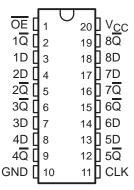
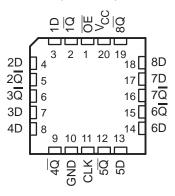
SDAS168B - APRIL 1982 - REVISED JULY 1996

- 3-State Bus Driving Inverting Outputs
- Buffered Control Inputs
- Package Options Include Plastic Small-Outline (DW), Ceramic Chip Carriers (FK), and Standard Plastic (N) and Ceramic (J) 300-mil DIPs


description

These octal D-type edge-triggered flip-flops feature 3-state outputs designed specifically for driving highly capacitive or relatively low-impedance loads. They are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.


On the positive transition of the clock (CLK) input, the $\overline{\mathbb{Q}}$ outputs are set to the complement of the logic states set up at the data (D) inputs. The 'ALS534A and SN74AS534 have inverted outputs, but otherwise are functionally equivalent to the 'ALS374A and SN74AS374.

A buffered output-enable (\overline{OE}) input places the eight outputs in either a normal logic state (high or low logic levels) or a high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

SN54ALS534A . . . J PACKAGE SN74ALS534A, SN74AS534 . . . DW OR N PACKAGE (TOP VIEW)

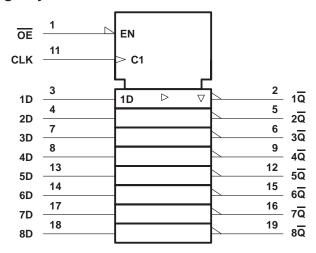
SN54ALS534A . . . FK PACKAGE (TOP VIEW)

OE does not affect the internal operations of the flip-flops. Old data can be retained or new data can be entered while the outputs are off.

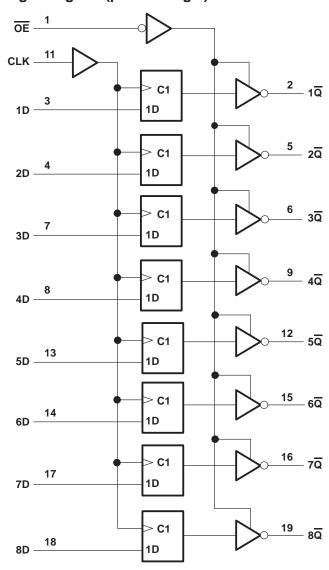
The SN54ALS534A is characterized for operation over the full military temperature range of –55°C to 125°C. The SN74ALS534A and SN74AS534 are characterized for operation from 0°C to 70°C.

FUNCTION TABLE (each flip-flop)

	INPUTS	OUTPUT	
OE	CLK	D	Q
L	\uparrow	Н	L
L	\uparrow	L	Н
L	H or L	Χ	\overline{Q}_0
Н	X	Χ	Z


Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

SN54ALS534A, SN74ALS534A, SN74AS534 OCTAL D-TYPÉ EDGE-TRIGGÉRED FLIP-FLOPS **WITH 3-STATE OUTPUTS**


SDAS168B - APRIL 1982 - REVISED JULY 1996

logic symbol†

[†]This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

SDAS168B - APRIL 1982 - REVISED JULY 1996

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC}	7 V
Input voltage, V _I	7 V
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range, T _A : SN54ALS534A	–55°C to 125°C
SN74ALS534A	0°C to 70°C
Storage temperature range, T _{sto}	65°C to 150°C

recommended operating conditions

		SN54ALS534A		SN7	74ALS53	4A	UNIT	
		MIN	NOM	MAX	MIN	NOM	MAX	UNIT
Vcc	Supply voltage	4.5	5	5.5	4.5	5	5.5	V
VIH	High-level input voltage	2			2			V
V _{IL}	Low-level input voltage			0.7			0.8	V
IOH	High-level output current			-1			-2.6	mA
lOL	Low-level output current			12			24	mA
fclock	Clock frequency	0		30	0		35	MHz
t _W	Pulse duration, CLK high or low	16.5			14			ns
t _{su}	Setup time, data before CLK↑	10			10			ns
t _h	Hold time, data after CLK↑	0			0			ns
TA	Operating free-air temperature	-55		125	0		70	°C

