


## MM54HC195/MM74HC195 4-Bit Parallel Shift Register

#### **General Description**

The MM54HC195/MM74HC195 is a high speed 4-bit SHIFT REGISTER utilizes advanced silicon-gate CMOS technology to achieve the low power consumption and high noise immunity of standard CMOS integrated circuits, along with the ability to drive 10 LS-TTL loads at LS type speeds.

This shift register features parallel inputs, parallel outputs, J- $\overline{K}$  serial inputs, SHIFT/LOAD control input, and a direct overriding CLEAR. This shift register can operate in two modes: PARALLEL LOAD; SHIFT from Q<sub>A</sub> towards Q<sub>D</sub>.

Parallel loading is accomplished by applying the four bits of data, and taking the SHIFT/LOAD control input low. The data is loaded into the associated flip flops and appears at the outputs after the positive transition of the clock input. During parallel loading, serial data flow is inhibited. Serial shifting occurs synchronously when the SHIFT/LOAD con-

trol input is high. Serial data for this mode is entered at the J- $\overline{K}$  inputs. These inputs allow the first stage to perform as a J- $\overline{K}$  or TOGGLE flip flop as shown in the truth table.

The 54HC/74HC logic family is functionally as well as pinout compatible with the standard 54LS/74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to  $V_{CC}$  and ground.

#### **Features**

- Typical operating frequency: 45 MHz
- Typical propagation delay: 16 ns (clock to Q)
- Wide operating supply voltage range: 2–6V
- Low input current: 1 μA maximum
- Low quiescent current: 80 µA maximum (74HC Series)
- Fanout of 10 LS-TTL loads

#### **Connection Diagram**

**Dual-In-Line Package** OUTPUTS SHIFT/ QD CLOCK LOAD QA QC QD ۷сс QB 12 10 16 15 13 111 0 QA QB QC QD α<sub>D</sub> ск SHIFT CLEAR LOAD Δ в С D 3 6 8 CLEAR ĸ в С Ð GND J PARALLEL INPUTS SERIAL INPUTS TL/F/5324-1



#### Order Number MM54HC195 or MM74HC195

## **Function Table**

| Inputs |        |       |    |      |   |     | Outputs |    |                     |                 |                 |          |                     |
|--------|--------|-------|----|------|---|-----|---------|----|---------------------|-----------------|-----------------|----------|---------------------|
| Clear  | Shift/ | Clock | Se | rial | F | Par | alle    | el | QA                  | QB              | QC              | QD       | $\overline{Q}_{D}$  |
| oicai  | Load   | Olock | J  | ĸ    | A | в   | С       | D  |                     | αB              | чc              | αD       | αD                  |
| L      | Х      | Х     | Х  | Х    | X | Х   | Х       | Х  | L                   | L               | L               | L        | Н                   |
| н      | L      | 1     | Х  | Х    | a | b   | с       | d  | a                   | b               | с               | d        | d                   |
| н      | н      | Ĺ     | Х  | Х    | X | Х   | Х       | Х  | Q <sub>A0</sub>     | Q <sub>B0</sub> | Q <sub>C0</sub> | $Q_{D0}$ | $\overline{Q}_{D0}$ |
| н      | Н      | 1     | L  | н    | X | Х   | Х       |    | Q <sub>A0</sub>     |                 |                 |          | Q <sub>Cn</sub>     |
| н      | Н      | 1     | L  | L    | X | Х   | Х       | Х  | Ĺ                   | Q <sub>An</sub> | Q <sub>Bn</sub> |          |                     |
| н      | н      | 1     | Н  | н    | X | Х   | Х       | Х  | Н                   | Q <sub>An</sub> | Q <sub>Bn</sub> |          |                     |
| н      | н      | 1     | Н  | L    | X | Х   | Х       | Х  | $\overline{Q}_{An}$ | Q <sub>An</sub> | Q <sub>Bn</sub> |          | $\overline{Q}_{Cn}$ |

H = high level (steady state)

L = low level (steady state) X = irrelevant (any input, including transitions)

 $\uparrow$  = transition from low to high level

a, b, c, d = the level of steady-state input at inputs A, B, C, or D, respectively.

 $Q_{A0}$ ,  $Q_{B0}$ ,  $Q_{C0}$ ,  $Q_{D0}$  = the level of  $Q_A$ ,  $Q_B$ ,  $Q_C$ , or  $Q_D$ , respectively, before the indicated steady-state input conditions were established.

 $Q_{An}$ ,  $Q_{Bn}$ ,  $Q_{Cn}$  = the level of  $Q_A$ ,  $Q_B$ ,  $Q_C$ , respectively, before the most-recent transition of the clock.

©1995 National Semiconductor Corporation TL/F/5324

RRD-B30M115/Printed in U. S. A.

November 1995

#### Absolute Maximum Ratings (Notes 1 & 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

-0.5 to +7.0V

 $\pm$  20 mA

 $\pm 25 \text{ mA}$ 

 $\pm$  50 mA

600 mW

500 mW

260°C

 $-\,1.5$  to  $V_{CC}\,{+}\,1.5V$ 

-0.5 to  $V_{CC}\!+\!0.5V$ 

-65°C to +150°C

Supply Voltage (V<sub>CC</sub>)

DC Input Voltage (VIN)

Power Dissipation (P<sub>D</sub>)

S.O. Package only

(Note 3)

DC Output Voltage (V<sub>OUT</sub>)

Clamp Diode Current (I<sub>IK</sub>, I<sub>OK</sub>)

DC Output Current, per pin (I<sub>OUT</sub>)

DC V<sub>CC</sub> or GND Current, per pin (I<sub>CC</sub>)

Storage Temperature Range (T<sub>STG</sub>)

Lead Temp. (T<sub>L</sub>) (Soldering 10 seconds)

## **Operating Conditions**

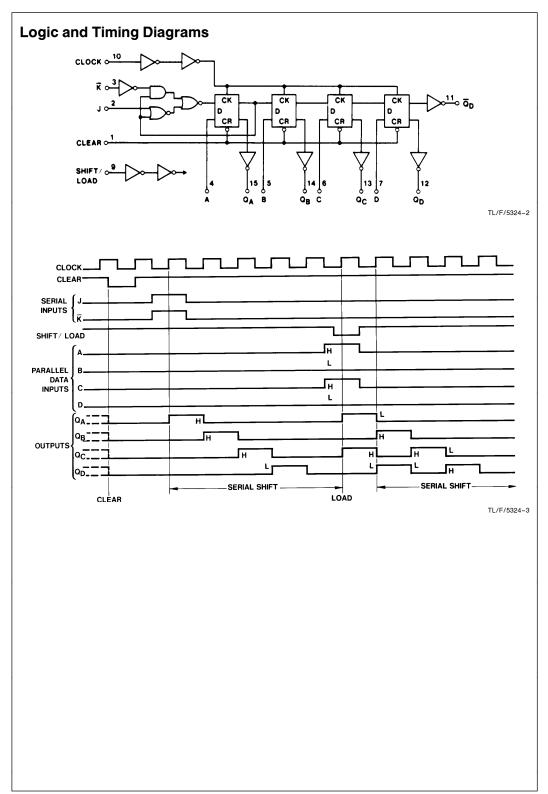
| Supply Voltage (V <sub>CC</sub> )                                   | Min<br>2 | <b>Max</b><br>6 | Units<br>V |
|---------------------------------------------------------------------|----------|-----------------|------------|
| DC Input or Output Voltage<br>(V <sub>IN</sub> , V <sub>OUT</sub> ) | 0        | $V_{CC}$        | V          |
| Operating Temp. Range (T <sub>A</sub> )                             |          |                 |            |
| MM74HC                                                              | -40      | +85             | °C         |
| MM54HC                                                              | -55      | +125            | °C         |
| Input Rise or Fall Times                                            |          |                 |            |
| $(t_r, t_f) V_{CC} = 2.0V$                                          |          | 1000            | ns         |
| V <sub>CC</sub> =4.5V                                               |          | 500             | ns         |
| V <sub>CC</sub> =6.0V                                               |          | 400             | ns         |
|                                                                     |          |                 |            |

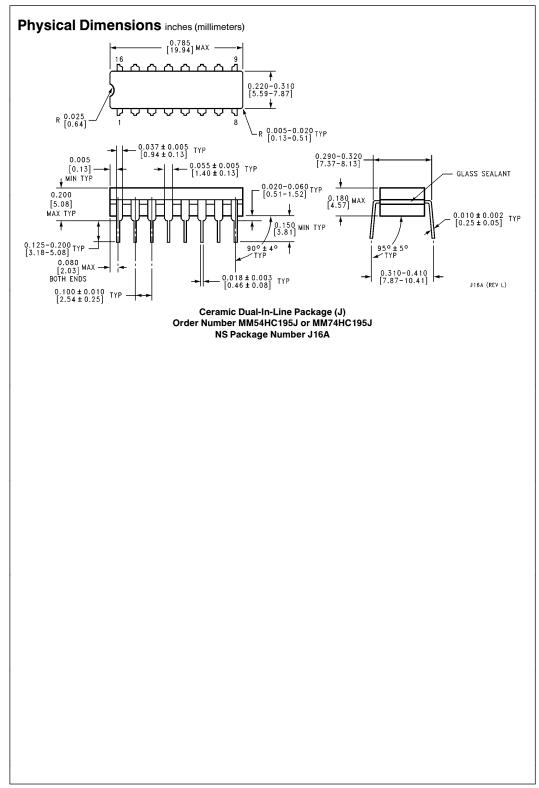
#### DC Electrical Characteristics (Note 4)

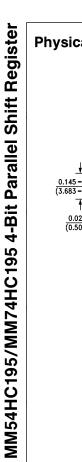
| Symbol          | Parameter                            | Conditions                                                                                               | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                    | 74HC<br>T <sub>A</sub> = - 40 to 85°C | 54HC<br>T <sub>A</sub> = – 55 to 125°C | Units       |
|-----------------|--------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------|----------------------|--------------------|---------------------------------------|----------------------------------------|-------------|
|                 |                                      |                                                                                                          |                      | Тур                  |                    | Guaranteed                            | 1                                      |             |
| V <sub>IH</sub> | Minimum High Level<br>Input Voltage  |                                                                                                          | 2.0V<br>4.5V<br>6.0V |                      | 1.5<br>3.15<br>4.2 | 1.5<br>3.15<br>4.2                    | 1.5<br>3.15<br>4.2                     | V<br>V<br>V |
| V <sub>IL</sub> | Maximum Low Level<br>Input Voltage** |                                                                                                          | 2.0V<br>4.5V<br>6.0V |                      | 0.5<br>1.35<br>1.8 | 0.5<br>1.35<br>1.8                    | 0.5<br>1.35<br>1.8                     | V<br>V<br>V |
|                 | Minimum High Level<br>Output Voltage | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 20 \ \mu A$                                       | 2.0V<br>4.5V<br>6.0V | 2.0<br>4.5<br>6.0    | 1.9<br>4.4<br>5.9  | 1.9<br>4.4<br>5.9                     | 1.9<br>4.4<br>5.9                      | V<br>V<br>V |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 4.0 \text{ mA}$<br>$ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 4.2<br>5.7           | 3.98<br>5.48       | 3.84<br>5.34                          | 3.7<br>5.2                             | V<br>V      |
| 01              | Maximum Low Level<br>Output Voltage  | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 20 \ \mu A$                                       | 2.0V<br>4.5V<br>6.0V | 0<br>0<br>0          | 0.1<br>0.1<br>0.1  | 0.1<br>0.1<br>0.1                     | 0.1<br>0.1<br>0.1                      | V<br>V<br>V |
|                 |                                      | $V_{IN} = V_{IH} \text{ or } V_{IL}$<br>$ I_{OUT}  \le 4.0 \text{ mA}$<br>$ I_{OUT}  \le 5.2 \text{ mA}$ | 4.5V<br>6.0V         | 0.2<br>0.2           | 0.26<br>0.26       | 0.33<br>0.33                          | 0.4<br>0.4                             | v<br>v      |
| I <sub>IN</sub> | Maximum Input<br>Current             | $V_{IN} = V_{CC}$ or GND                                                                                 | 6.0V                 |                      | ±0.1               | ±1.0                                  | ±1.0                                   | μΑ          |
| Icc             | Maximum Quiescent<br>Supply Current  | $V_{IN} = V_{CC} \text{ or } GND$<br>$I_{OUT} = 0 \ \mu A$                                               | 6.0V                 |                      | 8.0                | 80                                    | 160                                    | μΑ          |

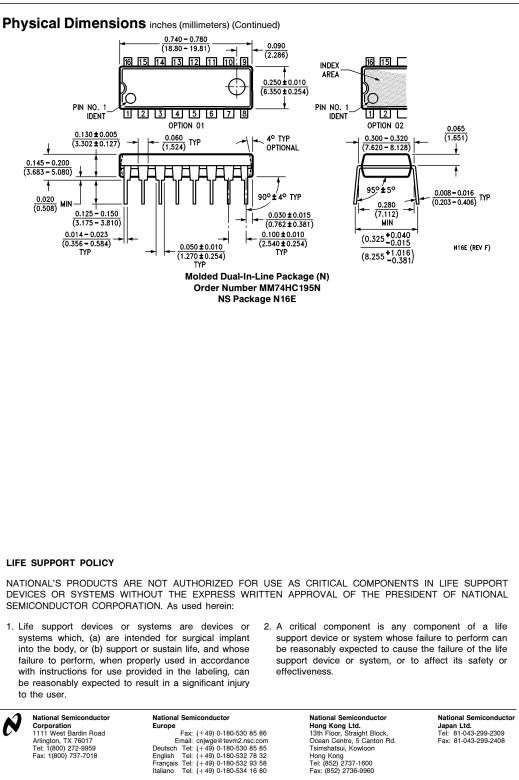
Note 1: Absolute Maximum Ratings are those values beyond which damage to the device may occur.

Note 2: Unless otherwise specified all voltages are referenced to ground.


Note 3: Power Dissipation temperature derating — plastic "N" package:  $-12 \text{ mW/s}^{\circ}\text{C}$  from 65°C to 85°C; ceramic "J" package:  $-12 \text{ mW/s}^{\circ}\text{C}$  from 100°C to 125°C. Note 4: For a power supply of 5V  $\pm$ 10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub> = 5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.


\*\*V<sub>IL</sub> limits are currently tested at 20% of V<sub>CC</sub>. The above V<sub>IL</sub> specification (30% of V<sub>CC</sub>) will be implemented no later than Q1, CY'89.


| Symbol                              | Parameter                                       | Conditions | Тур | Guaranteed Limit | Units |
|-------------------------------------|-------------------------------------------------|------------|-----|------------------|-------|
| f <sub>MAX</sub>                    | Maximum Operating Frequency                     |            | 45  | 30               | MHz   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock to Q           |            | 14  | 24               | ns    |
| t <sub>PHL</sub>                    | Maximum Propagation Delay, Reset to Q           |            | 16  | 25               | ns    |
| t <sub>REM</sub>                    | Minimum Removal Time, Shift/Load to Clock       |            |     | 0                | ns    |
| t <sub>REM</sub>                    | Minimum Removal Time, Reset Inactive to Clock   |            |     | 5                | ns    |
| ts                                  | Minimum Setup Time, (A, B, C, D, J, K to Clock) |            |     | 20               | ns    |
| ts                                  | Minimum Setup Time, Shift/Load to Clock         |            |     | 20               | ns    |
| t <sub>W</sub>                      | Minimum Pulse Width Clock or Reset              |            |     | 16               | ns    |
| t <sub>H</sub>                      | Minimum Hold Time, any Input except Shift/Load  |            |     | 0                | ns    |


# AC Electrical Characteristics $C_L\!=\!50$ pF, $t_r\!=\!t_f\!=\!6$ ns (unless otherwise specified)

| Symbol                              | Parameter                                               | Conditions | v <sub>cc</sub>      | T <sub>A</sub> =25°C |                    | 74HC<br>T <sub>A</sub> = -40 to 85°C | 54HC<br>T <sub>A</sub> =-55 to 125°C | Units             |
|-------------------------------------|---------------------------------------------------------|------------|----------------------|----------------------|--------------------|--------------------------------------|--------------------------------------|-------------------|
|                                     |                                                         |            |                      | Тур                  |                    | Guaranteed Limits                    |                                      | 1                 |
| f <sub>MAX</sub>                    | Maximum Operating<br>Frequency                          |            | 2.0V<br>4.5V<br>6.0V | 10<br>45<br>50       | 6<br>30<br>35      | 5<br>24<br>28                        | 4<br>20<br>24                        | MHz<br>MHz<br>MHz |
| t <sub>PHL</sub>                    | Maximum Propagation Delay, Reset to Q or $\overline{Q}$ |            | 2.0V<br>4.5V<br>6.0V | 70<br>15<br>12       | 150<br>30<br>26    | 189<br>38<br>32                      | 224<br>45<br>38                      | ns<br>ns<br>ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay, Clock to Q or $\overline{Q}$ |            | 2.0V<br>4.5V<br>6.0V | 70<br>15<br>12       | 145<br>29<br>25    | 183<br>37<br>31                      | 216<br>43<br>37                      | ns<br>ns<br>ns    |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output Rise<br>and Fall Time                    |            | 2.0V<br>4.5V<br>6.0V | 30<br>8<br>7         | 75<br>15<br>13     | 95<br>19<br>16                       | 110<br>22<br>19                      | ns<br>ns<br>ns    |
| t <sub>REM</sub>                    | Minimum Removal Time,<br>Shift Load to Clock            |            | 2.0V<br>4.5V<br>6.0V | -2<br>-2<br>-2       | 0<br>0<br>0        | 0<br>0<br>0                          | 0<br>0<br>0                          | ns<br>ns<br>ns    |
| t <sub>REM</sub>                    | Minimum Removal Time,<br>Reset Inactive to Clock        |            | 2.0V<br>4.5V<br>6.0V |                      | 5<br>5<br>5        | 5<br>5<br>5                          | 5<br>5<br>5                          | ns<br>ns<br>ns    |
| ts                                  | Minimum Setup Time,<br>(A, B, C, D, J, K to Clock)      |            | 2.0V<br>4.5V<br>6.0V |                      | 100<br>20<br>17    | 125<br>25<br>21                      | 150<br>30<br>25                      | ns<br>ns<br>ns    |
| t <sub>S</sub>                      | Minimum Setup Time,<br>Shift/Load to Clock              |            | 2.0V<br>4.5V<br>6.0V |                      | 100<br>20<br>17    | 125<br>25<br>21                      | 150<br>30<br>25                      | ns<br>ns<br>ns    |
| t <sub>H</sub>                      | Minimum Hold Time<br>any Input except Shift/Load        |            | 2.0V<br>4.5V<br>6.0V | -10<br>-2<br>-2      | 0<br>0<br>0        | 0<br>0<br>0                          | 0<br>0<br>0                          | ns<br>ns<br>ns    |
| tw                                  | Minimum Pulse Width,<br>Clock or Reset                  |            | 2.0V<br>4.5V<br>6.0V | 30<br>10<br>9        | 80<br>16<br>14     | 100<br>20<br>18                      | 120<br>24<br>20                      | ns<br>ns<br>ns    |
| t <sub>r</sub> , t <sub>f</sub>     | Maximum Input Rise<br>and Fall Time                     |            | 2.0V<br>4.5V<br>6.0V |                      | 1000<br>500<br>400 | 1000<br>500<br>400                   | 1000<br>500<br>400                   | ns<br>ns<br>ns    |
| C <sub>PD</sub>                     | Power Dissipation<br>Capacitance (Note 5)               |            |                      | 100                  |                    |                                      |                                      | pF                |
| C <sub>IN</sub>                     | Maximum Input Capacitance                               |            |                      | 5                    | 10                 | 10                                   | 10                                   | pF                |









National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications