Data sheet acquired from Harris Semiconductor SCHS163F

September 1997 - Revised October 2003

High-Speed CMOS Logic
Presettable Synchronous 4-Bit Up/Down Counters

Features

- Synchronous Counting and Asynchronous Loading
- Two Outputs for N-Bit Cascading
- Look-Ahead Carry for High-Speed Counting
- Fanout (Over Temperature Range)
- Standard Outputs \qquad 10 LSTTL Loads
- Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
- 2V to 6V Operation
- High Noise Immunity: $\mathrm{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- HCT Types
- 4.5V to 5.5V Operation
- Direct LSTTL Input Logic Compatibility, $\mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}$ (Max), $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}$ (Min)
- CMOS Input Compatibility, $\mathrm{I}_{\mathrm{I}} \leq 1 \mu \mathrm{~A}$ at $\mathrm{V}_{\mathrm{OL}}, \mathrm{V}_{\mathrm{OH}}$

Description

The 'HC192, 'HC193 and 'HCT193 are asynchronously presettable BCD Decade and Binary Up/Down synchronous counters, respectively.

Pinout

CD54HC192, CD54HC193, CD54HCT193 (CERDIP) CD74HC192 (PDIP, SOP, TSSOP) CD74HC193 (PDIP, SOIC) CD74HCT193 (PDIP) TOP VIEW

Presetting the counter to the number on the preset data inputs (PO-P3) is accomplished by a LOW asynchronous parallel load input ($\overline{\mathrm{PL}})$. The counter is incremented on the low-to-high transition of the Clock-Up input (and a high level on the ClockDown input) and decremented on the low to high transition of the Clock-Down input (and a high level on the Clock-up input). A high level on the MR input overrides any other input to clear the counter to its zero state. The Terminal Count up (carry) goes low half a clock period before the zero count is reached and returns to a high level at the zero count. The Terminal Count Down (borrow) in the count down mode likewise goes low half a clock period before the maximum count (9 in the 192 and 15 in the 193) and returns to high at the maximum count. Cascading is effected by connecting the carry and borrow outputs of a less significant counter to the Clock-Up and Clock-Down inputs, respectively, of the next most significant counter.

If a decade counter is preset to an illegal state or assumes an illegal state when power is applied, it will return to the normal sequence in one count as shown in state diagram.

Ordering Information

PART NUMBER	TEMP. RANGE $\left({ }^{\circ} \mathrm{C}\right)$	PACKAGE
CD54HC192F3A	-55 to 125	16 Ld CERDIP
CD54HC193F3A	-55 to 125	16 Ld CERDIP
CD54HCT193F3A	-55 to 125	16 Ld CERDIP
CD74HC192E	-55 to 125	16 Ld PDIP
CD74HC192NSR	-55 to 125	16 Ld SOP
CD74HC192PW	-55 to 125	16 Ld TSSOP
CD74HC192PWR	-55 to 125	16 Ld TSSOP
CD74HC192PWT	-55 to 125	16 Ld TSSOP
CD74HC193E	-55 to 125	16 Ld PDIP
CD74HC193M	-55 to 125	16 Ld SOIC
CD74HC193MT	-55 to 125	16 Ld SOIC
CD74HC193M96	-55 to 125	16 Ld SOIC
CD74HCT193E	-55 to 125	16 Ld PDIP

NOTE: When ordering, use the entire part number. The suffixes 96 and R denote tape and reel. The suffix T denotes a small-quantity reel of 250 .

Functional Diagram

TRUTH TABLE

CLOCK UP	CLOCK DOWN	RESET	PARALLEL LOAD	FUNCTION
\uparrow	H	L	H	Count Up
H	\uparrow	L	H	Count Down
X	X	H	X	Reset
X	X	L	L	Load Preset Inputs

$H=$ High Voltage Level, L = Low Voltage Level, $X=$ Don't Care, $\uparrow=$ Transition from Low to High Level

Absolute Maximum Ratings	
DC Supply Voltage, V_{CC}	-0.5V to 7V
DC Input Diode Current, $\mathrm{I}_{1 / \mathrm{K}}$	
For $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Diode Current, IOK	
For $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 20 \mathrm{~mA}$
DC Output Source or Sink Current per Output Pin, Io	
For $\mathrm{V}_{\mathrm{O}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\pm 25 \mathrm{~mA}$
DC V_{CC} or Ground Current, $\mathrm{I}_{\text {CC or }} \mathrm{I}_{\mathrm{GND}}$	$\pm 50 \mathrm{~mA}$

Operating Conditions

Temperature Range (T_{A}) . $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ Supply Voltage Range, V_{CC}
HC Types . 2 V to 6 V

HCT Types . 4.5 V to 5.5 V
DC Input or Output Voltage, $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \ldots \ldots \mathrm{OV}$ to V_{CC}
Input Rise and Fall Time
2V . 5 5000ns (Max)
4.5V. 400 ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTE:

1. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS			$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		${ }^{-55}{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)	$\mathrm{V}_{\mathrm{Cc}}(\mathrm{V})$	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES												
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	V_{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage CMOS Loads	V_{OH}	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output Voltage CMOS Loads	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	V_{CC} or GND	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	${ }^{\text {ICC }}$	$\mathrm{V}_{\text {CC }}$ or GND	0	6	-	-	8	-	80	-	160	$\mu \mathrm{A}$

DC Electrical Specifications		(Continued)										
PARAMETER	SYMBOL	TEST CONDITIONS			$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)	$\mathrm{V}_{\mathrm{cc}}(\mathrm{V})$	MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HCT TYPES												
High Level Input Voltage	V_{IH}	-	-	$\begin{gathered} 4.5 \text { to } \\ 5.5 \end{gathered}$	2	-	-	2	-	2	-	V
Low Level Input Voltage	$\mathrm{V}_{\text {IL }}$	-	-	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	-	-	0.8	-	0.8	-	0.8	V
High Level Output Voltage CMOS Loads	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
High Level Output Voltage TTL Loads			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
Low Level Output Voltage CMOS Loads	$\mathrm{V}_{\text {OL }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IL}} \end{aligned}$	0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			4	4.5	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { to } \\ & \mathrm{GND} \end{aligned}$	-	5.5	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	I_{CC}	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \text { or } \\ \mathrm{GND} \end{gathered}$	-	5.5	-	-	8	-	80	-	160	$\mu \mathrm{A}$
Additional Quiescent Device Current Per Input Pin: 1 Unit Load	$\begin{gathered} \Delta \mathrm{l} \mathrm{CC} \\ (\text { Note 2) } \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -2 . \end{aligned}$	-	$\begin{gathered} \hline 4.5 \text { to } \\ 5.5 \end{gathered}$	-	100	360	-	450	-	490	$\mu \mathrm{A}$

NOTE:
2. For dual-supply systems theoretical worst case $\left(\mathrm{V}_{\mathrm{I}}=2.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\right)$ specification is 1.8 mA .

HCT Input Loading Table

INPUT	UNIT LOADS
P0-P3	0.4
MR	1.45
$\overline{\mathrm{PL}}$	0.85
$\mathrm{CPU}, \mathrm{CPD}$	1.45

NOTE: Unit Load is $\Delta \mathrm{I}_{\mathrm{CC}}$ limit specified in DC Electrical
Specifications table, e.g. $360 \mu \mathrm{~A}$ max at $25^{\circ} \mathrm{C}$.

Prerequisite For Switching Specifications

PARAMETER	SYMBOL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{~V}) \end{aligned}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-5^{\circ}{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES										
Pulse Width CPU, CPD	tw	2	115	-	-	145	-	175	-	ns
		4.5	23	-	-	29	-	35	-	ns
		6	20	-	-	25	-	30	-	ns
CPU, CPD	tw	2	100	-	-	125	-	150	-	ns
		4.5	20	-	-	25	-	30	-	ns
		6	17	-	-	21	-	26	-	ns
$\overline{\text { PL }}$	tw	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
MR	tw	2	100	-	-	125	-	150	-	ns
		4.5	20	-	-	25	-	30	-	ns
		6	17	-	-	21	-	26	-	ns
Set-up Time Pn to $\overline{\mathrm{PL}}$	tsu	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
$\begin{aligned} & \text { Hold Time } \\ & \quad \text { Pn to } \overline{\text { PL }} \end{aligned}$	${ }_{\text {th }}$	2	0	-	-	0	-	0	-	ns
		4.5	0	-	-	0	-	0	-	ns
		6	0	-	-	0	-	0	-	ns
Hold Time CPD to CPU or CPU to CPD	${ }_{\text {th }}$	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
Recovery Time $\overline{\mathrm{PL}}$ to CPU, CPD	$t_{\text {REC }}$	2	80	-	-	100	-	120	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	14	-	-	17	-	20	-	ns
MR to CPU, CPD	trec	2	5	-	-	5	-	5	-	ns
		4.5	5	-	-	5	-	5	-	ns
		6	5	-	-	5	-	5	-	ns
Maximum Frequency CPU, CPD	${ }_{\text {f MAX }}$	2	5	-	-	4	-	3	-	MHz
		4.5	22	-	-	18	-	15	-	MHz
		6	24	-	-	21	-	18	-	MHz
CPU, CPD	$\mathrm{f}_{\text {MAX }}$	2	5	-	-	4	-	3	-	MHz
		4.5	25	-	-	20	-	17	-	MHz
		6	29	-	-	24	-	20	-	MHz
HCT TYPES										
Pulse Width CPU, CPD	tw	2	-	-	-	-	-	-	-	ns
		4.5	23	-	-	29	-	35	-	ns
		6	-	-	-	-	-	-	-	ns
CPU, CPD	tw	2	-	-	-	-	-	-	-	ns
		4.5	23	-	-	29	-	35	-	ns
		6	-	-	-	-	-	-	-	ns

CD54/74HC192, CD54/74HC193, CD54/74HCT193

Prerequisite For Switching Specifications (Continued)

PARAMETER	SYMBOL	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { (V) } \end{aligned}$	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-5^{\circ}{ }^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
			MIN	TYP	MAX	MIN	MAX	MIN	MAX	
$\overline{\mathrm{PL}}$	tw	2	-	-	-	-	-	-	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	-	-	-	-	-	-	-	ns
MR	tw	2	-	-	-	-	-	-	-	ns
		4.5	20	-	-	25	-	30	-	ns
		6	-	-	-	-	-	-	-	ns
Set-up Time Pn to $\overline{\mathrm{PL}}$	tsu	2	-	-	-	-	-	-	-	ns
		4.5	15	-	-	19	-	22	-	ns
		6	-	-	-	-	-	-	-	ns
Hold Time Pn to $\overline{\mathrm{PL}}$	${ }_{\text {th }}$	2	-	-	-	-	-	-	-	ns
		4.5	0	-	-	0	-	0	-	ns
		6	-	-	-	-	-	-	-	ns
Hold Time CPD to CPU or CPU to CPD	${ }_{\text {t }}$	2	-	-	-	-	-	-	-	ns
		4.5	16	-	-	20	-	24	-	ns
		6	-	-	-	-	-	-	-	ns
Recovery Time PL to CPU, CPD	$t_{\text {REC }}$	2	-	-	-	-	-	-	-	ns
		4.5	15	-	-	19	-	22	-	ns
		6	-	-	-	-	-	-	-	ns
MR to CPU, CPD	$t_{\text {REC }}$	2	-	-	-	-	-	-	-	ns
		4.5	5	-	-	5	-	5	-	ns
		6	-	-	-	-	-	-	-	ns
Maximum Frequency CPU, CPD	$\mathrm{f}_{\text {MAX }}$	2	-	-	-	-	-	-	-	MHz
		4.5	22	-	-	18	-	15	-	MHz
		6	-	-	-	-	-	-	-	MHz
CPU, CPD	${ }_{\text {f MAX }}$	2	-	-	-	-	-	-	-	MHz
		4.5	22	-	-	18	-	15	-	MHz
		6	-	-	-	-	-	-	-	MHz

