FEATURES

- Member of the Texas Instruments Widebus ${ }^{\text {TM }}$ Family
- SN74CB3Q Bus Switches Are Equivalent to IDTQS3VH Bus Switches
- 5-V Tolerant I/Os With Device Powered Up or Powered Down
- Low and Flat ON-State Resistance ($r_{\text {on }}$) Characteristics Over Operating Range ($r_{\text {on }}=5 \Omega$ Typ)
- Rail-to-Rail Switching on Data I/O Ports
- 0- to 5-V Switching With 3.3-V V_{cc}
- 0- to 3.3-V Switching With $2.5-\mathrm{V} \mathrm{V}_{\mathrm{cc}}$
- B-Port Outputs Are Precharged by Bias Voltage (BIASV) to Minimize Signal Distortion During Live Insertion and Hot Plugging
- Supports PCI Hot Plug
- Bidirectional Data Flow With Near-Zero Propagation Delay
- Low Input/Output Capacitance Minimizes Loading and Signal Distortion ($\mathrm{C}_{\text {io(OFF) }}=4 \mathrm{pF}$ Typ)
- Fast Switching Frequency ($\mathrm{f}_{\mathrm{on}}=\mathbf{2 0} \mathbf{~ M H z ~ M a x) ~}$
- Data and Control Inputs Provide Undershoot Clamp Diodes
- Low Power Consumption ($\mathrm{I}_{\mathrm{cc}}=0.75 \mathrm{~mA}$ Typ)
- V_{cc} Operating Range From 2.3 V to 3.6 V
- Data I/Os Support 0- to 5-V Signaling Levels ($0.8 \mathrm{~V}, 1.2 \mathrm{~V}, 1.5 \mathrm{~V}, 1.8 \mathrm{~V}, 2.5 \mathrm{~V}, 3.3 \mathrm{~V}, 5 \mathrm{~V}$)
- Control Inputs Can Be Driven by TTL or 5-V/3.3-V CMOS Outputs
- $I_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Performance Tested Per JESD 22
- 2000-V Human-Body Model (A114-B, Class II)
- 1000-V Charged-Device Model (C101)
- Supports Both Digital and Analog Applications: PCI Hot Plug, Hot Docking, Memory Interleaving, Bus Isolation, and Low-Distortion Signal Gating

DESCRIPTION/ORDERING INFORMATION

The SN74CB3Q16811 is a high-bandwidth FET bus switch utilizing a charge pump to elevate the gate voltage of the pass transistor, providing a low and flat ON-state resistance (r_{on}). The low and flat ON -state resistance allows for minimal propagation delay and supports rail-to-rail switching on the data input/output (I/O) ports. The device also features low data I/O capacitance to minimize capacitive loading and signal distortion on the data bus. Specifically designed to support high-bandwidth applications, the SN74CB3Q16811 provides an optimized interface solution ideally suited for broadband communications, networking, and data-intensive computing systems.

ORDERING INFORMATION

$\mathrm{T}_{\text {A }}$	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SSOP - DL	Tube	SN74CB3Q16811DL	CB3Q16811
		Tape and reel	SN74CB3Q16811DLR	
	TSSOP - DGG	Tape and reel	SN74CB3Q16811DGGR	CB3Q16811
	TVSOP - DGV	Tape and reel	SN74CB3Q16811DGVR	BW811

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.
DESCRIPTION/ORDERING INFORMATION (CONTINUED)
The SN74CB3Q16811 is organized as two 12 -bit bus switches with separate output-enable ($1 \overline{\mathrm{OE}}, 2 \overline{\mathrm{OE}}$) inputs. It can be used as two 12 -bit bus switches or as one 24 -bit bus switch. When $\overline{O E}$ is low, the associated 12 -bit bus switch is ON , and the A port is connected to the B port, allowing bidirectional data flow between ports. When OE is high, the associated 12-bit bus switch is OFF, and a high-impedance state exists between the A and B ports. The B port is precharged to bias voltage (BIASV) through the equivalent of a $10-\mathrm{k} \Omega$ resistor when $\overline{\mathrm{OE}}$ is high or if the device is powered down $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$.

