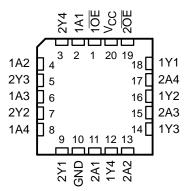
SN54ABT240, SN74ABT240A **OCTAL BUFFERS/DRIVERS** WITH 3-STATE OUTPUTS

SCBS098I - JANUARY 1991 - REVISED JUNE 2002

- Typical V_{OLP} (Output Ground Bounce) <1 V at V_{CC} = 5 V, T_A = 25°C
- High-Drive Outputs (-32-mA IOH, 64-mA IOL)
- Ioff Supports Partial-Power-Down Mode Operation
- Latch-Up Performance Exceeds 500 mA Per **JEDEC Standard JESD-17**
- ESD Protection Exceeds JESD 22 - 2000-V Human-Body Model (A114-A) 200-V Machine Model (A115-A)


description

These octal buffers and line drivers are designed specifically to improve both the performance and density of 3-state memory address drivers, clock and bus-oriented receivers drivers. and transmitters. Together with the SN54ABT241, SN74ABT241A, SN54ABT244, and SN74ABT244A, these devices provide the choice of selected combinations of inverting and noninverting outputs, symmetrical active-low output-enable (\overline{OE}) inputs, and complementary OE and OE inputs.

The SN54ABT240 and SN74ABT240A are organized as two 4-bit buffers/line drivers with separate \overline{OE} inputs. When \overline{OE} is low, the devices pass inverted data from the A inputs to the Y outputs. When \overline{OE} is high, the outputs are in the high-impedance state.

SN54ABT240 J OR W PACKAGE
SN74ABT240A DB, DW, N, NS, OR PW PACKAGE
(TOP VIEW)

SN54ABT240 . . . FK PACKAGE (TOP VIEW)

ТА	PACKAGE [†]		PACKAGE [†] ORDERABLE PART NUMBER		····	TOP-SIDE MARKING
	PDIP – N	Tube	SN74ABT240AN	SN74ABT240AN		
	SOIC - DW	Tube	SN74ABT240ADW	ABT240A		
–40°C to 85°C	30IC - DW	Tape and reel	SN74ABT240ADWR	ABT240A		
-40 C 10 85 C	SOP – NS	Tape and reel	SN74ABT240ANSR	ABT240A		
	SSOP – DB	Tape and reel	SN74ABT240ADBR	AB240A		
	TSSOP – PW	Tape and reel	SN74ABT240APWR	AB240A		
	CDIP – J	Tube	SNJ54ABT240J	SNJ54ABT240J		
–55°C to 125°C	CFP – W	Tube	SNJ54ABT240W	SNJ54ABT240W		
	LCCC – FK	Tube	SNJ54ABT240FK	SNJ54ABT240FK		

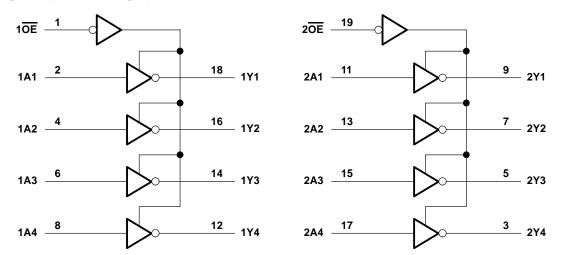
ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2002, Texas Instruments Incorporated On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters.


description (continued)

This device is fully specified for partial-power-down applications using I_{off}. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTION TABLE (each buffer)							
INPU	JTS	OUTPUT					
OE	Α	Y					
L	Н	L					
L	L	н					
Н	Х	Z					

logic diagram (positive logic)

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}
Current into any output in the low state, I _O : SN54ABT240
SN74ABT240A
Input clamp current, I _{IK} (V _I < 0) –18 mA
Output clamp current, I_{OK} ($V_O < 0$)
Package thermal impedance, θ_{JA} (see Note 2): DB package
DW package
N package
NS package
PW package
Storage temperature range, T _{stg} –65°C to 150°C

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 3)

			SN54A	BT240	SN74AB	T240A	UNIT
			MIN	MAX	MIN	MAX	UNIT
V _{CC} Supply voltage				5.5	4.5	5.5	V
VIH	VIH High-level input voltage				2		V
VIL	VIL Low-level input voltage					0.8	V
VI	Input voltage		0	VCC	0	VCC	V
ЮН	High-level output current			-24		-32	mA
IOL	Low-level output current			48		64	mA
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled		5		5	ns/V
Т _А	Operating free-air temperature		-55	125	-40	85	°C