Switching Specifications Input $t_{r}, t_{f}=6 n s$

PARAMETER	SYMBOL	TEST CONDITIONS	v_{CC}(V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
HC TYPES											
Propagation Delay CPU to $\overline{T C U}$	${ }^{\text {tPLH, }}$, tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	125	-	155	-	190	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	25	-	31	-	38	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	10	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-		21	-	26	-	32	ns
CPD to TCD	$\mathrm{t}_{\text {PLH }}$, tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	125	-	155	-	190	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	25	-	31	-	38	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	10	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	21	-	26	-	32	ns
CPU to Q_{n}	$t_{\text {tPLH, }}$ tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	220	-	270	-	325	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	43	-	54	-	65	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	18	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	37	-	46	-	55	ns

CD54/74HC192, CD54/74HC193, CD54/74HCT193
Switching Specifications Input $t_{r}, t_{f}=6 n s$ (Continued)

PARAMETER	SYMBOL	TEST CONDITIONS	V_{Cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-5^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
CPD to Q_{n}	$t_{\text {tPLH, }}$ tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	220	-	270	-	325	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	43	-	54	-	65	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	18	-	-	-	-		ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	37	-	46	-	55	ns
$\overline{\text { PL }}$ to Q_{n}	tPLH tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	220	-	275	-	330	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	44	-	55	-	66	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	18	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	37	-	47	-	56	ns
MR to Qn_{n}	tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	200	-	250	-	300	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	40	-	50	-	60	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	17	-	-	-	-	-	ns
		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	6	-	-	34	-	43	-	51	ns
Transition Time Q, TCU, TCD	${ }_{\text {t }}$ LH, $\mathrm{t}_{\text {THL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	CPD	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	40	-	-	-	-	-	pF

HCT TYPES											
Propagation Delay	tPLH, tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	27	-	34	-	41	ns
CPU to TCU		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	11	-	-	-	-	-	ns
CPU to TCD	tPLH, tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	27	-	34	-	41	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	11	-		-		-	ns
CPU to Q_{n}	$\mathrm{t}_{\text {PLH }}$, tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	40	-	50	-	60	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	17	-	-	-	-	-	ns
CPD to Q_{n}	tPLH , tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	40	-	50	-	60	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	17	-	-	-	-	-	ns
$\overline{\text { PL }}$ to Q_{n}	$t_{\text {PLH }}$, tPHL	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	46	-	58		69	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	21	-		-		-	ns
MR to Q_{n}	${ }_{\text {tPHL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	43	-	54	-	65	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	18	-	-	-	-	-	ns
Transition Time Q, TCU, TCD	${ }_{\text {t }}$ LH, ${ }_{\text {t }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	4.5	-	-	15	-	19	-	22	ns
Input Capacitance	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 3, 4)	$\mathrm{CPD}^{\text {P }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	50	-	-	-	-	-	pF

NOTES:
3. $C_{P D}$ is used to determine the dynamic power consumption, per gate.
4. $P_{D}=V_{C C}{ }^{2} f_{i}+\sum\left(C_{L} V_{C C}{ }^{2}\right)$ where $f_{i}=$ Input Frequency, $C_{L}=$ Output Load Capacitance, $V_{C C}=$ Supply Voltage.

Test Circuits and Waveforms

SEQUENCES:

1. RESET OUTPUTS TO ZERO.
2. LOAD (PRESET) TO BCD SEVEN.
3. COUNT UP TO EIGHT, NINE, TERMINAL COUNT UP, ZERO, ONE AND TWO.
4. COUNT DOWN TO ONE, ZERO, TERMINAL COUNT DOWN, NINE, EIGHT AND SEVEN.

FIGURE 1. 'HC192 SYNCHRONOUS DECADE COUNTERS, TYPICAL RESET, PRESET AND COUNT SEQUENCES

Test Circuits and Waveforms (Continued)

SEQUENCES:

1. RESET OUTPUTS TO ZERO.
2. COUNT UP TO FOURTEEN, FIFTEEN, TERMINAL COUNT UP, ZERO, ONE AND TWO.
3. COUNT DOWN TO ONE, ZERO, TERMINAL COUNT DOWN, FIFTEEN, FOURTEEN AND THIRTEEN.
4. LOAD (PRESET) TO BINARY THIRTEEN. CLOCK UP
RESET PRESET \qquad COUNT UP

1
\leftarrow COUNT DOWN \longrightarrow

NOTES:

1. Master reset overrides load data and clock inputs.
2. When counting up, clock-down input must be high.

When counting down, clock-up input must be high.
FIGURE 2. 'HC193 SYNCHRONOUS BINARY COUNTERS, TYPICAL RESET, PRESET AND COUNT SEQUENCES

FIGURE 3. CLOCK TO OUTPUT DELAYS AND CLOCK PULSE WIDTH

FIGURE 5. PARALLEL LOAD PULSE WIDTH, PARALLEL LOAD TO OUTPUT DELAYS, AND PARALLEL LOAD TO CLOCK RECOVERY TIME

FIGURE 4. CLOCK TO TERMINAL COUNT DELAYS

FIGURE 6. MASTER RESET PULSE WIDTH, MASTER RESET TO OUTPUT DELAY AND MASTER RESET TO CLOCK RECOVERY TIME

Test Circuits and Waveforms (Continued)

FIGURE 7. SET-UP AND HOLD TIMES DATA TO PARALLEL LOAD (PL)

FIGURE 8. CASCADED UP/DOWN COUNTER WITH PARALLEL LOAD

COUNT UP

NOTE: Illegal states in BCD counters corrected in one or two counts.

FIGURE 9. 'HC192, 'HCT193 STATE DIAGRAMS

PACKAGING INFORMATION

Orderable Device	Status ${ }^{(1)}$	Package Type	Package Drawing	Pins	Package Qty	$\text { Eco Plan }{ }^{(2)}$	Lead/Ball Finish	MSL Peak Temp ${ }^{(3)}$
5962-8780801EA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N / A for Pkg Type
5962-9084801MEA	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N/ A for Pkg Type
9084801MEAS2035	OBSOLETE	CDIP	J	16		TBD	Call TI	Call TI
CD54HC192F3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N/ A for Pkg Type
CD54HC193F3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N/ A for Pkg Type
CD54HCT193F3A	ACTIVE	CDIP	J	16	1	TBD	A42 SNPB	N/ A for Pkg Type
CD74HC192E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD74HC192EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD74HC192NSR	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192NSRE4	ACTIVE	SO	NS	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192NSRG4	ACTIVE	So	NS	16	2000	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PW	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWE4	ACTIVE	TSSOP	PW	16	90	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWG4	ACTIVE	TSSOP	PW	16	90	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWR	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWRE4	ACTIVE	TSSOP	PW	16	2000	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWRG4	ACTIVE	TSSOP	PW	16	2000	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWT	ACTIVE	TSSOP	PW	16	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br}) \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWTE4	ACTIVE	TSSOP	PW	16	250	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC192PWTG4	ACTIVE	TSSOP	PW	16	250	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC193E	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/ A for Pkg Type
CD74HC193EE4	ACTIVE	PDIP	N	16	25	Pb-Free (RoHS)	CU NIPDAU	N/A for Pkg Type
CD74HC193M	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC193M96	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC193M96E4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC193M96G4	ACTIVE	SOIC	D	16	2500	$\begin{gathered} \hline \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \\ \hline \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM
CD74HC193ME4	ACTIVE	SOIC	D	16	40	$\begin{gathered} \text { Green (RoHS \& } \\ \text { no } \mathrm{Sb} / \mathrm{Br} \text {) } \end{gathered}$	CU NIPDAU	Level-1-260C-UNLIM

| Orderable Device | Status ${ }^{(1)}$ | Package
 Type | Package
 Drawing | Pins Package
 Qty | Eco Plan ${ }^{(2)}$ | Lead/Ball Finish | MSL Peak Temp ${ }^{(3)}$ | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| CD74HC193MG4 | ACTIVE | SOIC | D | 16 | 40 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC193MT | ACTIVE | SOIC | D | 16 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC193MTE4 | ACTIVE | SOIC | D | 16 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HC193MTG4 | ACTIVE | SOIC | D | 16 | 250 |
 no Sb/Br) | CU NIPDAU | Level-1-260C-UNLIM |
| CD74HCT193E | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |
| CD74HCT193EE4 | ACTIVE | PDIP | N | 16 | 25 | Pb-Free
 (RoHS) | CU NIPDAU | N/A for Pkg Type |

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb -Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb -Free products are suitable for use in specified lead-free processes.
Pb -Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no $\mathbf{S b} / \mathbf{B r}$): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

DIM PINS **	14	16	18	20
A	0.300 $(7,62)$ BSC			
B MAX	0.785 $(19,94)$.840 $(21,34)$	0.960 $(24,38)$	1.060 $(26,92)$
B MIN	-	-	-	-
C MAX	0.300 $(7,62)$	0.300 $(7,62)$	0.310 $(7,87)$	0.300 $(7,62)$
C MIN	0.245 $(6,22)$	0.245 $(6,22)$	0.220 $(5,59)$	0.245 $(6,22)$

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package is hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

N (R-PDIP-T**)
PLASTIC DUAL-IN-LINE PACKAGE
16 PINS SHOWN

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C) Falls within JEDEC MS-001, except 18 and 20 pin minimum body length (Dim A).

D The 20 pin end lead shoulder width is a vendor option, either half or full width.

D (R-PDSO-G16)

PLASTIC SMALL-OUTLINE PACKAGE

NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.

C Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed $.006(0,15)$ per end.
D Body width does not include interlead flash. Interlead flash shall not exceed $.017(0,43)$ per side.
E. Reference JEDEC MS-012 variation AC.

NS (R-PDSO-G**)
14-PINS SHOWN

DIM PINS **	14	16	20	24
A MAX	10,50	10,50	12,90	15,30
A MIN	9,90	9,90	12,30	14,70

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PIMS $^{* *}$	$\mathbf{8}$	$\mathbf{1 4}$	$\mathbf{1 6}$	$\mathbf{2 0}$	$\mathbf{2 4}$	$\mathbf{2 8}$
A MAX	3,10	5,10	5,10	6,60	7,90	9,80
A MIN	2,90	4,90	4,90	6,40	7,70	9,60

NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15 .
D. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to Tl's terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with Tl's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from Tl under the patents or other intellectual property of TI .
Reproduction of Tl information in Tl data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated Tl product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify Tl and its representatives against any damages arising out of the use of Tl products in such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific Tl products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products	
Amplifiers	
Data Converters	amplifier.ti.com
DSP	dataconverter.ti.com
Clocks and Timers	dsp.ti.com
Interface	www.ti.com/cocks
Logic	nterace.ti.com
Power Mgmt	ogic.ti.com
Microcontrollers	Dowe.ti.com
RFID	nicrocontroler.ti.com
RF/IF and ZigBee® Solutions	NWw.ti-rfid.com

Applications	
Audio	www.ti.com/audio
Automotive	www.ticom/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medica
Military	www.ti.com/military
Optical Networking	www.ticom/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video \& Imaging	www.ticom/vided
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2008, Texas Instruments Incorporated

