Advance Information Data sheet acquired from Harris Semiconductor SCHS287B – Revised January 2004 ## Octal Buffer/Line Drivers, 3-State CD54/74AC/ACT240 - Inverting CD54/74AC/ACT241 - Non-Inverting CD54/74AC/ACT244 - Non-Inverting #### **Type Features:** - Buffered inputs - Typical propagation delay: 3.6 ns @ Vcc = 5 V, T_A = 25° C, C_L = 50 pF ### FUNCTIONAL DIAGRAM & TERMINAL ASSIGNMENT The RCA CD54/74AC240, CD54/74AC241, and CD54/74AC244 and the CD54/74ACT240, CD54/74ACT241, and CD54/74ACT244 3-state octal buffer/line drivers use the RCA ADVANCED CMOS technology. The CD54/74AC/ACT240 and CD54/74AC/ACT244 have active-LOW output enables (10E, 20E). The CD54/74AC/ACT241 has one active-LOW (10E) and one active-HIGH (20E) output enable. The CD74AC240 and CD74ACT240 are supplied in 20-lead dual-in-line plastic packages (E suffix) and 20-lead small-outline packages (M and M96 suffixes). The CD74AC241 is supplied in 20-lead dual-in-line plastic packages (E suffix) and the CD74ACT241 is supplied in 20-lead dual-in-line plastic packages (E suffix) and 20-lead small-outline packages (M96 suffix). The CD74AC244 and CD74ACT244 are supplied in 20-lead dual-in-line plastic packages (E suffix), 20-lead small-outline packages (M and M96 suffixes), and 20-lead shrink small-outline packages (SM96 suffix). These package types are operable over the following temperature ranges: Commerical (0 to 70°C); Industrial (–40 to +85°C); and Extended Industrial/Military (–55 to + 125°C). The CD54AC240 and CD54AC244 and the CD54ACT240, CD54ACT241, and CD54ACT244 are supplied in 20-lead hermetic dual-in-line ceramic packages (F3A suffix) and are operable over the -55 to +125°C temperature range. #### **Family Features:** - Exceeds 2-kV ESD Protection MIL-STD-883, Method 3015 - SCR-Latch-up-resistant CMOS process and circuit design - Speed of bipolar FAST*/AS/S with significantly reduced power consumption - Balanced propagation delays - AC types feature 1.5-V to 5.5-V operation and balanced noise immunity at 30% of the supply - ± 24-mA output drive current - Fanout to 15 FAST* ICs - Drives 50-ohm transmission lines #### TRUTH TABLES | | INPUTS | | | | |----------|------------|---|--|--| | 10E, 20E | 10E, 20E A | | | | | L | L | Н | | | | L | Н | L | | | | Н | X | Z | | | (AC/ACT240) | INPU | ITS | OUTPUT | |----------|-----|--------| | 10E, 20E | Α | Y | | L | , L | L | | L | Н | Н | | н | X | Z | (AC/ACT244) | INP | UTS | OUTPUT | PUT INPUTS | | OUTPUT | |-----|-----|--------|------------|----|--------| | 10E | 1A | 1Y | 20E | 2A | 2Y | | L | L | L | L | Х | Z | | L | н | H | н | L | L | | н | X | Z | Н | н | н | (AC/ACT241) H = HIGH Voltage Level L = LOW Voltage Level X = Immaterial Z = HIGH Impedance This data sheet is applicable to the CD54/74AC240, CD54ACT240, and CD54/74ACT241. The CD54/74AC241 were not acquired from