FEATURES

- Operate From 1.65 V to 3.6 V
- Inputs Accept Voltages to 5.5 V
- Max t_{pd} of 5.3 ns at 3.3 V
- Typical $\mathrm{V}_{\text {olp }}$ (Output Ground Bounce) $<0.8 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Typical $\mathrm{V}_{\text {OHV }}$ (Output $\mathrm{V}_{\text {OH }}$ Undershoot) $>2 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- Support Mixed-Mode Signal Operation on All Ports (5-V Input/Output Voltage With 3.3-V V_{cc})
- $I_{\text {off }}$ Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 250 mA Per JESD 17
- ESD Protection Exceeds JESD 22
- 2000-V Human-Body Model (A114-A)
- 1000-V Charged-Device Model (C101)

DESCRIPTION/ORDERING INFORMATION

The SN54LVC540A octal buffer/driver is designed for 2.7-V to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation, and the SN74LVC540A octal buffer/driver is designed for $1.65-\mathrm{V}$ to $3.6-\mathrm{V} \mathrm{V}_{\mathrm{CC}}$ operation.
These devices are ideal for driving bus lines or buffer memory address registers. These devices feature inputs and outputs on opposite sides of the package that facilitate printed circuit board layout.

SN54LVC540A... J OR W PACKAGE
SN74LVC540A... DB, DGV, DW, NS, OR PW PACKAGE (TOP VIEW)

OE1	1		V_{CC}
A1	2	19	OE2
A2	3	18	Y1
A3	4	17	Y2
A4	5	16	Y3
A5	6	15	Y4
A6	7	14	Y5
A7	8	13	Y6
A8	9	12	Y7
GND	10	11	Y8

ORDERING INFORMATION

TA	PACKAGE ${ }^{(1)}$		ORDERABLE PART NUMBER	TOP-SIDE MARKING
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	SOIC - DW	Tube of 25	SN74LVC540ADW	LVC540A
		Reel of 2000	SN74LVC540ADWR	
	SOP - NS	Reel of 2000	SN74LVC540ANSR	LVC540A
	SSOP - DB	Reel of 2000	SN74LVC540ADBR	LC540A
	TSSOP - PW	Tube of 70	SN74LVC540APW	LC540A
		Reel of 2000	SN74LVC540APWR	
		Reel of 250	SN74LVC540APWT	
	TVSOP - DGV	Reel of 2000	SN74LVC540ADGVR	LC540A
$-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$	CDIP - J	Tube of 20	SNJ54LVC540AJ	SNJ54LVC540AJ
	CFP - W	Tube of 85	SNJ54LVC540AW	SNJ54LVC540AW
	LCCC - FK	Tube of 55	SNJ54LVC540AFK	SNJ54LVC540AFK

(1) Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

DESCRIPTION/ORDERING INFORMATION (CONTINUED)

The 3-state control gate is a 2 -input AND gate with active-low inputs so that, if either output-enable ($\overline{\mathrm{OE}}$ or $\overline{\mathrm{OE} 2}$) input is high, all outputs are in the high-impedance state.
Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed $3.3-\mathrm{V} / 5-\mathrm{V}$ system environment.

These devices are fully specified for partial-power-down applications using $\mathrm{I}_{\text {off. }}$. The $\mathrm{I}_{\text {off }}$ circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down.
To ensure the high-impedance state during power up or power down, $\overline{O E}$ should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE

INPUTS			OUTPUT
OE1	OE2	A	Y
L	L	L	H
L	L	H	L
H	X	X	Z
X	H	X	Z

LOGIC DIAGRAM (POSITIVE LOGIC)

OCTAL BUFFERS/DRIVERS WITH 3-STATE OUTPUTS
www.ti.com

Absolute Maximum Ratings ${ }^{(1)}$

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V_{CC}	Supply voltage range		-0.5	6.5	V
V_{1}	Input voltage range ${ }^{(2)}$		-0.5	6.5	V
V_{0}	Voltage range applied to any outpur	ce or power-off state ${ }^{(2)}$	-0.5	6.5	V
V_{0}	Voltage range applied to any outpor	ate ${ }^{(2)(3)}$	-0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	Input clamp current	$\mathrm{V}_{1}<0$		-50	mA
Iok	Output clamp current	$\mathrm{V}_{\mathrm{O}}<0$		-50	mA
I_{0}	Continuous output current			± 50	mA
	Continuous current through V_{CC}			± 100	mA
		DB package		70	
		DGV package		92	
θ_{JA}	Package thermal impedance ${ }^{(4)}$	DW package		58	${ }^{\circ} \mathrm{C} / \mathrm{W}$
		NS package		60	
		PW package		83	
$\mathrm{T}_{\text {stg }}$	Storage temperature range		-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
(3) The value of V_{CC} is provided in the recommended operating conditions table.
(4) The package thermal impedance is calculated in accordance with JESD 51-7.

Recommended Operating Conditions ${ }^{(1)}$

			SN54LV	40A	SN74LV		
			MIN	MAX	MIN	MAX	UNT
	Supply voltage	Operating	2	3.6	1.65	3.6	
$V_{C C}$	Supply voltage	Data retention only	1.5		1.5		
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V			$0.65 \times \mathrm{V}_{\mathrm{CC}}$		
V_{IH}	High-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V			1.7		v
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V	2		2		
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V				$\times \mathrm{V}_{\mathrm{CC}}$	
$\mathrm{V}_{\text {IL }}$	Low-level input voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V				0.7	V
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to 3.6 V		0.8		0.8	
V_{1}	Input voltage		0	5.5	0	5.5	V
		High or low state	0	V_{Cc}	0	V_{CC}	
Vo	Output voltage	3-state	0	5.5	0	5.5	V
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$				-4	
	hh-level output current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$				-8	mA
$\mathrm{IOH}^{\text {O }}$	High-level output current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		-12		-12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		-24		-24	
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$				4	
lo	Low-level output current	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$				8	mA
IOL	Low-level outpur curent	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		12		12	
		$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}$		24		24	
T_{A}	Operating free-air temperature		-55	125	-40	85	${ }^{\circ} \mathrm{C}$

(1) All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

WITH 3-STATE OUTPUTS

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

(1) All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.
(2) This applies in the disabled state only.

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure_-1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN54LVC540A			UNIT
			$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN MAX	MIN	MAX	
t_{pd}	A	Y	7.1	1	5.3	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	Y	8	1	6.6	ns
$\mathrm{t}_{\text {dis }}$	OE	Y	8.2	1	7.4	ns

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see Figure_1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	SN74LVC540A								UNIT
			$\begin{gathered} \mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V} \\ \pm 0.15 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \\ \pm 0.2 \mathrm{~V} \end{gathered}$		$\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
t_{pd}	A	Y	1	16.4	1	7.8	1	7.1	1.4	5.3	ns
$\mathrm{t}_{\text {en }}$	$\overline{\mathrm{OE}}$	Y	1	16.5	1	10.5	1	8	1.1	6.6	ns
$\mathrm{t}_{\text {dis }}$	OE	Y	1	15.9	1	9	1	8.2	1.8	7.4	ns
$\mathrm{t}_{\text {sk(0) }}$										1	ns

Operating Characteristics

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

PARAMETER			TEST CONDITIONS	$\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	UNIT	
			TYP	TYP	TYP			
C_{pd}	Power dissipation capacitance per buffer/driver	Outputs enabled		$\mathrm{f}=10 \mathrm{MHz}$	63	56	31	pF
		Outputs disabled	3		3	3		

PARAMETER MEASUREMENT INFORMATION

NOTES: A. C_{L} includes probe and jig capacitance.
B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.
C. All input pulses are supplied by generators having the following characteristics: $\mathrm{PRR} \leq 10 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$.
D. The outputs are measured one at a time, with one transition per measurement.
E. $t_{P L Z}$ and $t_{P H Z}$ are the same as $t_{\text {dis }}$.
F. $t_{P Z L}$ and $t_{P Z H}$ are the same as $t_{e n}$.
G. $t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$.
H. All parameters and waveforms are not applicable to all devices.

Figure 1. Load Circuit and Voltage Waveforms

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing		Package Qty	$\text { e Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-9759401Q2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
5962-9759401QRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/ A for Pkg Type
5962-9759401QSA	ACTIVE	CFP	W	20	1	TBD	A42	N/ A for Pkg Type
SN74LVC540ADBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74LVC540ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ADBRE4	ACTIVE	SSOP	DB	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ADGVR	ACTIVE	TVSOP	DGV	20	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ADGVRE4	ACTIVE	TVSOP	DGV	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ADW	ACTIVE	SOIC	DW	20	25	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ADWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ADWR	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ADWRE4	ACTIVE	SOIC	DW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ANSR	ACTIVE	SO	NS	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540ANSRE4	ACTIVE	SO	NS	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540APW	ACTIVE	TSSOP	PW	20	70	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540APWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540APWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
SN74LVC540APWR	ACTIVE	TSSOP	PW	20	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no Sb/Br) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540APWRE4	ACTIVE	TSSOP	PW	20	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540APWT	ACTIVE	TSSOP	PW	20	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SN74LVC540APWTE4	ACTIVE	TSSOP	PW	20	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
SNJ54LVC540AFK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N/ A for Pkg Type
SNJ54LVC540AJ	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N/A for Pkg Type
SNJ54LVC540AW	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type

[^0]PACKAGE OPTION ADDENDUM

[^1]In no event shall Tl's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

4040180-4/D 07/03
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within Mil-Std 1835 GDFP2-F20

FK (S-CQCC-N**)

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004

PIM **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{3 8}$	$\mathbf{4 8}$	$\mathbf{5 6}$
A MAX	3,70	3,70	5,10	5,10	7,90	9,80	11,40
A MIN	3,50	3,50	4,90	4,90	7,70	9,60	11,20

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15 per side.
D. Falls within JEDEC: $24 / 48$ Pins - MO-153

14/16/20/56 Pins - MO-194

DW (R-PDSO-G2O)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AC.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

DIM PINS **	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$	$\mathbf{3 0}$	$\mathbf{3 8}$
A MAX	6,50	6,50	7,50	8,50	10,50	10,50	12,90
A MIN	5,90	5,90	6,90	7,90	9,90	9,90	12,30

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-150

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products

Applications

Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video \& Imaging	www.ti.com/video
	Wireless	www.ti.com/wireless	

[^2]Copyright © 2006, Texas Instruments Incorporated

[^0]: ${ }^{(1)}$ The marketing status values are defined as follows:
 ACTIVE: Product device recommended for new designs.
 LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
 NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
 PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
 OBSOLETE: TI has discontinued the production of the device.

[^1]: ${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
 TBD: The Pb-Free/Green conversion plan has not been defined.
 Pb-Free (RoHS): Tl's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
 Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb -Free (RoHS compatible) as defined above.
 Green (RoHS \& no $\mathbf{S b} / \mathrm{Br}$): Tl defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
 ${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

 Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. Tl bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. Tl has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

[^2]: Mailing Address: Texas Instruments
 Post Office Box 655303 Dallas, Texas 75265

