8-Channel, Dual 4-Channel, Triple 2-Channel Multiplexers

DESCRIPTION

The DG9251, DG9252, and DG9253 are high precision single and dual supply CMOS analog multiplexers. DG9251 is an 8-channel multiplexer, the DG9252 is a dual 4-channel multiplexer, and the DG9253 is a triple 2-channel multiplexer or triple SPDT.
Designed to operate from $\mathrm{a}+2.7 \mathrm{~V}$ to +16 V single supply or from a $\pm 2.7 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual supplies, the DG9251, DG9252, and DG9253 are fully specified at + 16 V , +5 V and $\pm 5 \mathrm{~V}$. All control logic inputs have guaranteed 1.4 V high limit when operating from +5 V or $\pm 5 \mathrm{~V}$ supplies and 1.65 V when operating from $\mathrm{a}+16 \mathrm{~V}$ supply.
The DG9251, DG9252, and DG9253 are precision multiplexers of low leakage, low charge injection, and lowparasitic capacitance. They conduct equally well in bothdirections, offer rail to rail analog signal handling and can beused both as multiplexers as well as de-multiplexers.The DG9251, DG9252, and DG9253 operating temperature is specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and are available in ultra compact $1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$ miniQFN16 packages.

FEATURES

- Halogen-free According to IEC 61249-2-21 Definition
- +2.7 V to +16 V single supply operation $\pm 2.7 \mathrm{~V}$ to $\pm 5 \mathrm{~V}$ dual supply operation
- Fully specified at $+16 \mathrm{~V},+5 \mathrm{~V}, \pm 5 \mathrm{~V}$
- Low charge injection (<4.1 pC typ.)
- High bandwidth: 314 MHz (DG9251)

$$
449 \text { MHz (DG9252) }
$$ 480 MHz (DG9253)

- Low switch capacitance ($\mathrm{C}_{\mathrm{s} \text { (off) }} 2.7 \mathrm{pF}$ typ.)
- Good isolation and crosstalk performance (typ. - 45 dB at 100 MHz)
- MiniQFN16 package ($1.8 \mathrm{~mm} \times 2.6 \mathrm{~mm}$)
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

- Data acquisition
- Medical and healthcare devices
- Control and automation equipments
- Test instruments
- Touch panels
- Consumer

FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

Enable Input	Select Inputs			On Switches		
	C	B	A	DG9251	DG9252	DG9253
H	X	X	X	All Switches Open	All Switches Open	All Switches Open
L	L	L	L	X to X0	X to $\mathrm{X0}, \mathrm{Y}$ to YO	X to XO, Y to YO, Z to ZO
L	L	L	H	X to X 1	X to $\mathrm{X} 1, \mathrm{Y}$ to Y 1	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y} 0, \mathrm{Z}$ to Z 0
L	L	H	L	X to X 2	X to $\mathrm{X} 2, \mathrm{Y}$ to Y 2	X to $\mathrm{X0}, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 0
L	L	H	H	X to X3	X to $\mathrm{X} 3, \mathrm{Y}$ to Y 3	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 0
L	H	L	L	X to X 4	X to $\mathrm{X0}, \mathrm{Y}$ to Y 0	X to $\mathrm{X} 0, \mathrm{Y}$ to $\mathrm{Y} 0, \mathrm{Z}$ to Z 1
L	H	L	H	X to X 5	X to $\mathrm{X} 1, \mathrm{Y}$ to Y 1	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y} 0, \mathrm{Z}$ to Z 1
L	H	H	L	X to X 6	X to $\mathrm{X} 2, \mathrm{Y}$ to Y2	X to $\mathrm{X} 0, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 1
L	H	H	H	X to X7	X to $\mathrm{X} 3, \mathrm{Y}$ to Y 3	X to $\mathrm{X} 1, \mathrm{Y}$ to $\mathrm{Y} 1, \mathrm{Z}$ to Z 1

ORDERING INFORMATION		
Temp. Range	Package	Part Number
DG9251, DG9252, DG9253		
$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}^{\mathrm{a}}$	16-Pin miniQFN	DG9251EN-T1-E4
		DG9252EN-T1-E4

Notes:

a. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ datasheet limits apply.

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)		
Parameter	Limit	Unit
V_{CC} to V_{EE}	18	V
GND to V-	9	
Digital Inputs ${ }^{\text {a }}$, $\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\mathrm{D}}$	$(\mathrm{V}-)-0.3 \text { to }(\mathrm{V}+)+0.3$ or 30 mA , whichever occurs first	
Continuous Current (Any terminal)	30	mA
Peak Current, S or D (Pulsed $1 \mathrm{~ms}, 10 \%$ duty cycle)	100	
Storage Temperature	- 65 to 150	${ }^{\circ} \mathrm{C}$
	525	mW
	152	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Latch-up (per JESD78)	> 300	mA

Notes:
a. Signals on SX, DX, or INX exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings.
b. All leads welded or soldered to PC board.
c. Derate $6.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $70^{\circ} \mathrm{C}$.
d. Manual soldering with iron is not recommended for leadless components. The miniQFN-16 is a leadless package. The end of the lead terminal is exposed copper (not plated) as a result of the singulation process in manufacturing. A solder fillet at the exposed copper lip cannot be guaranteed and is not required to ensure adequate bottom side solder interconnection.

Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$$\mathrm{V}_{\mathrm{IN}(\mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=1.4 \mathrm{~V}, 0.3 \mathrm{Va}^{\mathrm{a}}$		Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$		Unit	
				Min. ${ }^{\text {d }}$		Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$			
Analog Switch											
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$				Full	90	-5	5	-5	5	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-3 \mathrm{~V}, 0 \mathrm{~V},+3 \mathrm{~V}$		Room Full	$\begin{aligned} & 182 \\ & 252 \end{aligned}$		182 223		Ω		
On-Resistance Match	$\Delta \mathrm{R}_{\text {ON }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}= \pm 3 \mathrm{~V}$		Room Full	3.1			$\begin{gathered} 6 \\ 10 \end{gathered}$			6 8
On-Resistance Flatness	R FLatness	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=-3 \mathrm{~V}, 0 \mathrm{~V},+3 \mathrm{~V}$		Room Full	32.4		$\begin{aligned} & 44 \\ & 64 \end{aligned}$			$\begin{aligned} & 44 \\ & 61 \end{aligned}$	
Switch Off Leakage Current	$\mathrm{I}_{\text {(off) }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} \end{aligned}$		Room Full	± 0.02	$\begin{gathered} \hline-1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	nA	
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$			Room Full	± 0.02	$\begin{gathered} \hline-1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$		
Channel On Leakage Current	$\mathrm{I}_{\mathrm{D} \text { (on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5.5 \mathrm{~V}, \\ \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \end{gathered}$		Room Full	± 0.02	$\begin{gathered} \hline-1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$		
Digital Control											
$\mathrm{V}_{\text {IN(A, }} \mathrm{B}, \mathrm{C}$ and ENABLE) Low	$\mathrm{V}_{\text {IL }}$			Full			0.3		0.3	V	
$\mathrm{V}_{\text {IN(A, }} \mathrm{B}, \mathrm{C}$ and ENABLE) High	V_{IH}			Full		1.4		1.4			
Input Current, $\mathrm{V}_{\text {IN }}$ Low		$\mathrm{V}_{\text {IN }}(\mathrm{A}, \mathrm{B}, \mathrm{C}$ and ENABLE) under test $=0.3 \mathrm{~V}$		Full	0.01	-1	1	-1	1	$\mu \mathrm{A}$	
Input Current, $\mathrm{V}_{\text {IN }}$ High	$\mathrm{IIH}^{\text {H }}$	$\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C}}$ and ENABLE) under test $=1.4 \mathrm{~V}$		Full	0.01	-1	1	-1	1		
Input Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {IN }}$	$\mathrm{f}=1 \mathrm{MHz}$		Room	2.4					pF	
Dynamic Characteristics											
Transition Time	${ }^{\text {t }}$ trans	$\begin{gathered} R_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ \text { see figure 1, 2, } \end{gathered}$		Room Full	88		$\begin{aligned} & 236 \\ & 281 \end{aligned}$		$\begin{aligned} & 236 \\ & 251 \end{aligned}$	ns	
Enable Turn-On Time	t_{ON}			Room Full	158		$\begin{aligned} & 250 \\ & 455 \end{aligned}$		$\begin{aligned} & 250 \\ & 369 \end{aligned}$		
Enable Turn-Off Time	$\mathrm{t}_{\text {OFF }}$			Room Full	40		$\begin{aligned} & 125 \\ & 136 \end{aligned}$		$\begin{aligned} & 125 \\ & 131 \end{aligned}$		
Break-Before-Make Time Delay	$t_{\text {D }}$			Room Full	32	13		13			
Off Isolation ${ }^{\text {e }}$	OIRR	$\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	$\mathrm{f}=100 \mathrm{kHz}$	Room	<-90					dB	
			$\mathrm{f}=10 \mathrm{MHz}$	Room	-64						
			$\mathrm{f}=100 \mathrm{MHz}$	Room	-45						
Channel-to-Channel Crosstalk ${ }^{e}$	$\mathrm{X}_{\text {TALK }}$		$\mathrm{f}=100 \mathrm{kHz}$	Room	<-90						
			$\mathrm{f}=10 \mathrm{MHz}$	Room	-67						
			$\mathrm{f}=100 \mathrm{MHz}$	Room	-48						
Bandwith, 3 dB	BW	$\mathrm{R}_{\mathrm{L}}=50 \Omega$	DG9251	Room	314					MHz	
			DG9252	Room	449						
			DG9253	Room	480						
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega$,	$\mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Room	4.1					pC	
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	2.7					pF	
			DG9252	Room	2.2						
			DG9253	Room	2.0						
Drain Off Capacitance ${ }^{\text {e }}$	$C_{\text {D(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	10.7						
			DG9252	Room	6.6						
			DG9253	Room	4.6						
Channel On Capacitance ${ }^{\mathrm{e}}$	$C_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	14.6						
			DG9252	Room	9.8						
			DG9253	Room	8.6						
Total Harmonic Distortion ${ }^{\text {e }}$	THD	$\begin{gathered} \text { Signal }=1 \mathrm{~V}_{\mathrm{RMS}}, \\ 20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \hline \end{gathered}$		Room	0.2					\%	