NOTE 3: All unused inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, *Implications of Slow or Floating CMOS Inputs*, literature number SCBA004.

electrical characteristics over recommended operating free-air temperature range (unless otherwise noted)

PARAMETER VIK V _{CC} = 4.5		TEST CONDITIONS		Т	A = 25°C	;	SN54ABT240		SN74ABT240A			
		TEST CONL	ITIONS	MIN	TYP [†]	MAX	MIN	MAX	MIN	MAX	UNIT	
		V _{CC} = 4.5 V,	lı = –18 mA			-1.2		-1.2		-1.2	V	
		V _{CC} = 4.5 V,	I _{OH} = -3 mA	2.5			2.5		2.5			
Maria		V _{CC} = 5 V,	I _{OH} = -3 mA	3			3		3		V	
VOH		V _{CC} = 4.5 V	I _{OH} = -24 mA	2			2				v	
		VCC = 4.5 V	I _{OH} = -32 mA	2*					2			
VOL		V _{CC} = 4.5 V	I _{OL} = 48 mA			0.55		0.55			V	
VOL		VCC = 4.5 V	I _{OL} = 64 mA			0.55*				0.55	v	
V _{hys}				100						mV		
II V _{CC} = 5.5 V,		$V_I = V_{CC}$ or GND			±1		±1		±1	μA		
I _{OZH} V _{CC} = 5.5 V,		V _O = 2.7 V			10		10		10	μA		
I _{OZL}		V _{CC} = 5.5 V,	V _O = 0.5 V			-10		-10		-10	μA	
loff		V _{CC} = 0,	$V_I \text{ or } V_O \leq 4.5 \text{ V}$			±100				±100	μA	
ICEX		$V_{CC} = 5.5 \text{ V}, \text{ V}_{O} = 5.5 \text{ V}$	Outputs high			50		50		50	μA	
10‡		V _{CC} = 5.5 V,	V _O = 2.5 V	-50	-100	-180	-50	-180	-50	-180	mA	
		$V_{CC} = 5.5 \text{ V}, I_{O} = 0,$ $V_{I} = V_{CC} \text{ or GND}$	Outputs high		1	250		250		250	μA	
ICC			Outputs low		24	30		30		30	mA	
	-		Outputs disabled		0.5	250		250		250	μA	
	Data	V _{CC} = 5.5 V, One input at 3.4 V,	Outputs enabled			1.5		1.5		1.5		
∆ICC§	inputs	Other inputs at V _{CC} or GND	Outputs disabled			0.05		0.05		0.05	mA	
Control inputs		V_{CC} = 5.5 V, One input at 3.4 V, Other inputs at V _{CC} or GND				1.5		1.5		1.5		
Ci		VI = 2.5 V or 0.5 V			4						pF	
Co		V _O = 2.5 V or 0.5 V			7.5						pF	

* On products compliant to MIL-PRF-38535, this parameter does not apply.

[†] All typical values are at $V_{CC} = 5 V$.

[‡] Not more than one output should be tested at a time, and the duration of the test should not exceed one second.

§ This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

		SN54ABT240						
PARAMETER	FROM (INPUT)	TO (OUTPUT)	V(T/	CC = 5 V A = 25°C	l, ;;	MIN	МАХ	UNIT
			MIN	TYP	MAX			
^t PLH	А	v	1	2.9	4.3	0.8	5.5	ns
^t PHL	T.	I	1.6	3.1	4.5	1	5.5	115
^t PZH	OE	v	1.1	3.1	5.8	0.8	7.5	ns
^t PZL	ÛE	I	1.1	2.7	6.2	0.8	7.7	115
^t PHZ		×	1.8	4.6	5.9	1.7	7	ns
^t PLZ	Y OE Y		1.6	4	5.9	1.3	7.2	115

switching characteristics over recommended ranges of supply voltage and operating free-air temperature, $C_L = 50 \text{ pF}$ (unless otherwise noted) (see Figure 1)

PARAMETER	FROM (INPUT)	TO (OUTPUT)	V(Т/	CC = 5 V A = 25°C	/, ;	MIN	МАХ	UNIT
			MIN	TYP	MAX			
^t PLH	А	v	1	2.9	4.1	1	4.8	ns
^t PHL	~	I	1.6	3.1	4.6	1.6	4.8	115
^t PZH	OE	V	1.1	3.1	4.7	1.1	5.2	ns
^t PZL	ÛE	Ι	1.1	2.7	5.8	1.1	6.2	115
^t PHZ	ŌĒ	V	1.8	4.6	5.7	1.8	6.4	ns
^t PLZ	UL	I	1.6	4	5.4	1.6	5.8	115

07V TEST **S**1 O Open **500** Ω **S**1 From Output tPLH/tPHL Open \sim Under Test \cap GND tPLZ/tPZL 7 V C_L = 50 pF tPHZ/tPZH Open **500** Ω (see Note A) 3 V LOAD CIRCUIT **Timing Input** 1.5 V 0 V tw t_{su} th 3 V 3 V 1.5 V Input 1.5 V **Data Input** 1.5 V 1.5 V 0 V 0 V **VOLTAGE WAVEFORMS VOLTAGE WAVEFORMS** PULSE DURATION SETUP AND HOLD TIMES 3 V 3 V Output 1.5 V 1.5 V 1.5 V 1.5 V Input Control 0 V 0 V ^tPZL ┢ ^tPLH ^tPHL ^tPLZ Output ۷он 3.5 V Waveform 1 1.5 V 1.5 V 1.5 V Output V_{OL} + 0.3 V S1 at 7 V VOL VOL (see Note B) tPHZ --^tPLH ^tPZH Output ۷он ۷он V_{OH} – 0.3 V Waveform 2 1.5 V 1.5 V 1.5 V Output S1 at Open ~ ≈0 V Vol (see Note B) **VOLTAGE WAVEFORMS** VOLTAGE WAVEFORMS **PROPAGATION DELAY TIMES** ENABLE AND DISABLE TIMES INVERTING AND NONINVERTING OUTPUTS LOW- AND HIGH-LEVEL ENABLING

PARAMETER MEASUREMENT INFORMATION

NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

18-Jul-2006

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
5962-9318801M2A	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
5962-9318801MRA	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9318801MSA	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type
SN74ABT240ADBLE	OBSOLETE	SSOP	DB	20		TBD	Call TI	Call TI
SN74ABT240ADBR	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240ADBRG4	ACTIVE	SSOP	DB	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240ADW	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240ADWE4	ACTIVE	SOIC	DW	20	25	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240ADWR	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240ADWRE4	ACTIVE	SOIC	DW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240AN	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74ABT240ANE4	ACTIVE	PDIP	Ν	20	20	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type
SN74ABT240ANSR	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240ANSRE4	ACTIVE	SO	NS	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240APW	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240APWE4	ACTIVE	TSSOP	PW	20	70	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240APWLE	OBSOLETE	TSSOP	PW	20		TBD	Call TI	Call TI
SN74ABT240APWR	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SN74ABT240APWRE4	ACTIVE	TSSOP	PW	20	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM
SNJ54ABT240FK	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type
SNJ54ABT240J	ACTIVE	CDIP	J	20	1	TBD	A42 SNPB	N / A for Pkg Type
SNJ54ABT240W	ACTIVE	CFP	W	20	1	TBD	A42	N / A for Pkg Type

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered

at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

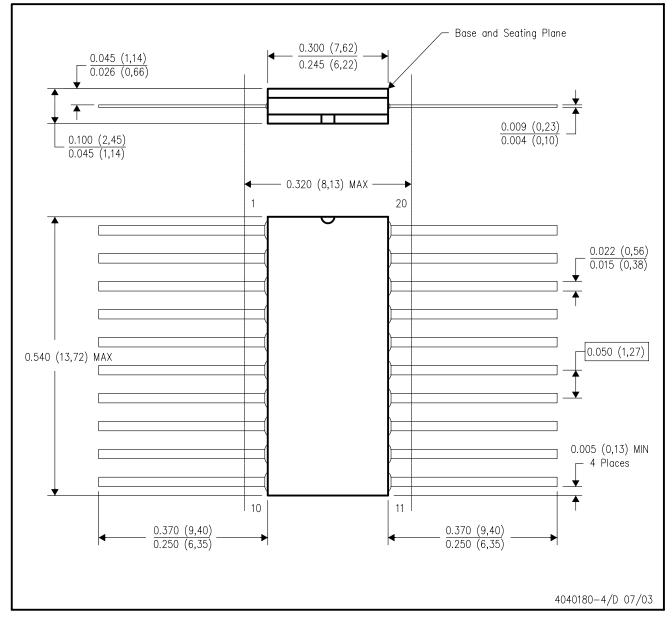
⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