Harris Semiconductor. See SCHS244 for information on the CD74ACT240, CD74AC244, and CD74ACT244. Copyright © 2004, Texas Instruments Incorporated ^{*}FAST is a Registered Trademark of Fairchild Semiconductor Corp. | MAXIMUM RATINGS, Absolute-Maximum Values: | |--| | DC SUPPLY-VOLTAGE (V _{CC})0.5 to 6 V | | DC INPUT DIODE CURRENT, I_{iK} (for $V_1 < -0.5 \text{ V}$ or $V_1 > V_{CC} + 0.5 \text{ V}$) | | DC OUTPUT DIODE CURRENT, l_{OK} (for $V_0 < -0.5$ V or $V_0 > V_{CC} + 0.5$ V) | | DC OUTPUT SOURCE OR SINK CURRENT per Output Pin, Io (for Vo > -0.5 V or Vo < Vcc + 0.5 V) | | DC V _{∞} or GROUND CURRENT (I _{∞} or I _{GNO}) | | POWER DISSIPATION PER PACKAGE (PD): | | For T _A = -40 to +85°C (Package Type E) | | For T _A = -40 to +70°C (Package Type M) | | F T TO (0500 (D) T T) | | For T _A = +70 to +85°C (Package Type M) | | For I _A = +70 to +85°C (Package Type M) | | | | OPERATING-TEMPERATURE RANGE (T _A): CD54 55 to +125°C CD74 40 to +85°C | | OPERATING-TEMPERATURE RANGE (T _A): CD5455 to +125°C | | $\begin{array}{lll} \text{OPERATING-TEMPERATURE RANGE (T_{A}): CD54} &55 \text{ to } +125^{\circ}\text{C} \\ & \text{CD74} &40 \text{ to } +85^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (T_{\text{Stg}})} &65 \text{ to } +150^{\circ}\text{C} \\ \end{array}$ | | $\begin{array}{lll} \text{OPERATING-TEMPERATURE RANGE (T_A): CD54} &55 \text{ to } +125^{\circ}\text{C} \\ & \text{CD74} &40 \text{ to } +85^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (Tstg)} &65 \text{ to } +150^{\circ}\text{C} \\ \text{LEAD TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} &65 \text{ to } +100^{\circ}\text{C} \\ \text{STORAGE TEMPERATURE (DURING SOLDERING):} $ | #### **RECOMMENDED OPERATING CONDITIONS:** For maximum reliability, normal operating conditions should be selected so that operation is always within the following ranges: | CHARACTERISTIC | | | LIMITS | | | |---|------|------|--------|------|--| | CHARACTERISTIC | MIN. | MAX. | UNITS | | | | Supply-Voltage Range, V _{CC} *: | | | | | | | (For T _A = Full Package-Temperature Range) | | | | | | | AC Types | 1.5 | 5.5 | V | | | | ACT Types | 4.5 | 5.5 | V | | | | DC Input or Output Voltage, V _I , V _O | | 0 | VCC | V | | | Operating Temperature, T _A | CD54 | -55 | +125 | °C | | | | CD74 | -40 | +85 | C | | | Input Rise and Fall Slew Rate, dt/dv | | | | | | | at 1.5 V to 3 V (AC Types) | | 0 | 50 | ns/V | | | at 3.6 v to 5.5 V (AC Types) | | 0 | 20 | ns/V | | | at 4.5 V to 5.5 V (ACT Types) | | 0 | 10 | ns/V | | ^{*} Unless otherwise specified, all voltages are referenced to ground. CD54/74AC, ACT240 TYPES TERMINAL ASSIGNMENT CD54/74AC, ACT241 TYPES TERMINAL ASSIGNMENT CD54/74AC, ACT244 TYPES TERMINAL ASSIGNMENT STATIC ELECTRICAL CHARACTERISTICS: AC Series | | | | | | AMBIENT TEMPERATURE (T _A) - °C | | | | | | | | | | | | |----------------------------------|-----------------|--|------------------------|-----------------|--|----------|----------|-------|--------|----------|----------|---|------|---|-----|--| | CHARACTERISTI | CS | TEST CO | NDITIONS | V _{cc} | +: | 25 | 40 t | o +85 | -55 to | +125 | UNITS | | | | | | | | | V,