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

DAI	DAMETED	TECT OF	ONDITIONS	SN5	4ALS53	4A	SN7	74ALS53	4A	LINUT	
PAI	RAMETER	1531 C	ONDITIONS	MIN	TYP‡	MAX	MIN	TYP‡	MAX	UNIT	
٧ _{IK}		$V_{CC} = 4.5 \text{ V},$	$I_{I} = -18 \text{ mA}$			-1.5			-1.5	V	
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	$I_{OH} = -0.4 \text{ mA}$	V _{CC} -2	2		VCC -2	2			
Vон		V _{CC} = 4.5 V	I _{OH} = −1 mA	2.4	3.3					V	
		VCC = 4.5 V	$I_{OH} = -2.6 \text{ mA}$				2.4	3.2			
V		V 45V	I _{OL} = 12 mA		0.25	0.4		0.25	0.4	V	
V_{OL} $V_{CC} = 4.5 V$		vCC = 4.5 v	I _{OL} = 24 mA					0.35	0.5	V	
lozh		$V_{CC} = 5.5 V,$	V _O = 2.7 V			20			20	μΑ	
lozL		V _{CC} = 5.5 V,	V _O = 0.4 V			-20			-20	μΑ	
lį		V _{CC} = 5.5 V,	V _I = 7 V			0.1			0.1	mA	
lн		V _{CC} = 5.5 V,	V _I = 2.7 V			20			20	μΑ	
1	CLK, OE	V 55V	V: 0.4 V			-0.1			-0.1	A	
IIL	D	V _{CC} = 5.5 V,	V _I = 0.4 V			-0.2			-0.2	mA	
ΙΟ§		V _{CC} = 5.5 V,	V _O = 2.25 V	-20		-112	-30		-112	mA	
			Outputs high		11	19		11	19		
ICC		V _{CC} = 5.5 V	Outputs low		19	28		19	28	mA	
			Outputs disabled		10	31		20	31	1	

[‡] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[§] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

SN54ALS534A, SN74ALS534A, SN74AS534 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

SDAS168B - APRIL 1982 - REVISED JULY 1996

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	CL R1 R2	C = 4.5 V = 50 pF, = 500 Ω, = 500 Ω, = MIN to			UNIT
			SN54AL	S534A	SN74AL	S534A	
			MIN	MAX	MIN	MAX	
f _{max}			30		35		MHz
t _{PLH}	CLK	A	3	17	3	12	ns
t _{PHL}	OLK	Any Q	4	18	4	16	115
^t PZH	ŌĒ	A -	3	19	3	17	ns
tPZL	OE	Any Q	4	20	4	18	115
^t PHZ	ŌĒ	Any Q	1	12	1	10	ns
^t PLZ	OE	Ally Q	1	25	2	14	115

[†] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

Supply voltage, V _{CC}	7 V
Input voltage, V _I	7 V
Voltage applied to a disabled 3-state output	5.5 V
Operating free-air temperature range, T _A : SN74AS534	0°C to 70°C
Storage temperature rang, T _{stg}	65°C to 150°C

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

recommended operating conditions

			SI	N74AS53	34	UNIT
			MIN	NOM	MAX	UNIT
Vсс	Supply voltage		4.5	5	5.5	V
VIH	High-level input voltage		2			V
V_{IL}	Low-level input voltage				0.8	V
ІОН	High-level output current				-15	mA
lOL	Low-level output current				48	mA
fclock	Clock frequency		0		125	MHz
	Pulse duration	CLK high	4			ns
t _W	ruise duration	CLK low	3			115
t _{su}	Setup time, data before CLK↑		2			ns
t _h	Hold time, data after CLK↑					ns
TA	Operating free-air temperature		0		70	°C