J (R-GDIP-T**) 14 LEADS SHOWN

CERAMIC DUAL IN-LINE PACKAGE



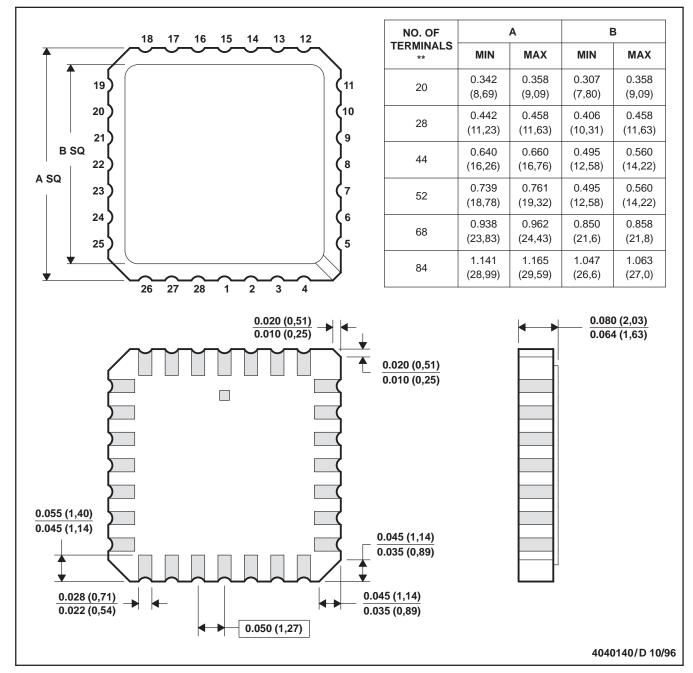
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

W (R-GDFP-F20)

CERAMIC DUAL FLATPACK

- NOTES: A. All linear dimensions are in inches (millimeters).
 - B. This drawing is subject to change without notice.
 - C. This package can be hermetically sealed with a ceramic lid using glass frit.
 - D. Index point is provided on cap for terminal identification only.
 - E. Falls within Mil-Std 1835 GDFP2-F20



MLCC006B - OCTOBER 1996

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

28 TERMINAL SHOWN

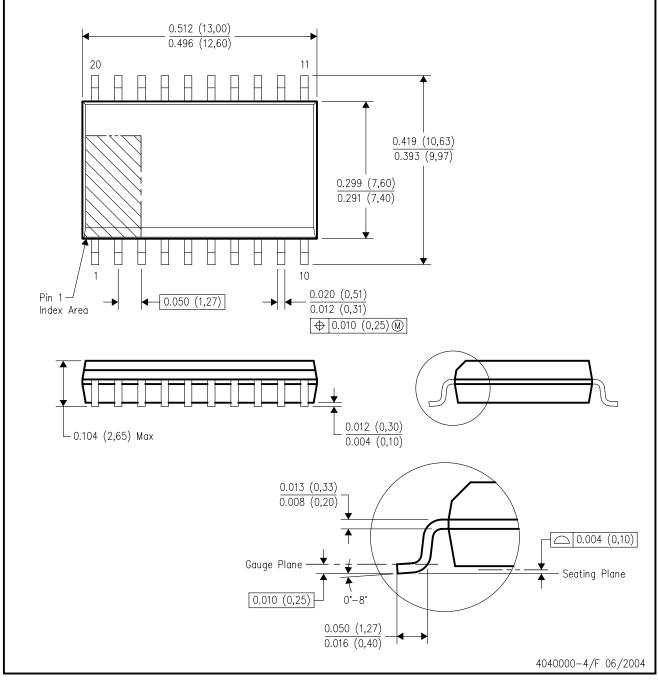
NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. The terminals are gold plated.
- E. Falls within JEDEC MS-004

N (R-PDIP-T**)

PLASTIC DUAL-IN-LINE PACKAGE

16 PINS SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).B. This drawing is subject to change without notice.
- Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).
- \triangle The 20 pin end lead shoulder width is a vendor option, either half or full width.

DW (R-PDSO-G20)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).

B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).

D. Falls within JEDEC MS-013 variation AC.

MECHANICAL DATA

PLASTIC SMALL-OUTLINE PACKAGE

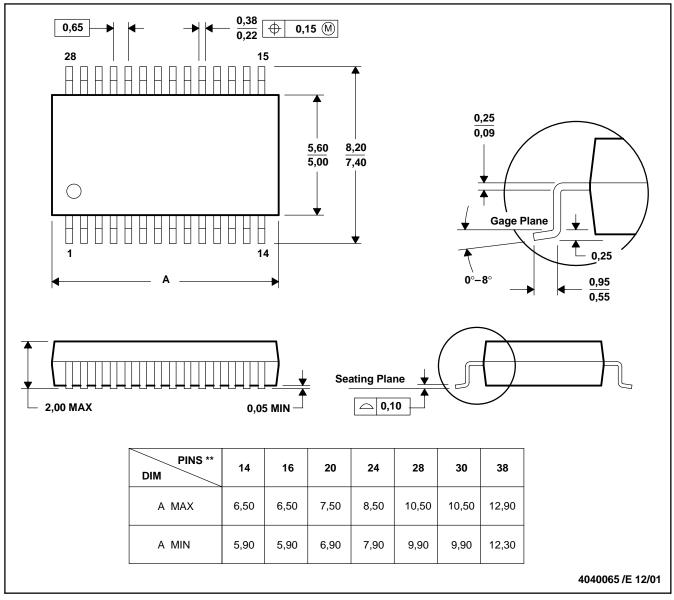
0,51 0,35 ⊕0,25⊛ 1,27 8 14 0,15 NOM 5,60 8,20 5,00 7,40 \bigcirc Gage Plane ₽ 0,25 7 1 1,05 0,55 0°-10° Δ 0,15 0,05 Seating Plane — 2,00 MAX 0,10PINS ** 14 16 20 24 DIM 10,50 10,50 12,90 15,30 A MAX A MIN 9,90 9,90 12,30 14,70 4040062/C 03/03

NOTES: A. All linear dimensions are in millimeters.

NS (R-PDSO-G**)

14-PINS SHOWN

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.


MECHANICAL DATA

MSSO002E - JANUARY 1995 - REVISED DECEMBER 2001

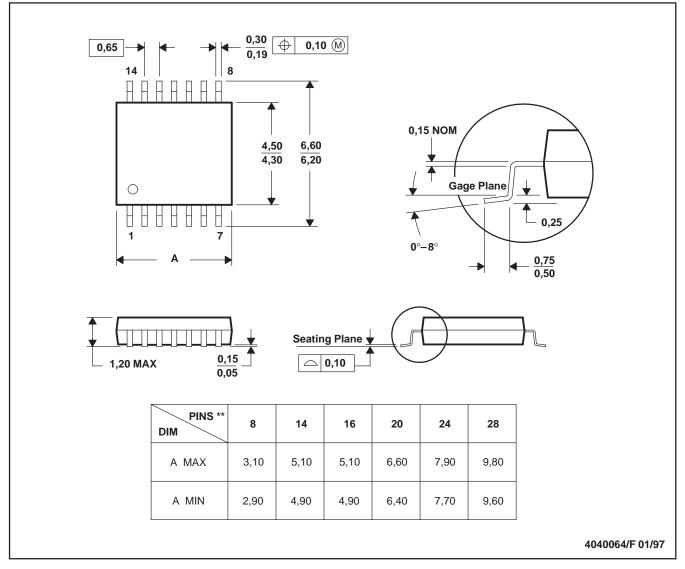
DB (R-PDSO-G**)

PLASTIC SMALL-OUTLINE

28 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-150


MECHANICAL DATA

MTSS001C - JANUARY 1995 - REVISED FEBRUARY 1999

PW (R-PDSO-G**)

PLASTIC SMALL-OUTLINE PACKAGE

14 PINS SHOWN

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
- D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DSP	dsp.ti.com	Broadband	www.ti.com/broadband
Interface	interface.ti.com	Digital Control	www.ti.com/digitalcontrol
Logic	logic.ti.com	Military	www.ti.com/military
Power Mgmt	power.ti.com	Optical Networking	www.ti.com/opticalnetwork
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
Low Power Wireless	www.ti.com/lpw	Telephony	www.ti.com/telephony
		Video & Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless

Mailing Address:

Texas Instruments

Post Office Box 655303 Dallas, Texas 75265

Copyright © 2006, Texas Instruments Incorporated