2.5 V/3.3 V ECL/PECL/LVDS Dual Differential 2:1 Multiplexer

The MC100ES6056 is a dual, fully differential 2:1 multiplexer. The differential data path makes the device ideal for multiplexing low skew clock or other skew sensitive signals. Multiple V_{BB} pins are provided.

The V_{BB} pin, an internally generated voltage supply, is available to this device only. For single-ended input conditions, the unused differential input is connected to V_{BB} as a switching reference voltage. V_{BB} may also rebias AC coupled inputs. When used, decouple V_{BB} and V_{CC} via a 0.01 μF capacitor and limit current sourcing or sinking to 0.5 mA. When not used, V_{BB} should be left open.

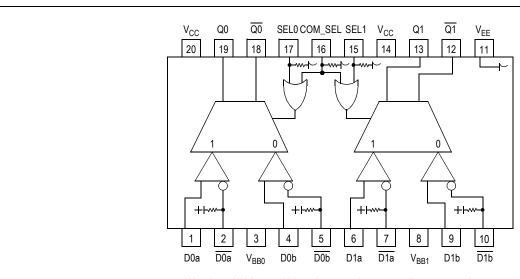
The device features both individual and common select inputs to address both data path and random logic applications.

The 100ES Series contains temperature compensation.

Features

- 360 ps Typical Propagation Delays
- Maximum Frequency > 3 GHz Typical
- PECL Mode Operating Range: V_{CC} = 2.375 V to 3.8 V with V_{EE} = 0 V
- ECL Mode Operating Range: $V_{CC} = 0 \text{ V}$ with $V_{EE} = -2.375 \text{ V}$ to -3.8 V
- Open Input Default State
- Separate and Common Select
- Q Output Will Default LOW with Inputs Open or at V_{EE}
- V_{BB} Outputs
- · LVDS Input Compatible
- · 20-Lead Pb-Free Package Available

MC100ES6056



DT SUFFIX 20-LEAD TSSOP PACKAGE CASE 948E-03

EJ SUFFIX 20-LEAD TSSOP PACKAGE Pb-FREE PACKAGE CASE 948E-03

ORDERING INFORMATION					
Device Package					
MC100ES6056DT	TSSOP-20				
MC100ES6056DTR2	TSSOP-20				
MC100ES6056EJ	TSSOP-20 (Pb-Free)				
MC100ES6056EJR2	TSSOP-20 (Pb-Free)				

Warning: All V_{CC} and V_{EE} pins must be externally connected to Power Supply to guarantee proper operation.

Figure 1. 20-Lead Pinout (Top View) and Logic Diagram

Table 1. Pin Description

Pin	Function
D0a* – D1a*	ECL Input Data a
D0a* – D1a*	ECL Input Data a Invert
D0b* – D1b*	ECL Input Data b
D0b* - D1b*	ECL Input Data b Invert
SEL0* – SEL1*	ECL Indiv. Select Input
COM_SEL*	ECL Common Select Input
V _{BB0} , V _{BB1}	Output Reference Voltage
Q0 – Q1	ECL True Outputs
Q0 – Q1	ECL Inverted Outputs
V _{CC}	Positive Supply
V _{EE}	Negative Supply

Table 2. Function Table

SEL0	SEL1	COM_SEL	Q0, Q0	Q1, Q1
Х	X	Н	а	а
L	L	L	b	b
L	Н	L	b	а
Н	Н	L	а	а
Н	L	L	а	b

Table 3. General Specifications

	Value		
Internal Input Pulldown Resistor	nternal Input Pulldown Resistor		
Internal Input Pullup Resistor	75 kΩ		
ESD Protection	Human Body Model Machine Model Charged Device Model	> 4 kV > 400 V > 2 kV	
Thermal Resistance (Junction-to-Ambient)	0 LFPM, 20 TSSOP 500 LFPM, 20 TSSOP	140°C/W 100°C/W	

Meets or exceeds JEDEC Spec EIA/JESD78 IC Latchup Test

^{*} Input function will default LOW when left open.