SN54ALS534A, SN74ALS534A, SN74AS534 OCTAL D-TYPE EDGE-TRIGGERED FLIP-FLOPS WITH 3-STATE OUTPUTS

SDAS168B - APRIL 1982 - REVISED JULY 1996

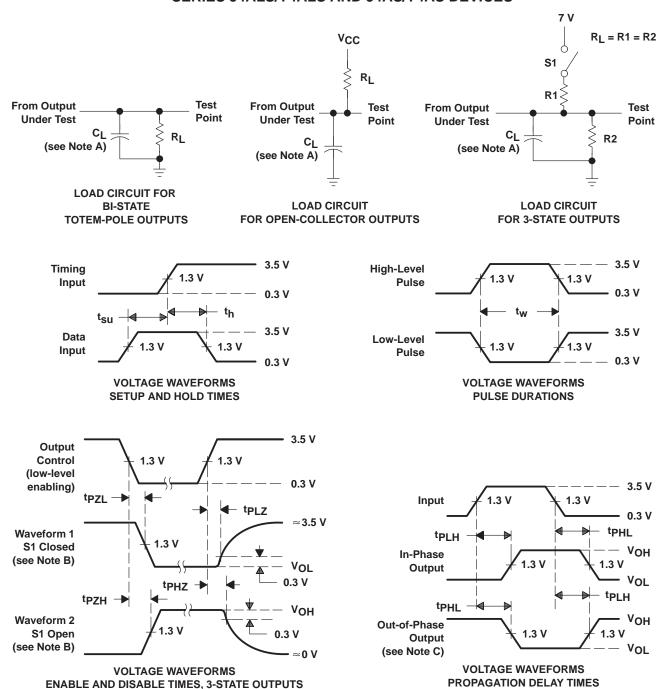
electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER		TEST CONDITIONS			SN74AS534			
					TYP [†]	MAX	UNIT	
VIK		V _{CC} = 4.5 V,	I _I = -18 mA			-1.2	V	
\/-··		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V},$	I _{OH} = −2 mA	V _{CC} -2			V	
VOH		$V_{CC} = 4.5 \text{ V},$	$I_{OH} = -15 \text{ mA}$	2.4	3.3		V	
VOL		V _{CC} = 4.5 V,	I _{OL} = 48 mA		0.34	0.5	V	
lozh		V _{CC} = 5.5 V,	V _O = 2.7 V			50	μΑ	
lozL		V _{CC} = 5.5 V,	V _I = 0.4 V			-50	μΑ	
ΙĮ		V _{CC} = 5.5 V,	V _I = 7 V			0.1	mA	
lін		V _{CC} = 5.5 V,	V _I = 2.7 V			20	μΑ	
1	OE, CLK	V 55V	V: 0.4.V			-0.5	Λ	
¹IL	D	$V_{CC} = 5.5 V$	V _I = 0.4 V			-2	mA	
lo‡		V _{CC} = 5.5 V,	V _O = 2.25 V	-30		-112	mA	
			Outputs high		77	120		
ICC		V _{CC} = 5.5 V			84	128	mA	
			Outputs disabled		84	128		

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

switching characteristics (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V _{CC} = 4.5 C _L = 50 pF R1 = 500 Ω R2 = 500 Ω T _A = MIN to SN74/	;, <u>2</u> , <u>2</u> ,	UNIT
f _{max}			125		MHz
tpLH	CLK	. =	3	8	
t _{PHL}	CLK	Any Q	4	9	ns
^t PZH		. =	2	6	
t _{PZL}	ŌĒ	Any Q	3	10	ns
^t PHZ	ŌĒ	Any Q	2	6	ns
t _{PLZ}	OE .	Ally Q	2	6	115


[§] For conditions shown as MIN or MAX, use the appropriate value specified under recommended operating conditions.

[‡] The output conditions have been chosen to produce a current that closely approximates one half of the true short-circuit output current, IOS.

SDAS168B - APRIL 1982 - REVISED JULY 1996

PARAMETER MEASUREMENT INFORMATION SERIES 54ALS/74ALS AND 54AS/74AS DEVICES

NOTES: A. C_L includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. When measuring propagation delay items of 3-state outputs, switch S1 is open.
- D. All input pulses have the following characteristics: $PRR \le 1$ MHz, $t_f = t_f = 2$ ns, duty cycle = 50%.
- E. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuits and Voltage Waveforms