SN74CB3Q16811
 24-BIT SWITCH WITH PRECHARGED OUTPUTS
 $2.5-\mathrm{V} / 3.3-\mathrm{V}$ LOW-VOLTAGE FET BUS SWITCH

TeXAs

SCDS153B-OCTOBER 2003-REVISED MARCH 2005
During insertion (or removal) of a card into (or from) an active bus, the card's output voltage may be close to GND. When the connector pins make contact, the card's parasitic capacitance tries to force the bus signal to GND, creating a possible glitch on the active bus. This glitching effect can be reduced by using a bus switch with precharged bias voltage (BIASV) of the bus switch equal to the input threshold voltage level of the receivers on the active bus. This method ensures that any glitch produced by insertion (or removal) of the card does not cross the input threshold region of the receivers on the active bus, minimizing the effects of live-insertion noise.
This device is fully specified for partial-power-down applications using $\mathrm{I}_{\text {off }}$. The $\mathrm{I}_{\text {off }}$ circuitry prevents damaging current backflow through the device when it is powered down.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

DGG, DGV, OR DL PACKAGE
(TOP VIEW)

BIASV		$1 \overline{O E}$
1A1	255	$2 \overline{O E}$
1A2	354	1B1
1 A3	453	1B2
1A4	552	1 B 3
1A5	651	1B4
1A6	750	1B5
GND	$8 \quad 49$	GND
1A7	948	$1 \mathrm{B6}$
1A8	$10 \quad 47$	1B7
1A9	$11 \quad 46$	1B8
1A10	1245	1B9
1A11	1344	1B10
1A12	$14 \quad 43$	1B11
2A1	1542	1B12
2A2	$16 \quad 41$	2B1
$V^{\text {CC }}$	$17 \quad 40$	2B2
2A3	1839	2B3
GND	1938	GND
2A4	$20 \quad 37$	2B4
2A5	$21 \quad 36$	2B5
2A6	2235	2B6
2A7	$23 \quad 34$	2B7
2A8	2433	2B8
2A9	$25 \quad 32$	2B9
2A10	$26 \quad 31$	2B10
2A11	$27 \quad 30$	2B11
2A12 [$28 \quad 29$	2B12

Table 1. FUNCTION TABLE
(EACH 12-BIT BUS SWITCH)

INPUT $\mathbf{O E}$	INPUT/OUTPUT \mathbf{A}	FUNCTION
L	B	A port = B port
H	Z	Disconnect B port $=$ BIASV

LOGIC DIAGRAM (POSITIVE LOGIC)

2.5-V/3.3-V LOW-VOLTAGE FET BUS SWITCH

SCDS153B-OCTOBER 2003-REVISED MARCH 2005
SIMPLIFIED SCHEMATIC, EACH FET SWITCH (SW)

(1) EN is the internal enable signal applied to the switch.

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
$\mathrm{V}_{\text {CC }}$	Supply voltage range		-0.5	4.6	V
BIASV	BIAS supply voltage range		-0.5	7	V
$\mathrm{V}_{\text {IN }}$	Control input voltage range ${ }^{(2)(3)}$		-0.5	7	V
$\mathrm{V}_{1 / \mathrm{O}}$	Switch I/O voltage range ${ }^{(2)(3)(4)}$		-0.5	7	V
$\mathrm{I}_{\text {K }}$	Control input clamp current	$\mathrm{V}_{\text {IN }}<0$		-50	mA
$\mathrm{I}_{\text {I/OK }}$	I/O port clamp current	$\mathrm{V}_{1 / 0}<0$		-50	mA
$\mathrm{I}_{1 / \mathrm{O}}$	ON-state switch current ${ }^{(5)}$			± 64	mA
	Continuous current through V_{CC} or GND			± 100	mA
		DGG package		64	
θ_{JA}	Package thermal impedance ${ }^{(6)}$	DGV package		48	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		DL package		56	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

[^0]Recommended Operating Conditions ${ }^{(1)}$

			MIN	MAX	UNIT
$V_{C C}$	Supply voltage		2.3	3.6	V
BIASV	Bias voltage		0	5	V
V_{IH}	High-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	5.5	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2	5.5	
$\mathrm{V}_{\text {IL }}$	Low-level control input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	0	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	0	0.8	
$\mathrm{V}_{\text {I/O }}$	Data input/output voltage		0	5.5	V
$\mathrm{T}_{\text {A }}$	Operating free-air temperature		-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