(V) | l _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | | | | | | High-Level Input | | | | 1.5 | 1.2 | | 1.2 | | 1.2 | | | | | | | | | Voltage | VIH | | | 3 | 2.1 | | 2.1 | | 2.1 | — | v | | | | | | | | | | | 5.5 | 3.85 | <u> </u> | 3.85 | | 3.85 | | | | | | | | | Low-Level Input | | | | 1.5 | _ | 0.3 | — | 0.3 | | 0.3 | | | | | | | | Voltage | VIL | | | 3 | | 0.9 | _ | 0.9 | | 0.9 | V | | | | | | | | | | | 5.5 | _ | 1.65 | _ | 1.65 | _ | 1.65 | <u> </u> | | | | | | | High-Level Output | , | | -0.05 | 1.5 | 1.4 | | 1.4 | _ | 1.4 | | | | | | | | | Voltage | V _{OH} | ViH | -0.05 | 3 | 2.9 | | 2.9 | _ | 2.9 | | | | | | | | | | | or | -0.05 | 4.5 | 4.4 | | 4.4 | _ | 4.4 | _ |] | | | | | | | | | V _{IL} | -4 | 3 | 2.58 | _ | 2.48 | | 2.4 | | V | | | | | | | | | | -24 | 4.5 | 3.94 | · · | 3.8 | _ | 3.7 | _ | | | | | | | | | | #, * { | -75 | 5.5 | - | | 3.85 | | _ | <u> </u> | | | | | | | | | | "' | -50 | 5.5 | | _ | _ | | 3.85 | |] | | | | | | | Low-Level Output | | | 0.05 | 1.5 | _ | 0.1 | _ | 0.1 | _ | 0.1 | | | | | | | | Voltage | VOL | V _{IH} | 0.05 | 3 | | 0.1 | _ | 0.1 | _ | 0.1 | | | | | | | | | | or | 0.05 | 4.5 | | 0.1 | | 0.1 | _ | 0.1 | | | | | | | | | | VIL | 12 | 3 | _ | 0.36 | _ | 0.44 | _ | 0.5 |] v | | | | | | | | | | | | | | | 24 | 4.5 | _ | 0.36 | _ | 0.44 | _ | 0.5 | | | | | #, * { | 75 | 5.5 | _ | | | 1.65 | _ | - | | | | | | | | | | "· ~ { | 50 | 5.5 | | | _ | _ | · · - | 1.65 | 1 | | | | | | | Input Leakage
Current | l _t | V _{CC}
or
GND | | 5.5 | _ | ±0.1 | <u>-</u> | ±1 | _ | ±1 | μΑ | | | | | | | 3-State Leakage
Current | loz | V _{IH} | | | | | | | | | | | | | | | | | | V _{IL} V _O = V _{CC} | | 5.5 | | ±0.5 | - | ±5 | | ±10 | μΑ | | | | | | | | | or
GND | | | | | | | | | | | | | | | | Quiescent Supply
Current, MSI | loc | V _∞
or
GND | 0 | 5.5 | _ | 8 | | 80 | _ | 160 | μΑ | | | | | | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. ^{*}Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. #### STATIC ELECTRICAL CHARACTERISTICS: ACT Series | | | . , | | AMBIENT TEMPERATURE (TA) - °C | | | | | | | | |---|-----------------|--|------------------------|-------------------------------|------|------|----------|-------|--------|------|----------| | CHARACTERISTI | cs | TEST CO | NDITIONS | V _{cc} | + | 25 | -40 t | o +85 | -55 to | +125 | UNITS | | | | V,
(V) | l _o
(mA) | (V) | MIN. | MAX. | MIN. | MAX. | MIN. | MAX. | | | High-Level Input
Voltage | V _{IH} | | | 4.5
to
5.5 | 2 | _ | 2 | | 2 | _ | V | | Low-Level Input
Voltage | Vil | | | 4.5
to
5.5 | _ | 0.8 | | 0.8 | | 0.8 | V | | High-Level Output | | V _{IH}
or | -0.05 | 4.5 | 4.4 | | 4.4 | - | 4.4 | | | | Voltage | V _{OH} | V _{IL} | -24 | 4.5 | 3.94 | | 3.8 | _ | 3.7 | | V | | | | #, * { | -75 | 5.5 | | | 3.85 | | | | | | | | | -50 | 5.5 | | | | _ | 3.85 | | <u> </u> | | Low-Level Output | | ViH | 0.05 | 4.5 | | 0.1 | | 0.1 | | 0.1 | | | Voltage | V_{OL} | or
V _{IL}
#, * { | 24 | 4.5 | | 0.36 | | 0.44 | | 0.5 | v | | _ | | | 75 | 5.5 | | | | 1.65 | | | | | | | , l | 50 | 5.5 | | | | | | 1.65 | | | Input Leakage
Current | t _i | V _{CC}
or
GND | | 5.5 | | ±0.1 | <u> </u> | ±1 | _ | ±1 | μА | | 3-State Leakage
Current | loz | V _{IH}
or
V _{IL}
V _O = | | 5.5 | _ | ±0.5 | | ±5 | | ±10 | μΑ | | | · | V _{cc}
or
GND | | | | | | | | | | | Quiescent Supply
Current, MSI | lcc | V _∞
or
GND | 0 | 5.5 | | 8 | | 80 | _ | 160 | μΑ | | Additional Quiescent S
Current per Input Pir
TTL Inputs High
1 Unit Load | | V _{cc} -2.1 | · | 4.5
to
5.5 | _ | 2.4 | | 2.8 | _ | 3 | mA | [#]Test one output at a time for a 1-second maximum duration. Measurement is made by forcing current and measuring voltage to minimize power dissipation. * Test verifies a minimum 50-ohm transmission-line-drive capability at +85°C, 75 ohms at +125°C. ### **ACT INPUT LOADING TABLES** | CD54/74ACT240 | | | | | | |-------------------|------|--|--|--|--| | INPUT UNIT LOADS* | | | | | | | nA0 - A3 | 1.42 | | | | | | 10E | 0.83 | | | | | | 20E | 0.83 | | | | | | CD54/74ACT241 | | | | | | | |------------------|------|--|--|--|--|--| | INPUT UNIT LOADS | | | | | | | | nA0 - A3 | 0.5 | | | | | | | 10E | 0.83 | | | | | | | 20E | 1.67 | | | | | | | CD54/74ACT244 | | | | | | | | |---------------|-------------------|--|--|--|--|--|--| | INPUT | INPUT UNIT LOADS* | | | | | | | | nA0 - A3 | 0.5 | | | | | | | | 10E | 0.83 | | | | | | | | 20E | 0.83 | | | | | | | ^{*}Unit load is ∆I_∞ limit specified in Static Characteristics Chart, e.g., 2.4 mA max. @ 25°C. SWITCHING CHARACTERISTICS: AC Series; $t_{\rm r}$ $t_{\rm r}$ = 3 ns, $C_{\rm L}$ = 50 pF | | | | AMBII | T . | | | | |---|--------------------------------------|--------------------|------------------------------------|---------------------|-----------------|--------------------|-------| | CHARACTERISTICS | SYMBOL | V _{cc} | | o +85 | -55 to +125 | | UNITS | | | ' | (V) | MIN. | MAX. | MIN. | MAX. |] | | Propagation Delays:
Data to Outputs
AC240 | t _{PLH} | 1.5
:3.3*
5† | 2.6
1.9 | 82
9.2
6.5 |
2.5
1.8 | 90
10.1
7.2 | ns | | AC241, 244 | : tегн
tенс | 1.5
3.3
5 | | 93
10.5
7.5 | _
2.9
2.1 | 103
11.5
8.2 | ns | | Output Enable Times | t _{PZL} | 1.5
3.3
5 |
4.6
3.1 | 136
16.4
10.9 | _
4.5
3 | 150
18
12 | ns | | Output Disable Times | t _{PLZ}
t _{PHZ} | 1.5
3.3
5 | 3.9
3.1 | 136
13.6
10.9 |
3.8
3 | 150
15
12 | ns | | Power Dissipation Capacitance
AC240
AC241, 244 | C _{PD} § | | 65 Typ. 65 Typ.
71 Typ. 71 Typ. | | pF | | | | Min. (Valley) V _{OH} During Switching of Other Outputs (Output Under Test Not Switching) | V _{онv}
See
Fig. 1 | 5 | 4 Typ. @ 25°C | | | V | | | Max. (Peak) V _{OL} During Switching of Other Outputs (Output Under Test Not Switching) | V _{OLP}
See
Fig. 1 | 5 | 1 Тур. @ 25°С | | | V | | | Input Capacitance | Cı | _ | | 10 | _ | 10 | pF | | 3-State Output Capacitance | Co | | | 15 | | 15 | pF | ### SWITCHING CHARACTERISTICS: ACT Series; t,, t, = 3 ns, C, = 50 pF | | | | AMBI | (A) - °C | | | | | |---|--------------------------------------|------------------------|---------------------------------|------------|------|------|-------|--| | CHARACTERISTICS | SYMBOL | V _{cc}
(V) | -40 | -40 to +85 | | +125 | UNITS | | | | } | | MIN. | MAX. | MIN. | MAX. | | | | Propagation Delays:
Data to Outputs
ACT240 | t _{PLH}
t _{PHL} | 5† | 2.3 | 7.8 | 2.2 | 8.6 | ns | | | ACT241, 244 | t _{PLH}
t _{PHL} | 5 | 2.5 | 8.7 | 2.4 | 9.6 | ns | | | Output Enable Times | t _{PZL} | 5 | 3.5 | 12.2 | 3.4 | 13.4 | ns | | | Output Disable Times | t _{PLZ} | 5 | 3.5 | 12.2 | 3.4 | 13.4 | ns | | | Power Dissipation Capacitance
ACT240
ACT241, 244 | C _{PO} § | | 65 Typ. 65 Typ. 71 Typ. 71 Typ. | | | pF | | | | Min. (Valley) V _{он} During Switching of Other Outputs (Output Under Test Not Switching) | V _{онv}
See
Fig. 1 | 5 | 4 Typ. @ 25°C | | V | | | | | Max. (Peak) Vol. During Switching of Other Outputs (Output Under Test Not Switching) | V _{OLP}
See
Fig. 1 | 5 | 1 Typ. @ 25°C | | v | | | | | Input Capacitance | Cı | | _ | 10 | _ | 10 | pF | | | 3-State Output Capacitance | Co | | _ | 15 | _ | 15 | ρF | | ^{*3.3} V: min. is @ 3.6 V max. is @ 3 V $\ddagger C_{PD}$ is used to determine the dynamic power consumption, per package. For AC series: $P_D = V_{CC}^2 \, f_i \, (C_{PD} + C_L)$ For ACT series: $P_D = V_{CC}^2 \, f_i \, (C_{PD} + C_L) + V_{CC} \, \Delta I_{CC}$ where f_i = input frequency †5 V: min. is @ 5.5 V max. is @ 4.5 V C_L = output load capacitance $V_{CC} = supply voltage$ ### PARAMETER MEASUREMENT INFORMATION #### NOTES: - VOHY AND VOLP ARE MEASURED WITH RESPECT TO A GROUND REFERENCE NEAR THE OUTPUT UNDER TEST. INPUT PULSES HAVE THE FOLLOWING CHARACTERISTICS: - PRR ≤ 1 MHz, t₁ = 3 ns, t₁ = 3 ns, 5 KEW 1 ns. R.F. FIXTURE WITH 700-MHz DESIGN RULES REQUIRED. IC SHOULD BE SOLDERED INTO TEST BOARD AND BYPASSED WITH 0.1 F CAPACITOR. SCOPE AND PROBES REQUIRE 700-MHz BANDWIDTH. 9205-42406 Fig. 1 - Simultaneous switching transient waveforms. 9205-42407 Fig. 3 - Propagation delay times and test circuit. | | CD54/74AC | CD54/74ACT | |------------------------------|---------------------|---------------------| | Input Level | V _{cc} | 3 V | | Input Switching Voltage, Vs | 0.5 V _{cc} | 1.5 V | | Output Switching Voltage, Vs | 0.5 V _{cc} | 0.5 V _{CC} | 28-Feb-2005 ### **PACKAGING INFORMATION** | Orderable Device | Status ⁽¹⁾ | Package
Type | Package
Drawing | Pins | Package
Qty | Eco Plan (2) | Lead/Ball Finish | MSL Peak Temp ⁽³⁾ | |------------------|-----------------------|-----------------|--------------------|------|----------------|-------------------|------------------|--| | CD54AC240F3A | ACTIVE | CDIP | J | 20 | 1 | None | Call TI | Level-NC-NC-NC | | CD54AC244F3A | ACTIVE | CDIP | J | 20 | 1 | None | Call TI | Level-NC-NC-NC | | CD54ACT240F3A | ACTIVE | CDIP | J | 20 | 1 | None | Call TI | Level-NC-NC-NC | | CD54ACT241F3A | ACTIVE | CDIP | J | 20 | 1 | None | Call TI | Level-NC-NC-NC | | CD54ACT244F3A | ACTIVE | CDIP | J | 20 | 1 | None | Call TI | Level-NC-NC-NC | | CD74AC240E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74AC240M | ACTIVE | SOIC | DW | 20 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74AC240M96 | ACTIVE | SOIC | DW | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74AC244E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74AC244M | ACTIVE | SOIC | DW | 20 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74AC244M96 | ACTIVE | SOIC | DW | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74AC244SM | OBSOLETE | SSOP | DB | 20 | | Pb-Free
