SCES020F - JULY 1995 - REVISED MAY 2002

 Member of the Texas Instruments Widebus™ Family 	DGG	or dl f (Top Vi	PACH EW)	AGE
 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors 	1 <u>0</u> E [1Q1 [1 2	48 47] 1LE] 1D1
 Latch-Up Performance Exceeds 250 mA Per JESD 17 	1Q2 GND 1Q3	3 4 5	46 45 44	1D2 GND 1D3
 ESD Protection Exceeds JESD 22 2000-V Human-Body Model (A114-A) 200-V Machine Model (A115-A) 	1Q4	6	43	1D4
	V _{CC}	7	42	V _{CC}
	1Q5	8	41	1D5
description	1Q6 [9	40	1D6
	GND [10	39	GND
This 16-bit transparent D-type latch is designed for 1.65-V to 3.6-V V_{CC} operation.	1Q7 [11	38	1D7
	1Q8 [12	37	1D8
The SN74ALVCH16373 is particularly suitable for	2Q1	13	36	2D1
implementing buffer registers, I/O ports,	2Q2	14	35	2D2
bidirectional bus drivers, and working registers	GND	15	34	GND
This device can be used as two 8-bit latches or	2Q3 [16	33	2D3
one 16-bit latch. When the latch-enable (LE) input	2Q4 [17	32	2D4
is high the Q outputs follow the data (D) inputs	V _{CC} [18	31	V _{CC}
When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.	2Q5 2Q6 GND	19 20 21	30 29 28	2D5 2D6 GND
A buffered output-enable (\overline{OE}) input can be used	2Q7 [22	27	2D7
to place the eight outputs in either a normal logic	2Q8 [23	26	2D8
state (high or low logic levels) or the	2OE	24	25	2LE

lines significantly. The high-impedance state and the increased drive provide the capability to drive bus lines without need for interface or pullup components. \overline{OE} does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Active bus-hold circuitry holds unused or undriven inputs at a valid logic state. Use of pullup or pulldown resistors with the bus-hold circuitry is not recommended.

TA	PACKAGE [†]		ORDERABLE PART NUMBER	TOP-SIDE MARKING
		Tube	SN74ALVCH16373DL	
40°C to 95°C	330P - DL	Tape and reel	SN74ALVCH16373DLR	ALVCH10373
-40 C 10 85 C	TSSOP – DGG	Tape and reel	SN74ALVCH16373DGGR	ALVCH16373
	VFBGA – GQL	Tape and reel	SN74ALVCH16373KR	VH373

ORDERING INFORMATION

[†] Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus is a trademark of Texas Instruments.

state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

SCES020F - JULY 1995 - REVISED MAY 2002

terminal assignments

	1	2	3	4	5	6		
A	1 <mark>OE</mark>	NC	NC	NC	NC	1LE		
в	1Q2	1Q1	GND	GND	1D1	1D2		
С	1Q4	1Q3	V _{CC}	V _{CC}	1D3	1D4		
D	1Q6	1Q5	GND	GND	1D5	1D6		
E	1Q8	1Q7			1D7	1D8		
F	2Q1	2Q2			2D2	2D1		
G	2Q3	2Q4	GND	GND	2D4	2D3		
н	2Q5	2Q6	VCC	VCC	2D6	2D5		
J	2Q7	2Q8	GND	GND	2D8	2D7		
ĸ	2 <mark>0E</mark>	NC	NC	NC	NC	2LE		

NC - No internal connection

FUNCTION TABLE (each 8-bit section)

	(cacil o-		UII)			
	INPUTS					
OE	LE	D	Q			
L	Н	Н	Н			
L	Н	L	L			
L	L	Х	Q ₀			
н	Х	Х	Z			

logic diagram (positive logic)

 $2\overline{OE} \xrightarrow{24}$ $2LE \xrightarrow{25}$ $2D1 \xrightarrow{36}$ C1 1D 13 2Q1

To Seven Other Channels

Pin numbers shown are for the DGG and DL packages.

SCES020F - JULY 1995 - REVISED MAY 2002

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V _{CC}		–0.5 V to 4.6 V
Input voltage range, V _I (see Note 1)		–0.5 V to 4.6 V
Output voltage range, V _O (see Notes 1 and 2)		. –0.5 V to V _{CC} + 0.5 V
Input clamp current, I _{IK} (V _I < 0)		–50 mA
Output clamp current, I_{OK} (V _O < 0)		
Continuous output current, I _O		±50 mA
Continuous current through each V _{CC} or GND		±100 mA
Package thermal impedance, θ_{JA} (see Note 3):	DGG package	70°C/W
	DL package	63°C/W
	GQL package	42°C/W
Storage temperature range, T _{stg}		\ldots –65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

- 2. This value is limited to 4.6 V maximum.
- 3. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions (see Note 4)

			MIN	MAX	UNIT	
VCC	Supply voltage		1.65	3.6	V	
		V _{CC} = 1.65 V to 1.95 V	$0.65 \times V_{CC}$			
VIH	High-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7		V	
		V _{CC} = 2.7 V to 3.6 V	2			
		V _{CC} = 1.65 V to 1.95 V		$0.35 imes V_{CC}$		
VIL	Low-level input voltage	V_{CC} = 2.3 V to 2.7 V		0.7	V	
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$		0.8		
VI	Input voltage		0	VCC	V	
VO	Output voltage		0	VCC	V	
		V _{CC} = 1.65 V		-4		
1.000	High lovel output current	V _{CC} = 2.3 V		-12	m۸	
ЮН	nginevel ouput current	V _{CC} = 2.7 V		-12	mA	
		$V_{CC} = 3 V$		-24		
		V _{CC} = 1.65 V		4		
101	Low level output current	V _{CC} = 2.3 V		12	~^^	
UOL	Low-level output current	V _{CC} = 2.7 V		12	MA	
		$V_{CC} = 3 V$		24		
Δt/Δv	Input transition rise or fall rate			10	ns/V	
TA	Operating free-air temperature		-40	85	°C	

NOTE 4: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES020F - JULY 1995 - REVISED MAY 2002

electrical otherwise	characteristics noted)	over	recommended	operating	free-air	temperature	range	(unless
DADAME	тер	т			M = =			

PA	RAMETER	TEST CONDITIONS	Vcc	MIN	түр† і	MAX	UNIT	
		I _{OH} = –100 μA	1.65 V to 3.6 V	V _{CC} -0.2				
		I _{OH} = -4 mA	1.65 V	1.2				
		$I_{OH} = -6 \text{ mA}$	2.3 V	2				
Vон			2.3 V	1.7			V	
		$I_{OH} = -12 \text{ mA}$	2.7 V	2.2				
			3 V	2.4				
		$I_{OH} = -24 \text{ mA}$	3 V	2				
		I _{OL} = 100 μA	1.65 V to 3.6 V			0.2		
		$I_{OL} = 4 \text{ mA}$	1.65 V			0.45		
Vei		I _{OL} = 6 mA	2.3 V			0.4	V	
VOL		10 m 10 m 1	2.3 V			0.7	v	
		IOT = 15 IIIA	2.7 V			0.4		
		I _{OL} = 24 mA	3 V			0.55		
Ц		$V_{I} = V_{CC}$ or GND	3.6 V			±5	μA	
		V _I = 0.58 V	1.65 V	25				
		V _I = 1.07 V	1.65 V	-25				
		$V_{I} = 0.7 V$	2.3 V	45				
l _{l(hold})	V _I = 1.7 V	2.3 V	-45			μA	
		V _I = 0.8 V	3 V	75				
		V ₁ = 2 V	3 V	-75				
		V _I = 0 to 3.6 V [‡]	3.6 V		=	±500		
IOZ		$V_{O} = V_{CC}$ or GND	3.6 V			±10	μA	
ICC		$V_{I} = V_{CC} \text{ or GND}, \qquad I_{O} = 0$	3.6 V			40	μA	
∆lCC		One input at V_{CC} – 0.6 V, Other inputs at V_{CC} or GND	3 V to 3.6 V			750	μA	
0	Control inputs		2.2.1/		3		~ F	
Сi	Data inputs		3.3 V		6		рн	
Co	Outputs	V _O = V _{CC} or GND	3.3 V		7		pF	
	-							

[†] All typical values are at V_{CC} = 3.3 V, T_A = 25°C. [‡] This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another.

timing requirements over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

		V _{CC} =	1.8 V	V _{CC} = ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	= ۷ _{CC} ± 0.3	3.3 V 3 V	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	MIN	MAX	
tw	Pulse duration, LE high or low	§		3.3		3.3		3.3		ns
t _{su}	Setup time, data before LE \downarrow	§		1		1		1.1		ns
th	Hold time, data after LE \downarrow	§		1.5		1.7		1.4		ns

§ This information was not available at the time of publication.

SN74ALVCH16373 **16-BIT TRANSPARENT D-TYPE LATCH** WITH 3-STATE OUTPUTS SCES020F - JULY 1995 - REVISED MAY 2002

switching characteristics over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1)

PARAMETER			V _{CC} = 1.8 V	= V _{CC} ± 0.2	2.5 V 2 V	V _{CC} =	2.7 V	= V _{CC} ± 0.	3.3 V 3 V	UNIT
			ТҮР	MIN	MAX	MIN	MAX	MIN	MAX	
÷ .	D	0	†	1	4.5		4.3	1.1	3.6	
۲pd	LE	Q	†	1	4.9		4.6	1	3.9	115
ten	OE	Q	†	1	6		5.7	1	4.7	ns
^t dis	OE	Q	†	1.2	5.1		4.5	1.4	4.1	ns

[†] This information was not available at the time of publication.

operating characteristics, $T_A = 25^{\circ}C$

PARAMETER		TEST CONDITIONS	V _{CC} = 1.8 V	V _{CC} = 2.5 V	V _{CC} = 3.3 V		
	FARAMETER		TEST CONDITIONS	TYP	TYP	TYP	
	Power dissipation	Outputs enabled	$C_{1} = 50 \text{ pc}$ $f = 10 \text{ MHz}$	†	19	22	ъĘ
Cpd	capacitance	Outputs disabled	$C_{L} = 50 \text{ pr}, I = 10 \text{ MHz}$	†	4	5	рг

[†]This information was not available at the time of publication.

SCES020F - JULY 1995 - REVISED MAY 2002

PARAMETER MEASUREMENT INFORMATION

TEST	S1
^t pd	Open
^t PLZ/tPZL	V _{LOAD}
^t PHZ/tPZH	GND

LOVE	U		

Mara	INPUT		N	V.	6	D.	v
vcc	VI	t _r /t _f	VМ	VLOAD	֊լ	ĸĽ	ν _Δ
1.8 V	Vcc	≤2 ns	V _{CC} /2	$2 \times V_{CC}$	30 pF	1 k Ω	0.15 V
2.5 V \pm 0.2 V	Vcc	≤2 ns	V _{CC} /2	2 × V _{CC}	30 pF	500 Ω	0.15 V
2.7 V	2.7 V	≤2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V
3 V \pm 0.3 V	2.7 V	≤ 2.5 ns	1.5 V	6 V	50 pF	500 Ω	0.3 V

NOTES: A. C_I includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω.

- D. The outputs are measured one at a time with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. tpzL and tpzH are the same as t_{en} .
- G. tp_H and tp_H are the same as t_{en} .
- H. All parameters and waveforms are not applicable to all devices.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated