK}}\left(\mathrm{~V}_{\mathrm{I}}<0\right) \text {... } 18 \mathrm{~mA}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Package thermal impedance, } \theta_{\mathrm{JA}} \text { (see Note 2): DB package } 104^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { DW package } 81^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { NT package } 67^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { PW package .. } 120^{\circ} \mathrm{C} / \mathrm{W} \\
& \text { Storage temperature range, } \mathrm{T}_{\text {stg }} \\
& -65^{\circ} \mathrm{C} \text { to } 150^{\circ} \mathrm{C}
\end{aligned}
$$

\dagger Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
2. The package thermal impedance is calculated in accordance with EIA/JEDEC Std JESD51, except for through-hole packages, which use a trace length of zero.

recommended operating conditions (see Note 3)

			SN54AB	543A	SN74A	543A	
			MIN	MAX	MIN	MAX	
V_{CC}	Supply voltage		4.5	5.5	4.5	5.5	V
$\mathrm{V}_{\text {IH }}$	High-level input voltage		2		2		V
$\mathrm{V}_{\text {IL }}$	Low-level input voltage			0.8		0.8	V
V_{1}	Input voltage		0	V_{CC}	0	V_{CC}	V
${ }^{\text {IOH }}$	High-level output current			-24		-32	mA
${ }^{\text {IOL }}$	Low-level output current			48		64	mA
$\Delta t / \Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

NOTE 3: Unused pins (input or I/O) must be held high or low to prevent them from floating.
electrical characteristics over recommended operating free-air temperature range (unless
otherwise noted)

PARAMETER		TEST CONDITIONS		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		SN54ABT543A	SN74ABT543A	UNIT		
		MIN	TYP \dagger MAX	MIN MAX	MIN MAX					
VIK				$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	II $=-18 \mathrm{~mA}$		-1.2	-1.2	-1.2	V
VOH		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	2.5		2.5	2.5	V		
		$\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$,	$\mathrm{IOH}=-3 \mathrm{~mA}$	3		3	3			
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$1 \mathrm{OH}=-24 \mathrm{~mA}$	2		2				
		$\mathrm{IOH}=-32 \mathrm{~mA}$	2*			2				
$\mathrm{V}_{\text {OL }}$			$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	$\mathrm{IOL}=48 \mathrm{~mA}$		0.55	0.55		V	
		$\mathrm{IOL}=64 \mathrm{~mA}$			0.55*		0.55			
$\mathrm{V}_{\text {hys }}$					100			mV		
!	Control inputs	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		± 1	± 1	± 1	$\mu \mathrm{A}$		
	A or B ports				± 100	± 100	± 100			
lOZH^{\ddagger}		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=2.7 \mathrm{~V}$		10§	10§	10§	$\mu \mathrm{A}$		
$\mathrm{l}_{\text {OZL }}{ }^{\ddagger}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V}$		-10§	-10§	-10§	$\mu \mathrm{A}$		
$\mathrm{l}_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	V_{1} or $\mathrm{V}_{\mathrm{O}} \leq 4.5 \mathrm{~V}$		± 100		± 100	$\mu \mathrm{A}$		
${ }^{\text {I CEX }}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=5.5 \mathrm{~V} \end{aligned}$	Outputs high		50	50	50	$\mu \mathrm{A}$		
10 l		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \quad \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$		-50*	-100 -180*	-50 -200	-50 -180	mA		
${ }^{\text {ICC }}$	A or B ports	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \\ & \mathrm{I}^{0}=0, \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$	Outputs high		1 250*	350	250	$\mu \mathrm{A}$		
			Outputs low		24 30*	34	30	mA		
			Outputs disabled		0.5 250*	350	250	$\mu \mathrm{A}$		
${ }^{\mathrm{LI}} \mathrm{CC}{ }^{\#}$		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, One input at 3.4 V , Other inputs at V_{CC} or GND			1.5	1.5	1.5	mA		
C_{i}	Control inputs	$\mathrm{V}_{\mathrm{I}}=2.5 \mathrm{~V}$ or 0.5 V		4				pF		
C_{io}	A or B ports	$\mathrm{V}=2.5 \mathrm{~V} 0 \mathrm{0} 0.5 \mathrm{~V}$			7			pF		

* On products compliant to MIL-PRF-38535, this parameter does not apply.
\dagger All typical values are at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
\ddagger The parameters IOZH^{2} and IOZL include the input leakage current.
§ This data sheet limit may vary among suppliers.
I Not more than one output should be tested at a time, and the duration of the test should not exceed one second.
\# This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.
timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

timing requirements over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 1)

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54ABT543A					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
tPLH	A or B	B or A	$1.6 \dagger$	4.4	4.4	$1.6 \dagger$	5.5	ns
tpHL			1.6	4.4	5.1	1.6	6.2	
tPLH	$\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	A or B	$1.6 \dagger$	4.1	5.1	$1.6 \dagger$	6.6	ns
tPHL			1.6	4.6	5.4	1.6	6.4	
tPZH	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	1.4	3.9	4.1	1.4	5.1	ns
tPZL			2	5	4.9	2	5.8	
tPHZ	$\overline{\text { OEBA }}$ or $\overline{O E A B}$	A or B	$2.5 \dagger$	5.9	5.8	$2.5{ }^{\dagger}$	6.9	ns
tpLZ			$2.5 \dagger$	5.5	6.1	$2.5 \dagger$	7.6	
tPZH	$\overline{\text { CEBA }}$ or $\overline{\mathrm{CEAB}}$	A or B	1.4	3.9	4.7	1.4	5.6	ns
tPZL			2	5	5.7	2	6.2	
tPHZ	$\overline{\text { CEBA }}$ or CEAB	A or B	$3.2 \dagger$	5.9	6.5	3.2†	7.3	ns
tpLZ			$2.5 \dagger$	5.5	6.7	$2.5{ }^{\dagger}$	7.8	

\dagger This data sheet limit may vary among suppliers.
switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN74ABT543A					UNIT
			$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			MIN	MAX	
			MIN	TYP	MAX			
tPLH	A or B	B or A	$1.8 \dagger$	4.4	5.9	$1.8{ }^{\dagger}$	6.9	ns
tPHL			1.9	4.4	5.9	1.9	6.9	
tPLH	$\overline{\text { LEBA }}$ or $\overline{L E A B}$	A or B	$1.5 \dagger$	4.1	5.6	$1.5 \dagger$	6.6	ns
tPHL			2.1	4.6	6.1	2.1	7.1	
tPZH	$\overline{\text { OEBA }}$ or $\overline{\text { OEAB }}$	A or B	1.4	3.9	5.4	1.4	6.4	ns
tPZL			2.5	5	6.5	2.5	7.5	
tPHZ	$\overline{\text { OEBA }}$ or $\overline{\text { OEAB }}$	A or B	$2.5 \dagger$	5.9	7.4	$2.5 \dagger$	8.4	ns
tpLZ			$2.5 \dagger$	5.5	7	$2.5 \dagger$	8	
tPZH	$\overline{\text { CEBA }}$ or $\overline{C E A B}$	A or B	1.4	3.9	5.4	1.4	6.4	ns
tPZL			2.5	5	6.5	2.5	7.5	
tPHZ	$\overline{\text { CEBA }}$ or $\overline{C E A B}$	A or B	$2.9 \dagger$	5.9	7.4	$2.9 \dagger$	8.4	ns
tPLZ			$2.4 \dagger$	5.5	7	$2.4 \dagger$	8	

† This data sheet limit may vary among suppliers.

PARAMETER MEASUREMENT INFORMATION

TEST	S1
tpLH/tpHL tpLZ/tpZL ${ }^{\text {tpHZ }} / \mathrm{t}^{\mathrm{P}} \mathrm{ZH}$	$\begin{aligned} & \hline \text { Open } \\ & 7 \mathrm{~V} \\ & \text { Open } \end{aligned}$

VOLTAGE WAVEFORMS
PULSE DURATION

VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES INVERTING AND NONINVERTING OUTPUTS

VOLTAGE WAVEFORMS
SETUP AND HOLD TIMES

VOLTAGE WAVEFORMS
ENABLE AND DISABLE TIMES
LOW- AND HIGH-LEVEL ENABLING

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9231402Q3A	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N/ A for Pkg Type
5962-9231402QKA	ACTIVE	CFP	W	24	1	TBD	A42	N/ A for Pkg Type
5962-9231402QLA	ACTIVE	CDIP	JT	24	1	TBD	A42 SNPB	N/A for Pkg Type
SN74ABT543ADBLE	OBSOLETE	SSOP	DB	24		TBD	Call TI	Call TI
SN74ABT543ADBR	ACTIVE	SSOP	DB	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPD	Level-1-260C-UNLIM
SN74ABT543ADBRE4	ACTIVE	SSOP	DB	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPD	Level-1-260C-UNLIM
SN74ABT543ADBRG4	ACTIVE	SSOP	DB	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPD	Level-1-260C-UNLIM
SN74ABT543ADW	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ADWE4	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ADWG4	ACTIVE	SOIC	DW	24	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ADWR	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ADWRE4	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ADWRG4	ACTIVE	SOIC	DW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ANSR	ACTIVE	SO	NS	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ANSRE4	ACTIVE	So	NS	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ANSRG4	ACTIVE	SO	NS	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543ANT	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74ABT543ANTE4	ACTIVE	PDIP	NT	24	15	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
SN74ABT543APW	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543APWE4	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543APWG4	ACTIVE	TSSOP	PW	24	60	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543APWLE	OBSOLETE	TSSOP	PW	24		TBD	Call TI	Call TI
SN74ABT543APWR	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543APWRE4	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT543APWRG4	ACTIVE	TSSOP	PW	24	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SNJ54ABT543AFK	ACTIVE	LCCC	FK	28	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54ABT543AJT	ACTIVE	CDIP	JT	24	1	TBD	A42 SNPB	N/ A for Pkg Type
SNJ54ABT543AW	ACTIVE	CFP	W	24	1	TBD	A42	N / A for Pkg Type

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

Carrier tape design is defined largely by the component lentgh, width, and thickness.

Ao $=$ Dimension designed to accommodate the component width.
Bo $=$ Dimension designed to accommodate the component length.
Ko $=$ Dimension designed to accommodate the component thickness.
$\mathrm{W}=$ Overall width of the carrier tape.
$\mathrm{P}=$ Pitch between successive cavity centers.

TAPE AND REEL INFORMATION

Device	Package	Pins	Site	Reel Diameter $(\mathbf{m m})$	Reel Width $(\mathbf{m m})$	A0 (mm)	B0 (mm)	K0 (mm)	P1 $(\mathbf{m m})$	\mathbf{W} $(\mathbf{m m})$	Pin1 Quadrant
SN74ABT543ADBR	DB	24	MLA	330	16	8.2	8.8	2.5	12	16	Q1
SN74ABT543ADWR	DW	24	TAI	330	24	10.75	15.7	2.7	12	24	Q1
SN74ABT543ANSR	NS	24	MLA	330	24	8.2	15.4	2.5	12	24	Q1
SN74ABT543APWR	PW	24	MLA	330	16	6.95	8.3	1.6	8	16	Q1

TAPE AND REEL BOX INFORMATION

Device	Package	Pins	Site	Length (mm)	Width (mm)	Height (mm)
SN74ABT543ADBR	DB	24	MLA	342.9	336.6	28.58
SN74ABT543ADWR	DW	24	TAI	346.0	346.0	41.0
SN74ABT543ANSR	NS	24	MLA	346.0	346.0	41.0
SN74ABT543APWR	PW	24	MLA	342.9	336.6	28.58

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP3-T24, GDIP4-T28, and JEDEC MO-058 AA, MO-058 AB

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Falls within MIL-STD-1835 GDFP2-F24 and JEDEC MO-070AD
E. Index point is provided on cap for terminal identification only.

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

DW (R-PDSO-G24)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
Tl assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

Tl products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, Tl will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Amplifiers	amplifier.ti.com
Data Converters	aataconverter.ti.com
DSP	asp.ti.com
Interface	nterface.ti.com
Logic	ogic.ti.com
Power Mgmt	ower.ti.com
Microcontrollers	microcontroller.ti.com
RFID	WWW.ti-rfid.com
Low Power	WWw.ti.com/pw
Wireless	

Applications
Audio
Automotive
Broadband
Digital Control
Military
Optical Networking
Security
Telephony
Video \& Imaging
Wireless Nww.ti.com/wireless
www.ti.com/audio
WWw.ti.com/automotive
WWw.ti.com/broadband www.ti.com/digitalcontro www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security Www.ti.com/telephony Www.ti.com/vided

Nww.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2007, Texas Instruments Incorporated