(RoHS) | CU NIPDAU | Level-2-260C-1 YEAR/
Level-1-235C-UNLIM | | CD74AC244SM96 | ACTIVE | SSOP | DB | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-260C-1 YEAR/
Level-1-235C-UNLIM | | CD74ACT240E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74ACT240M | ACTIVE | SOIC | DW | 20 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74ACT240M96 | ACTIVE | SOIC | DW | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74ACT241E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74ACT241M96 | ACTIVE | SOIC | DW | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74ACT244E | ACTIVE | PDIP | N | 20 | 20 | Pb-Free
(RoHS) | CU NIPDAU | Level-NC-NC-NC | | CD74ACT244M | ACTIVE | SOIC | DW | 20 | 25 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74ACT244M96 | ACTIVE | SOIC | DW | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-250C-1 YEAR/
Level-1-235C-UNLIM | | CD74ACT244SM | OBSOLETE | SSOP | DB | 20 | | Pb-Free
(RoHS) | CU NIPDAU | Level-2-260C-1 YEAR/
Level-1-235C-UNLIM | | CD74ACT244SM96 | ACTIVE | SSOP | DB | 20 | 2000 | Pb-Free
(RoHS) | CU NIPDAU | Level-2-260C-1 YEAR/
Level-1-235C-UNLIM | (1) The marketing status values are defined as follows: **ACTIVE:** Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. **OBSOLETE:** TI has discontinued the production of the device. ### PACKAGE OPTION ADDENDUM 28-Feb-2005 (2) Eco Plan - May not be currently available - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. None: Not yet available Lead (Pb-Free). **Pb-Free** (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Green (RoHS & no Sb/Br): TI defines "Green" to mean "Pb-Free" and in addition, uses package materials that do not contain halogens, including bromine (Br) or antimony (Sb) above 0.1% of total product weight. (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDECindustry standard classifications, and peak solder temperature. Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. #### 14 LEADS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. This package is hermetically sealed with a ceramic lid using glass frit. - D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only. - E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20. ### N (R-PDIP-T**) ### PLASTIC DUAL-IN-LINE PACKAGE 16 PINS SHOWN NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A). - The 20 pin end lead shoulder width is a vendor option, either half or full width. ### DW (R-PDSO-G20) ### PLASTIC SMALL-OUTLINE PACKAGE NOTES: - A. All linear dimensions are in inches (millimeters). - B. This drawing is subject to change without notice. - C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). - D. Falls within JEDEC MS-013 variation AC. ### DB (R-PDSO-G**) ### PLASTIC SMALL-OUTLINE #### **28 PINS SHOWN** NOTES: A. All linear dimensions are in millimeters. B. This drawing is subject to change without notice. C. Body dimensions do not include mold flash or protrusion not to exceed 0,15. D. Falls within JEDEC MO-150 #### **IMPORTANT NOTICE** Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: | Products | | Applications | | |------------------|------------------------|--------------------|---------------------------| | Amplifiers | amplifier.ti.com | Audio | www.ti.com/audio | | Data Converters | dataconverter.ti.com | Automotive | www.ti.com/automotive | | DSP | dsp.ti.com | Broadband | www.ti.com/broadband | | Interface | interface.ti.com | Digital Control | www.ti.com/digitalcontrol | | Logic | logic.ti.com | Military | www.ti.com/military | | Power Mgmt | power.ti.com | Optical Networking | www.ti.com/opticalnetwork | | Microcontrollers | microcontroller.ti.com | Security | www.ti.com/security | | | | Telephony | www.ti.com/telephony | | | | Video & Imaging | www.ti.com/video | | | | Wireless | www.ti.com/wireless | Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright © 2005, Texas Instruments Incorporated