Table 4. Absolute Maximum Ratings⁽¹⁾

Symbol	Characteristic	Conditions	Rating	Units
V _{SUPPLY}	Power Supply Voltage	Difference between V _{CC} & V _{EE}	3.9	V
V _{IN}	Input Voltage	$V_{CC} - V_{EE} \le 3.6 \text{ V}$	V _{CC} + 0.3 V _{EE} – 0.3	V
I _{OUT}	Output Current	Continuous Surge	50 100	mA mA
I _{BB}	V _{BB} Sink/Source Current		±0.5	°C
T _A	Operating Temperature Range		-40 to +85	°C
T _{STG}	Storage Temperature Range		-65 to +150	°C

^{1.} Absolute maximum continuous ratings are those maximum values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation at absolute-maximum-rated conditions is not implied.

Table 5. DC Characteristics ($V_{CC} = 0 \text{ V}, V_{EE} = -2.5 \text{ V} \pm 5\% \text{ or } 3.8 \text{ V to } -3.135 \text{ V}; V_{CC} = 2.5 \text{ V} \pm 5\% \text{ or } 3.135 \text{ V to } 3.8 \text{ V}, V_{EE} = 0 \text{ V})$

Symbol	Characteristics	-40°C			0°C to 85°C			Unit
Symbol	Characteristics	Min	Тур	Max	Min	Тур	Max	Onit
I _{EE}	Power Supply Current		30	60		30	60	mA
V _{OH}	Output HIGH Voltage ⁽¹⁾	V _{CC} -1085	V _{CC} -960	V _{CC} -880	V _{CC} -1025	V _{CC} -930	V _{CC} -860	mV
V _{OL}	Output LOW Voltage ⁽¹⁾	V _{CC} -1950	V _{CC} -1695	V _{CC} -1500	V _{CC} -1950	V _{CC} -1705	V _{CC} -1500	mV
V _{IH}	Input HIGH Voltage	V _{CC} -1165		V _{CC} -880	V _{CC} -1165		V _{CC} -880	mV
V _{IL}	Input LOW Voltage	V _{CC} -1810		V _{CC} -1475	V _{CC} -1810		V _{CC} -1475	mV
V_{BB}	Output Reference Voltage	V _{CC} -1380	V _{CC} -1290	V _{CC} -1220	V _{CC} -1380	V _{CC} -1290	V _{CC} -1200	mV
V _{PP}	Differential Input Voltage ⁽²⁾	0.15		1.3	0.15		1.3	V
V _{CMR}	Differential Cross Point Voltage ⁽³⁾	V _{CC} -2.3		V _{CC} -0.8	V _{CC} -2.3		V _{CC} -0.8	V
I _{IH}	Input HIGH Current			150			150	μΑ
I _{IL}	Input LOW Current	0.5			0.5			μΑ

^{1.} Output termination voltage V_{TT} = 0 V for V_{CC} = 2.5 V operation is supported but the power consumption of the device will increase.

^{2.} V_{PP} (DC) is the minimum differential input voltage swing required to maintain device functionality.

^{3.} V_{CMR} (DC) is the crosspoint of the differential input signal. Functional operation is obtained when the crosspoint is within the V_{CMR} (DC) range and the input swing lies within the V_{PP} (DC) specification.

Table 6. AC Characteristics (V_{CC} = 0 V; V_{EE} = -2.5 V ± 5% or -3.8 V to -3.135 V; V_{CC} = 2.5 V ± 5% or 3.135 V to 3.8 V; V_{EE} = 0 V)⁽¹⁾

	Characteristics		-	40°C to 85°	С	
Symbol			Min	Тур	Max	Unit
f _{max}	Maximum Frequency			> 3		GHz
t _{PLH} , t _{PHL}	Propagation Delay to Output Differential	D to Q, $\overline{\underline{Q}}$ SEL to Q, $\overline{\underline{Q}}$ COM_SEL to Q, \overline{Q}	300	400 430 490	500 600 650	ps ps ps
t _{SKEW}	Skew	Output-to-Output ⁽²⁾ Part-to-Part		10	50 200	ps ps
t _{JITTER}	Cycle-to-Cycle Jitter	RMS (1σ)			1	ps
V_{PP}	Minimum Input Swing		200	800	1200	mV
V_{CMR}	Differential Cross Point Voltage		V _{CC} -2.1		V _{CC} -1.1	V
t _r / t _f	Output Rise/Fall Time (20%–80%)		70	120	230	ps

- 1. Measured using a 750 mV source, 50% duty cycle clock source. All loading with 50 Ω to V_{CC}–2.0 V.
- 2. Skew is measured between outputs under identical transitions. Duty cycle skew is defined only for differential operation when the delays are measured from the cross point of the inputs to the cross point of the outputs.

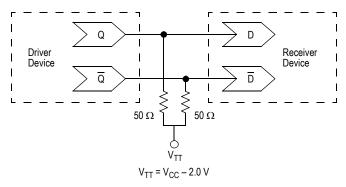
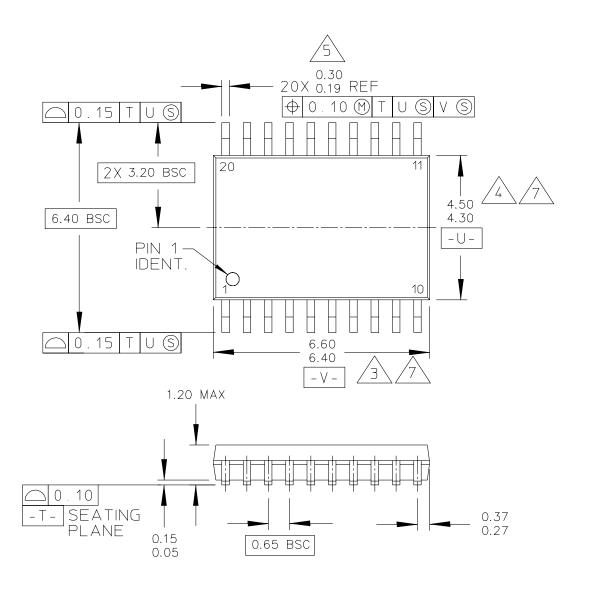
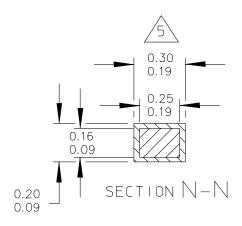
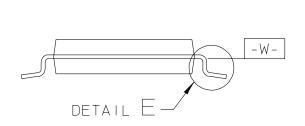
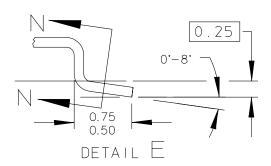



Figure 2. Typical Termination for Output Driver and Device Evaluation

PACKAGE DIMENSIONS


© FREE	SCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	TO SCALE
TITLE:			DOCUMENT NO): 98ASH70169A	REV: B
	20 LD TSSOP, PITCH	0.65MM	CASE NUMBER	948E-03	09 MAR 2005
		STANDARD: JE	DEC		


PAGE 1 OF 3


CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

MC100ES6056

PACKAGE DIMENSIONS

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICA	L OUTLINE	PRINT VERSION NO	IT TO SCALE
TITLE: 20 LD TSSOP, PITCH 0.65MM		DOCUMENT NO]: 98ASH70169A	RE√: B
		CASE NUMBER	2: 948E-03	09 MAR 2005
		STANDARD: JE	IDEC	

PAGE 2 OF 3

CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

PACKAGE DIMENSIONS

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER
- 2. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M-1982.

DIMENSION DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE.

DIMENSION DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION.
INTERLEAD FLASH OR PROTRUSION SHALL NOT EXCEED 0.25 PER SIDE.

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF THE DIMENSION AT MAXIMUM MATERIAL CONDITION.

6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.

/7\

DIMENSIONS ARE TO BE DETERMINED AT DATUM PLANE [

_	W	-

© FREE	SCALE SEMICONDUCTOR, ALL RIGHTS RESERVED.	INC.	MECHANICAL OUTLINE		PRINT VERSION NO	TO SCALE
TITLE:				DOCUMENT NO]: 98ASH70169A	RE∨: B
	20 LD TSSOP,	PITCH	0.65MM	CASE NUMBER	2: 948E-03	09 MAR 2005
				STANDARD: JE	DEC	

PAGE 3 OF 3

CASE 948E-03 ISSUE B 20-LEAD TSSOP PACKAGE

MC100ES6056

How to Reach Us:

Home Page:

www.freescale.com

E-mail:

support@freescale.com

USA/Europe or Locations Not Listed:

Freescale Semiconductor Technical Information Center, CH370 1300 N. Alma School Road Chandler, Arizona 85224 +1-800-521-6274 or +1-480-768-2130 support@freescale.com

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) support@freescale.com

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor Hong Kong Ltd. Technical Information Center 2 Dai King Street
Tai Po Industrial Estate
Tai Po, N.T., Hong Kong
+800 2666 8080
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center P.O. Box 5405
Denver, Colorado 80217
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2005. All rights reserved.