DG9251, DG9252, DG9253

Vishay Siliconix

SPECIFICATIONS (for Dual Supplies)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V}$ $\mathrm{V}_{\operatorname{IN}(A, B, C \text { and } \mathrm{ENABLE})}=1.4 \mathrm{~V}, 0.3 \mathrm{Va}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Power Supplies									
Power Supply Current	$\mathrm{I}_{\text {cc }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=-5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{IN}(\mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=0 \text { or } 5 \mathrm{~V} \end{gathered}$	Room Full	0.05		$\begin{gathered} \hline 1 \\ 10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$
Negative Supply Current	$\mathrm{I}_{\text {EE }}$		Room Full	-0.05	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		
Ground Current	$I_{\text {GND }}$		$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	-0.05	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		

Parameter	Symbol	Test ConditionsUnless Otherwise Specified$V_{C C}=+5 \mathrm{~V}, \mathrm{~V}_{\text {EE }}=0 \mathrm{~V}$$\mathrm{~V}_{\operatorname{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=1.4 \mathrm{~V}, 0.3 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	5	0	5	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V},+3.5 \mathrm{~V}$	Room Full	145		$\begin{aligned} & 482 \\ & 565 \end{aligned}$		$\begin{aligned} & 482 \\ & 513 \end{aligned}$	
On-Resistance Match	$\triangle \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+3.5 \mathrm{~V}$	Room Full	3.6		$\begin{aligned} & 20 \\ & 22 \end{aligned}$		20	Ω
On-Resistance Flatness	Rflatness	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0 \mathrm{~V},+3 \mathrm{~V}$	Room Full	113		$\begin{aligned} & 151 \\ & 254 \end{aligned}$		$\begin{aligned} & 151 \\ & 231 \end{aligned}$	
Switch Off Leakage Current	$\mathrm{I}_{\text {S(off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \\ \hline \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$	1 5	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	± 0.02	$\begin{gathered} \hline-1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & \hline-1 \\ & -5 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 5 \end{aligned}$	
Channel On Leakage Current	$I_{\text {(on) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{gathered}$	Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & -1 \\ & -5 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	
Digital Control									
$\mathrm{V}_{\text {IN(A, B, C }}$ and ENABLE) Low	$\mathrm{V}_{\text {IL }}$		Full			0.3		0.3	V
$\mathrm{V}_{\text {IN(A, B, C and ENABLE) }}$ High	V_{IH}		Full		1.4		1.4		
Input Current, $\mathrm{V}_{\text {IN }}$ Low	I L	$\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and ENABLE) }}$ under test $=0.3 \mathrm{~V}$	Full	0.01	-1	1	-1	1	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and ENABLE) }}$ under test $=1.4 \mathrm{~V}$	Full	0.01	-1	1	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics									
Transition Time	${ }^{\text {t }}$ TRANS	$\begin{gathered} \mathrm{R}_{\mathrm{L}}=300 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ \text { see figure } 1,2,3 \end{gathered}$	Room Full	97		$\begin{aligned} & 230 \\ & 305 \\ & \hline \end{aligned}$		$\begin{aligned} & 230 \\ & 266 \end{aligned}$	ns
Enable Turn-On Time	t_{ON}		Room Full	229		$\begin{aligned} & 335 \\ & 652 \end{aligned}$		$\begin{aligned} & 335 \\ & 545 \end{aligned}$	
Enable Turn-Off Time	$t_{\text {OFF }}$		Room Full	64		$\begin{aligned} & \hline 150 \\ & 173 \end{aligned}$		$\begin{aligned} & \hline 150 \\ & 163 \end{aligned}$	
Break-Before-Make Time Delay	$t_{\text {D }}$		Room Full	36	20		20		
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$	Full	0.44					pC
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{gathered} R_{L}=50 \Omega, C_{L}=15 \mathrm{pF} \\ f=100 \mathrm{kHz} \end{gathered}$	Room	<-90					dB
Channel-to-Channel Crosstalk ${ }^{e}$	$\mathrm{X}_{\text {TALK }}$		Room	<-90					

SPECIFICATIONS (for Unipolar Supplies)											
Parameter	Symbol	Test ConditionsUnless Otherwise Specified$\mathrm{V}_{\mathrm{CC}}=+5 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$$\mathrm{~V}_{\operatorname{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=1.4 \mathrm{~V}, 0.3 \mathrm{~V}^{a}$		Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit	
				Min. ${ }^{\text {d }}$		Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$			
Dynamic Characteristics											
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251		Room	2.9					pF
			DG9252	Room	2.2						
			DG9253	Room	2.1						
Drain Off Capacitance ${ }^{e}$	$\mathrm{C}_{\mathrm{D} \text { (off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	12.4						
			DG9252	Room	6.8						
			DG9253	Room	4.6						
Channel On Capacitance ${ }^{\text {e }}$	$C_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	16						
			DG9252	Room	10.6						
			DG9253	Room	8.8						
Power Supplies											
Power Supply Current	$I_{\text {cc }}$	$\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=0 \mathrm{~V}$ or 5 V		Room Full	0.05		$\begin{gathered} 1 \\ 10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$		
Negative Supply Current	$\mathrm{I}_{\text {ee }}$			Room Full	-0.05	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} -1 \\ -10 \end{gathered}$		$\mu \mathrm{A}$	
Ground Current	$\mathrm{I}_{\text {GND }}$			$\begin{aligned} & \text { Room } \\ & \text { Full } \end{aligned}$	-0.05	$\begin{gathered} \hline-1 \\ -10 \\ \hline \end{gathered}$		$\begin{gathered} -1 \\ -10 \end{gathered}$			

SPECIFICATIONS (for Unipolar Supplies)									
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}_{\mathrm{CC}}=+16 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ $\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and ENABLE)}}=1.6 \mathrm{~V}, 0.5 \mathrm{~V}^{\mathrm{a}}$	Temp. ${ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit
					Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$	
Analog Switch									
Analog Signal Range ${ }^{\text {e }}$	$\mathrm{V}_{\text {ANALOG }}$		Full		0	16	0	16	V
On-Resistance	R_{ON}	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0.7 \mathrm{~V}, 8 \mathrm{~V}, 15.3 \mathrm{~V}$	Room Full	69		$\begin{aligned} & \hline 152 \\ & 171 \end{aligned}$		$\begin{aligned} & \hline 152 \\ & 158 \end{aligned}$	Ω
On-Resistance Match	$\Delta \mathrm{R}_{\mathrm{ON}}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=+0.7 \mathrm{~V}$	Room Full	2		$\begin{gathered} \hline 7 \\ 10 \end{gathered}$		$\begin{aligned} & \hline 7 \\ & 8 \end{aligned}$	
On-Resistance Flatness	$\mathrm{R}_{\text {Flatness }}$	$\mathrm{I}_{\mathrm{S}}=1 \mathrm{~mA}, \mathrm{~V}_{\mathrm{D}}=0.7 \mathrm{~V},+15.3 \mathrm{~V}$	Room Full	32		$\begin{aligned} & 45 \\ & 53 \end{aligned}$		$\begin{aligned} & 45 \\ & 49 \end{aligned}$	
Switch Off Leakage Current	$\mathrm{I}_{\mathrm{S} \text { (off) }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+16 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 15 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=15 \mathrm{~V} / 1 \mathrm{~V} \end{gathered}$	Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{array}{r} -1 \\ -5 \end{array}$	$\begin{aligned} & 1 \\ & 5 \\ & \hline \end{aligned}$	nA
	$\mathrm{I}_{\mathrm{D} \text { (off) }}$		Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & -1 \\ & -5 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	
Channel On Leakage Current	$I_{\text {don }}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}=+16 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 15 \mathrm{~V} \end{gathered}$	Room Full	± 0.02	$\begin{gathered} -1 \\ -50 \end{gathered}$	$\begin{gathered} 1 \\ 50 \end{gathered}$	$\begin{aligned} & -1 \\ & -5 \end{aligned}$	$\begin{aligned} & 1 \\ & 5 \end{aligned}$	
Digital Control									
$\mathrm{V}_{\text {IN(A, B, C and ENABLE) }}$ Low	V_{IL}		Full			0.5		0.5	V
$\mathrm{V}_{\text {IN(A, B, C and ENABLE) }}$ High	$\mathrm{V}_{1 \mathrm{H}}$		Full		1.6		1.6		
Input Current, $\mathrm{V}_{\text {IN }}$ Low	I	$\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and } \mathrm{ENABLE})}$ under test $=0.5 \mathrm{~V}$	Full	0.01	- 1	1	- 1	1	$\mu \mathrm{A}$
Input Current, $\mathrm{V}_{\text {IN }}$ High	I_{H}	$\mathrm{V}_{\mathrm{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and } \mathrm{ENABLE})}$ under test $=1.6 \mathrm{~V}$	Full	0.01	-1	1	-1	1	$\mu \mathrm{A}$
Dynamic Characteristics									
Transition Time	${ }^{\text {t }}$ trans	$\begin{gathered} R_{L}=300 \Omega, C_{L}=35 p F \\ \text { see figure } 1,2,3 \end{gathered}$	$\begin{gathered} \text { Room } \\ \text { Full } \\ \hline \end{gathered}$	56		$\begin{aligned} & 130 \\ & 160 \\ & \hline \end{aligned}$		$\begin{aligned} & 130 \\ & 150 \\ & \hline \end{aligned}$	ns
Enable Turn-On Time	t_{ON}		$\begin{aligned} & \hline \text { Room } \\ & \text { Full } \end{aligned}$	98		$\begin{aligned} & 175 \\ & 256 \end{aligned}$		$\begin{aligned} & 175 \\ & 221 \\ & \hline \end{aligned}$	
Enable Turn-Off Time	$t_{\text {OFF }}$		Room Full	37		$\begin{aligned} & 120 \\ & 134 \end{aligned}$		$\begin{aligned} & 120 \\ & 127 \end{aligned}$	
Break-Before-Make Time Delay	t_{D}		Room Full	31	12		12		

SPECIFICATIONS (for Unipolar Supplies)											
Parameter	Symbol	Test Conditions Unless Otherwise Specified $\mathrm{V}_{\mathrm{CC}}=+16 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=0 \mathrm{~V}$ $\mathrm{V}_{\operatorname{IN}(\mathrm{A}, \mathrm{~B}, \mathrm{C} \text { and } \mathrm{ENABLE})}=1.6 \mathrm{~V}, 0.5 \mathrm{Va}^{\mathrm{a}}$		$\text { Temp. }{ }^{\text {b }}$	Typ. ${ }^{\text {c }}$	$-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$		$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$		Unit	
				Min. ${ }^{\text {d }}$		Max. ${ }^{\text {d }}$	Min. ${ }^{\text {d }}$	Max. ${ }^{\text {d }}$			
Charge Injection ${ }^{\text {e }}$	Q	$\mathrm{V}_{\mathrm{g}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{g}}=$	$=1 \mathrm{nF}$		Room	4.5					pC
Dynamic Characteristics											
Off Isolation ${ }^{\text {e }}$	OIRR	$\begin{aligned} & R_{L}= 50 \Omega, C_{L}=15 \mathrm{pF} \\ & f=100 \mathrm{kHz} \end{aligned}$		Room	<-90					dB	
Channel-to-Channel Crosstalk ${ }^{\text {e }}$	$\mathrm{X}_{\text {TALK }}$			Room	<-90						
Source Off Capacitance ${ }^{\text {e }}$	$\mathrm{C}_{\text {S(off) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	2.6					pF	
			DG9252	Room	2.1						
			DG9253	Room	1.8						
Drain Off Capacitance ${ }^{\text {e }}$	$C_{D(\text { (ff) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	10.4						
			DG9252	Room	5.8						
			DG9253	Room	4.2						
Channel On Capacitance ${ }^{\text {e }}$	$C_{\text {D(on) }}$	$\mathrm{f}=1 \mathrm{MHz}$	DG9251	Room	15						
			DG9252	Room	9.5						
			DG9253	Room	8.2						
Power Supplies											
Power Supply Current	I_{CC}	$\mathrm{V}_{\operatorname{IN}(\mathrm{A}, \mathrm{B}, \mathrm{C} \text { and ENABLE) }}=0 \mathrm{~V}$ or 16 V		$\begin{gathered} \text { Room } \\ \text { Full } \end{gathered}$	0.05		$\begin{gathered} 1 \\ 10 \end{gathered}$		$\begin{gathered} 1 \\ 10 \end{gathered}$	$\mu \mathrm{A}$	
Negative Supply Current	$\mathrm{I}_{\text {EE }}$			Room Full	-0.05	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} -1 \\ -10 \end{gathered}$			
Ground Current	$\mathrm{I}_{\text {GND }}$			Room Full	-0.05	$\begin{gathered} \hline-1 \\ -10 \end{gathered}$		$\begin{gathered} \hline-1 \\ -10 \end{gathered}$			

Notes:

a. $\mathrm{V}_{\mathrm{IN}}=$ input voltage to perform proper function.
b. Room $-25^{\circ} \mathrm{C}$, full = as determined by the operating temperature suffix.
c. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing.
d. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this datasheet.
e. Guaranteed by design, not subject to production test.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

R_{ON} vs. V_{D} and Single Supply Voltage

R_{ON} vs. V_{D} and Dual Supply Voltage

TYPICAL CHARACTERISTICS ($25^{\circ} \mathrm{C}$, unless otherwise noted)

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

\mathbf{R}_{ON} vs. Analog Voltage and Temperature

Leakage Current vs. Temperature

$R_{\text {ON }}$ vs. Analog Voltage and Temperature

\mathbf{R}_{ON} vs. Analog Voltage and Temperature

Leakage Current vs. Temperature

TYPICAL CHARACTERISTICS

DG9251 Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

DG9252 Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

DG9253 Insertion Loss, Off-Isolation, Crosstalk vs. Frequency

DG9251 Charge Injection vs. Analog Voltage

DG9252 Charge Injection vs. Analog Voltage

DG9253 Charge Injection vs. Analog Voltage

TYPICAL CHARACTERISTICS

Switching Time vs. Temperature

Switching Threshold vs. Supply Voltage

Supply Current vs. Input Switching Frequency

TEST CIRCUITS

Figure 1. Transition Time

TEST CIRCUITS

Figure 2. Enable Switching Time

TEST CIRCUITS

Figure 3. Break-Before-Make

TEST CIRCUITS

V_{O}

Figure 4. Charge Injection

Figure 5. Insertion Loss

Figure 7. Crosstalk

Off Isolation $=20 \log \frac{V_{\text {OUT }}}{\mathrm{V}_{\text {IN }}}$

Figure 6. Off Isolation

Figure 8. Source, Drain Capacitance

[^0]
MINI QFN-16L

DIM	MILLIMETERS			INCHES		
	MIN.	NAM	MAX.	MIN.	NAM	MAX.
A	0.70	0.75	0.80	0.0275	0.0295	0.0315
A1	0	-	0.05	0	-	0.002
b	0.15	0.20	0.25	0.0059	0.0078	0.0098
C	0.15	0.20	0.25	0.0059	0.0078	0.0098
D	2.60 BSC			0.1023 BSC		
E	1.80 BSC			0.0708 BSC		
e	0.40 BSC					
L	0.35	0.40	0.45	0.0137	0.0157	0.0177
L1	0.45	0.50	0.55	0.0177	0.0196	0.0216

ECN T-06380-Rev. A, 14-Aug-06
DWG: 5954

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

[^0]: Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www. vishay.com/ppg?67075.