Electrical Characteristics ${ }^{(1)}$

over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			MIN TYP $^{(2)}$	MAX	UNIT
V_{IK}		$\mathrm{V}_{C C}=3.6 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{I}}=-18 \mathrm{~mA}$			-1.8	V
I_{IN}	Control inputs	$\mathrm{V}_{C C}=3.6 \mathrm{~V}$,	$\mathrm{V}_{\text {IN }}=0$ to 5.5 V			± 1	$\mu \mathrm{A}$
I_{0}	B port	$V_{C C}=3 . \mathrm{V}$,	$\begin{aligned} & \text { BIASV }=2.4 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{O}}=0, \end{aligned}$	Switch OFF, $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	0.2		mA
$\mathrm{l}_{\mathrm{Oz}}{ }^{(3)}$		$\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$,	$\begin{aligned} & \mathrm{V}_{\mathrm{O}}=0 \text { to } 5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{I}}=0, \end{aligned}$	Switch OFF, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or $G N D$		± 1	$\mu \mathrm{A}$
$\mathrm{I}_{\text {off }}$		$\mathrm{V}_{\mathrm{CC}}=0$,	$\mathrm{V}_{\mathrm{O}}=0$ to 5.5 V ,	$\mathrm{V}_{1}=0$		1	$\mu \mathrm{A}$
I_{CC}		$\mathrm{V}_{C C}=3.6 \mathrm{~V}$,	$I_{1 / O}=0,$ Switch ON or OFF,	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {CC }}$ or GND	1	3	mA
$\Delta \mathrm{lCC}^{(4)}$	Control inputs	$\mathrm{V}_{C C}=3.6 \mathrm{~V}$,	One input at 3 V ,	Other inputs at V_{CC} or GND		30	$\mu \mathrm{A}$
$\mathrm{ICCD}^{(5)}$	Per control input	$\mathrm{V}_{C C}=3.6 \mathrm{~V}$,	A and B ports open Control input switch	at 50% duty cycle	0.38	0.45	$\begin{aligned} & \mathrm{mA} / 2 \\ & \mathrm{MHz} \end{aligned}$
$\mathrm{C}_{\text {in }}$	Control inputs	$\mathrm{V}_{C C}=3.3 \mathrm{~V}$,	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or		3.5	5	pF
$\mathrm{C}_{\text {io(OFF) }}$	A port	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,	Switch OFF, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND ,	$\mathrm{V}_{\text {I/ }}=5.5 \mathrm{~V}, 3.3 \mathrm{~V}$, or 0	4	5	pF
$\mathrm{C}_{\mathrm{io}(\mathrm{ON})}$		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$,	Switch ON, $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND,	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=5.5 \mathrm{~V}$, 3.3 V , or 0	10	12.5	pF
$\mathrm{ron}^{(6)}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \\ & T Y P \text { at } V_{\mathrm{CC}}=2.5 \mathrm{~V} \end{aligned}$	$\mathrm{V}_{1}=0$,	$\mathrm{I}_{0}=30 \mathrm{~mA}$	5	8	Ω
			$\mathrm{V}_{1}=1.7 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$	5	9	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$	$\mathrm{V}_{1}=0$,	$\mathrm{I}_{0}=30 \mathrm{~mA}$	5	6.5	
			$\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}$,	$\mathrm{I}_{\mathrm{O}}=-15 \mathrm{~mA}$	5	8	

(1) $\mathrm{V}_{\mathbb{I N}}$ and $\mathrm{I}_{\mathbb{N}}$ refer to control inputs. $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}}, \mathrm{I}_{\mathrm{l}}$, and I_{0} refer to data pins.
(2) All typical values are at $\mathrm{V}_{C C}=3.3 \mathrm{~V}$ (unless otherwise noted), $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(3) For I/O ports, the parameter I_{Oz} includes the input leakage current.
(4) This is the increase in supply current for each input that is at the specified TTL voltage level, rather than $V_{C C}$ or GND.
(5) This parameter specifies the dynamic power-supply current associated with the operating frequency of a single control input (see Eigure ${ }^{2}$).
(6) Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure 3)

PARAMETER	FROM (INPUT)	FROM (INPUT)	TO (OUTPUT)	$\begin{gathered} \mathrm{V}_{\mathrm{Cc}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		UNIT
				MIN	MAX	MIN	MAX	
$\mathrm{f}_{\text {OE }}{ }^{(1)}$		$\overline{\mathrm{OE}}$	A or B		10		20	MHz
$\mathrm{t}_{\mathrm{pd}}{ }^{(2)}$		A or B	B or A		0.09		0.15	ns
$t_{\text {Pzi }}$	BIASV = GND	סE	A or B	1.5	8	1.5	8	ns
$\mathrm{t}_{\text {PZL }}$	BIASV $=3 \mathrm{~V}$			1.5	8	1.5	8	
$\mathrm{t}_{\text {PHZ }}$	BIASV = GND	$\overline{\mathrm{OE}}$	A or B	1	7.5	1	7.5	ns
$t_{\text {PLZ }}$	BIASV $=3 \mathrm{~V}$			1	7.5	1	7.5	

(1) Maximum switching frequency for control input ($V_{O}>V_{C C}, V_{I}=5 \mathrm{~V}, R_{L} \geq 1 \mathrm{M} \Omega, C_{L}=0$)
(2) The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

Figure 1. Typical $r_{\text {on }}$ vs V_{l}

Figure 2. Typical $I_{c c}$ vs $\overline{O E}$ Switching Frequency

PARAMETER MEASUREMENT INFORMATION

TEST	V_{CC}	S1	R_{L}	V_{1}	C_{L}	V_{Δ}
$\mathrm{t}_{\mathrm{pd}(\mathrm{s})}$	$\begin{aligned} & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$	Open Open	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	$V_{C C}$ or GND $V_{C c}$ or GND	$\begin{aligned} & 30 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	
$\mathbf{t P L z}^{\text {/ }}$ PZL	$\begin{aligned} & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \times V_{c C} \\ & 2 \times V_{c c} \end{aligned}$	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	GND GND	$\begin{aligned} & 30 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 0.15 \mathrm{~V} \\ 0.3 \mathrm{~V} \end{gathered}$
$\mathrm{t}_{\text {PHz }} / \mathrm{tPZH}$	$\begin{aligned} & 2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \\ & 3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{aligned}$	GND GND	$\begin{aligned} & 500 \Omega \\ & 500 \Omega \end{aligned}$	$\begin{aligned} & \mathrm{v}_{\mathrm{cc}} \\ & \mathrm{v}_{\mathrm{cc}} \end{aligned}$	$\begin{aligned} & 30 \mathrm{pF} \\ & 50 \mathrm{pF} \end{aligned}$	$\begin{gathered} 0.15 \mathrm{~V} \\ 0.3 \mathrm{~V} \end{gathered}$

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{t}_{\mathrm{r}} \leq 2.5 \mathrm{~ns}, \mathrm{t}_{\mathrm{f}} \leq 2.5 \mathrm{~ns}$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and tPZH are the same as ten.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d(s)}$. The tpd propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).
H. All parameters and waveforms are not applicable to all devices.

Figure 3. Test Circuit and Voltage Waveforms

PACKAGING INFORMATION

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74CB3Q16811DGGRE4 | ACTIVE | TSSOP | DGG | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| 74CB3Q16811DGVRE4 | ACTIVE | TVSOP | DGV | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| 74CB3Q16811DLRG4 | ACTIVE | SSOP | DL | 56 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74CB3Q16811DGGR | ACTIVE | TSSOP | DGG | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74CB3Q16811DGVR | ACTIVE | TVSOP | DGV | 56 | 2000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74CB3Q16811DL | ACTIVE | SSOP | DL | 56 | 20 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74CB3Q16811DLG4 | ACTIVE | SSOP | DL | 56 | 20 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| SN74CB3Q16811DLR | ACTIVE | SSOP | DL | 56 | 1000 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The $\mathrm{Pb}-\mathrm{Free} / \mathrm{Green}$ conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb - Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

PIM	$\mathbf{2 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	0.380 $(9,65)$	0.630 $(16,00)$	0.730 $(18,54)$
A MIN	0.370 $(9,40)$	0.620 $(15,75)$	0.720 $(18,29)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MO-118

48 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^1]Copyright © 2006, Texas Instruments Incorporated

[^0]: (1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
 (2) All voltages are with respect to ground, unless otherwise specified.
 (3) The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.
 (4) V_{I} and V_{O} are used to denote specific conditions for $V_{I / O}$.
 (5) I_{l} and I_{0} are used to denote specific conditions for $I_{/ / O}$.
 (6) The package thermal impedance is calculated in accordance with JESD 51-7.

[^1]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