PACKAGE OPTION ADDENDUM

ti.com 12-Jan-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN54ALS534J	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI
SN74ALS534ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALS534ADWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALS534ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALS534ADWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALS534AN	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74ALS534AN3	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI
SN74ALS534ANE4	ACTIVE	PDIP	N	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74ALS534ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ALS534ANSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74AS534DW	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI
SN74AS534DWR	OBSOLETE	SOIC	DW	20		TBD	Call TI	Call TI
SN74AS534N	OBSOLETE	PDIP	N	20		TBD	Call TI	Call TI
SNJ54ALS534FK	OBSOLETE	LCCC	FK	20		TBD	Call TI	Call TI
SNJ54ALS534J	OBSOLETE	CDIP	J	20		TBD	Call TI	Call TI

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

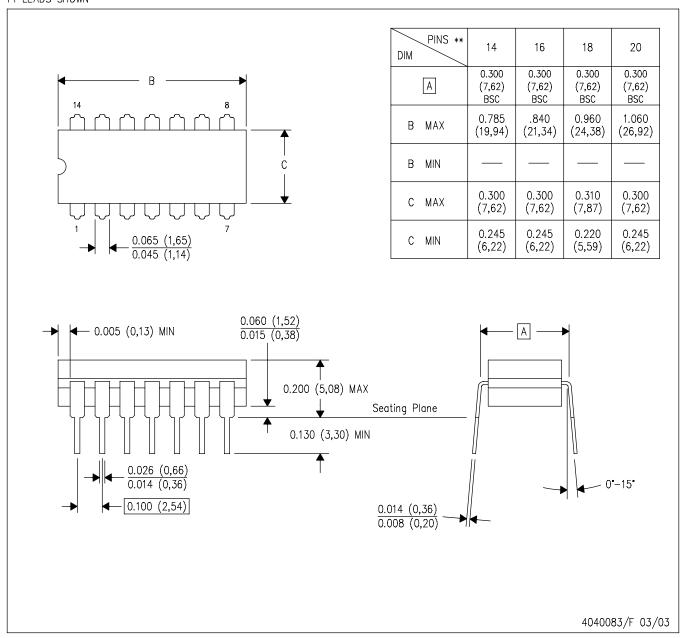
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

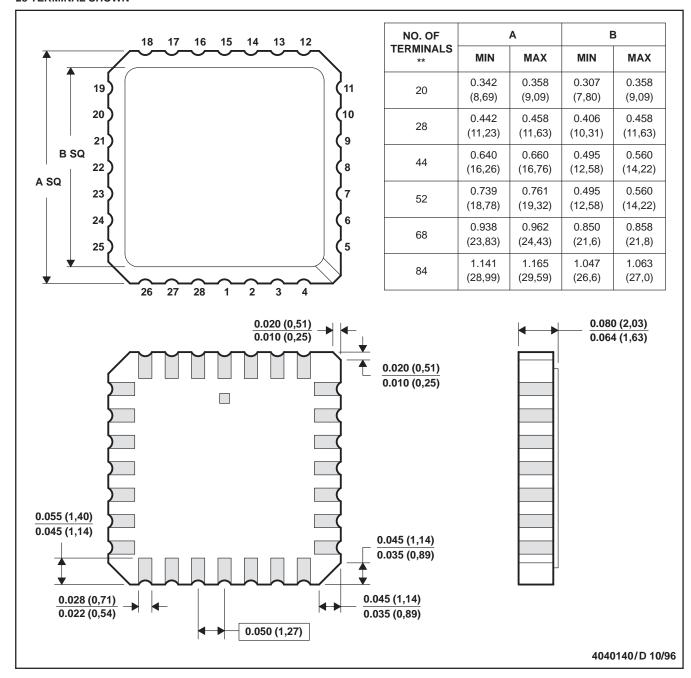


PACKAGE OPTION ADDENDUM

12-Jan-2006

In no event shall TI's liability ari	sing out of such information	on avecad the total nu	rehace price of the TI pe	art(s) at issue in this d	ocument cold by T
In no event shall TI's liability aris to Customer on an annual basis	Sing out of Such information	on exceed the total pul	chase plice of the 11 pa	art(s) at issue in this d	ocument sold by 11

14 LEADS SHOWN



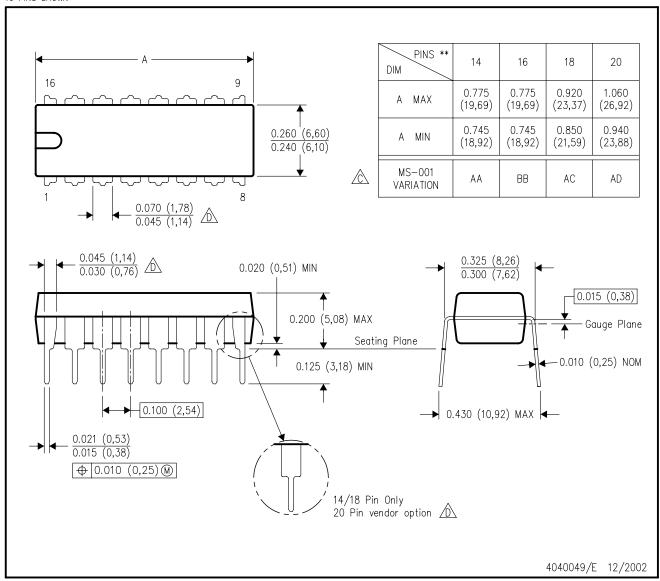
- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

28 TERMINAL SHOWN

LEADLESS CERAMIC CHIP CARRIER

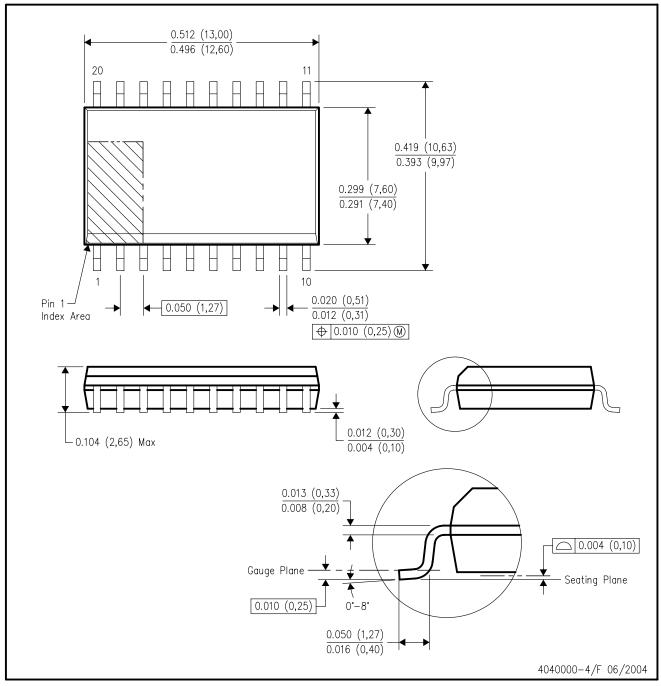
NOTES: A. All linear dimensions are in inches (millimeters).


- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN

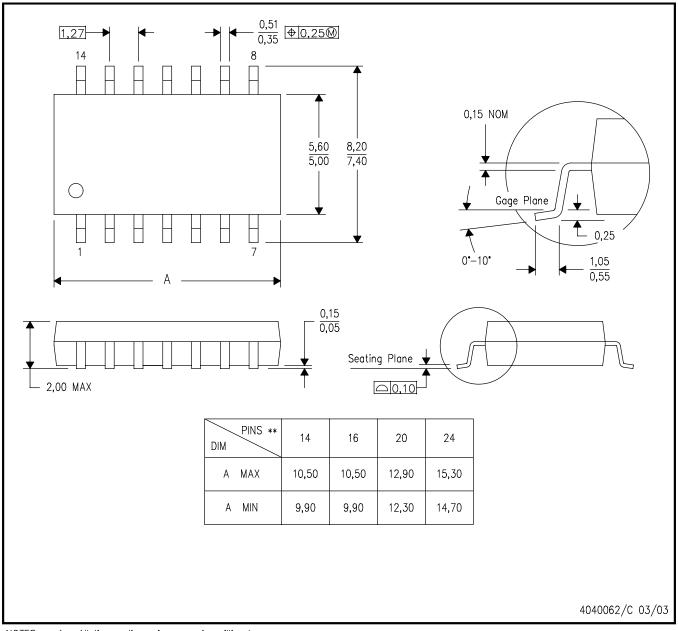


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AC.



MECHANICAL DATA

NS (R-PDSO-G**)

14-PINS SHOWN

PLASTIC SMALL-OUTLINE PACKAGE

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
		Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated