

HD74SSTV16857

1:1 14-bit SSTL 2 Registered Buffer

REJ03D0830-0700

(Previous: ADE-205-336F)

Rev.7.00 Apr 07, 2006

Description

The HD74SSTV16857 is a 14-bit registered buffer designed for 2.3 V to 2.7 V Vcc operation and LVCMOS reset (RESET) input / SSTL_2 data (D) inputs and CLK input.

Data flow from D to Q is controlled by differential clock pins (CLK, \overline{CLK}) and the \overline{RESET} . Data is triggered on the positive edge of the positive clock (CLK), and the negative clock (\overline{CLK}) must be used to maintain noise margins. When \overline{RESET} is low, all registers are reset and all outputs are low.

To ensure defined outputs from the register before a stable clock has been supplied, RESET must be held in the low state during power up.

Features

- Supports LVCMOS reset (RESET) input / SSTL_2 data (D) inputs and CLK input
- Differential SSTL_2 (Stub series terminated logic) CLK signal
- Flow through architecture optimizes PCB layout
- Ordering Information

Part Name	Package Type	Package Code (Previous code)	Package Abbreviation	Taping Abbreviation (Quantity)
HD74SSTV16857TEL	TSSOP-48 pin	PTSP0048KA-A (TTP-48DBV)	Ţ	EL (1,000 pcs / Reel)
HD74SSTV16857NEL		PTSP0048LA-A (TTP-48DEV)	N	EL (1,000 pcs / Reel)

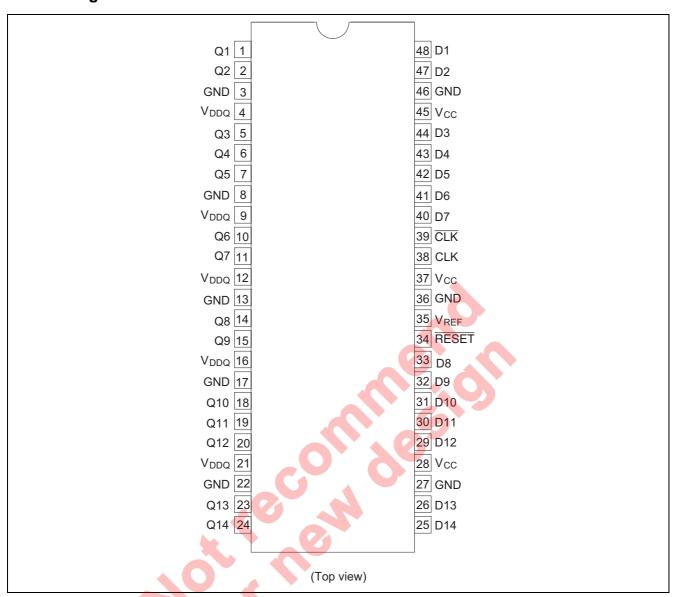
Note: Please consult the sales office for the above package availability.

Function Table

	Output O			
RESET	CLK	CLK	D	Output Q
L	X	X	X	L
Н	1	↑	Н	Н
Н	↓	↑	L	L
Н	L or H	H or L	X	Q_0^{*1}

H: High level

L: Low level


X: Immaterial

1: Low to high transition

 \downarrow : High to low transition

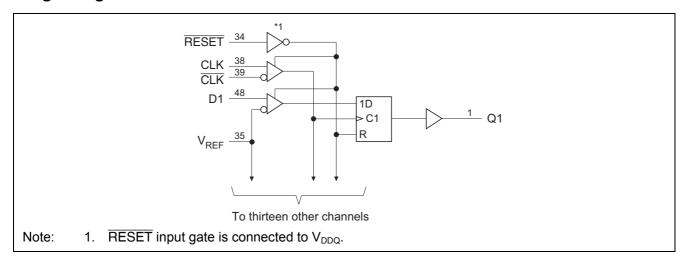
Note: 1. Output level before the indicated steady state input conditions were established.

Pin Arrangement

Absolute Maximum Ratings

Item	Symbol	Ratings	Unit	Conditions
Supply voltage	V _{CC} or V _{DDQ}	-0.5 to 3.6	V	
Input voltage *1	Vı	-0.5 to $V_{DDQ}+0.5$	V	
Output voltage *1, 2	Vo	-0.5 to V _{DDQ} +0.5	V	
Input clamp current	I _{IK}	±50	mA	$V_I < 0$ or $V_I > V_{CC}$
Output clamp current	I _{OK}	±50	mA	$V_O < 0$ or $V_O > V_{DDQ}$
Continuous output current	Io	±50	mA	$V_O = 0$ to V_{DDQ}
V _{CC} , V _{DDQ} or GND current / pin	I_{CC} , I_{DDQ} or I_{GND}	±100	mA	
Maximum power dissipation	P _T	115	°C / W	TSSOP
at Ta = 55°C (in still air)				
Storage temperature	Tstg	-65 to +150	°C	

Notes: Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.


- 1. The input and output negative voltage ratings may be exceeded if the input and output clamp current ratings are observed.
- 2. This current will flow only when the output is in the high state and $V_0 > V_{DDQ}$.

Recommended Operating Conditions

em						
F111	Symbol	Min	Тур	Max	Unit	Conditions
	V_{CC}	V_{DDQ}	2.5	2.7	V	
age	V_{DDQ}	2.3	2.5	2.7	V	
	V_{REF}	1.15	1.25	1.35	V	$V_{REF} = 0.5 \times V_{DDQ}$
е	V_{TT}	V _{REF} -40 mV	V _{REF}	V _{REF} +40 mV	V	
	Vı	0		V _{CC}	V	
t voltage	V _{IH}	V _{REF} +310 mV		_	V	D
AC low level input voltage			_	V _{REF} –310 mV	V	D
DC high level input voltage		V _{REF} +150 mV	_	_	V	D
voltage	VIL	(4)	_	V _{REF} -150 mV	V	D
Itage	V _{IH}	1.7	_	V _{DDQ} +0.3	V	RESET
tage	VIL	-0.3	_	0.7	V	RESET
mmon mode range)	V_{CMR}	0.97	_	1.53	V	CLK, CLK
imum pe <mark>ak</mark> to k input)	V _{PP}	360	_	_	mV	CLK, CLK
gh level output current				-20	mA	
urrent	I _{OL}	_	_	20	mA	
nture	Та	0	_	70	°C	
1	e voltage voltage t voltage ltage ltage limum peak to sinput) urrent	age VDDQ VREF e VTT VI voltage VIH voltage VIL t voltage VIL tage VIH tage VIH tage VIH tage VIH tage VIL tage VIL	Value	Value	Value	age V _{DDQ} 2.3 2.5 2.7 V VREF 1.15 1.25 1.35 V e V _{TT} V _{REF} -40 mV V V e V _I 0 — V _{REF} +40 mV V e V _I 0 — V _{REF} +40 mV V e V _I 0 — V V e V _I 0 — V

Note: The RESET input of the device must be held at V_{DDQ} or GND to ensure proper device operation. The differential inputs must not be floating, unless RESET is low.

Logic Diagram

Electrical Characteristics

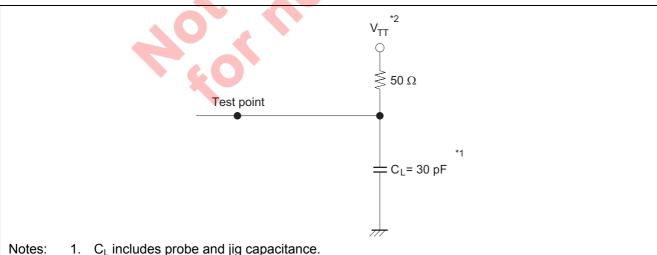
Ite	m	Symbol	V _{cc} (V)	Min	Тур	Max	Unit	Test Conditions
Input diode volta	age	V _{IK}	2.3	_	_	-1.2	V	I _{IN} = -18 mA
Output voltage		V _{OH}	2.3 to 2.7	V _{CC} -0.2	_		V	I _{OH} = –100 μA
			2.3	1.95		V_{DDQ}		I _{OH} = –16 mA
		V _{OL}	2.3 to 2.7	_		0.2		I _{OL} = 100 μA
			2.3	0	<u> </u>	0.35		I _{OL} = 16 mA
Input current	(All inputs)	I _{IN}	2.7	-	_	±5	μΑ	V _{IN} = 2.7 V or 0
Quiescent suppl	y current	Icc *2	2.7		_ (45	mA	$V_{IN} = V_{IH(AC)}$ or $V_{IL(AC)}$, $I_O =$
								0
Standby current		I _{CC (stdy)}	2.7	_		10	μΑ	RESET = GND
Dynamic operating clock only		I _{CCD} *2	2.7		_	90	μΑ/	$\overline{RESET} = V_{CC},$
							clock	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$,
							MHz	CLK and CLK switching 50%
								duty cycle
Dynamic operati	ing per each	I _{CCD} *2	2.7	_	_	15	μΑ/	$\overline{RESET} = V_{CC},$
data input				*			clock	$V_I = V_{IH(AC)}$ or $V_{IL(AC)}$,
							MHz/	CLK and CLK switching 50%
							data	duty cycle. One data input
							input	switching at half clock
								frequency, 50% duty cycle.
Output high *3		r_{OH}	2.3 to 2.7	7	_	22 *4	Ω	$I_{OH} = -20 \text{ mA}$
Output low *3		r _{OL}	2.3 to 2.7	7	_	22 *4	Ω	I _{OL} = 20 mA
r _{OH} - r _{OL} each separate bit *3		$r_{O(\Delta)}$	2.5	_	_	4	Ω	I _O = 20 mA, Ta = 25°C
Input	Data inputs	C _{IN}	2.5 *1	2.5	_	3.5	pF	V _I = V _{REF} ±310 mV
capacitance	CLK and CLK			2.5		3.5		V _{CMR} = 1.25 V, V _{PP} = 360 mV
	RESET			_	3.0			V _I = V _{CC} or GND

Notes: 1. All typical values are at $V_{CC} = 2.5 \text{ V}$, Ta = 25°C.

- 2. Total I_{CC} (max) = I_{CC} + { I_{CCD} (clock)×f(clock)} + { I_{CCD} (Data)×1/2f(clock)×14}
- 3. This is effective in the case that it did terminate by resistance.
- 4. See figure. 1, 2

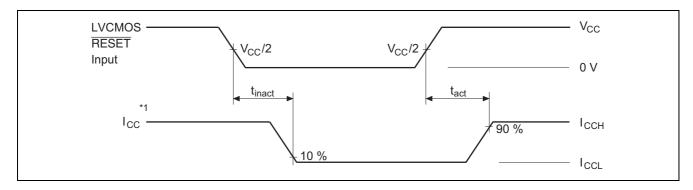
Switching Characteristics

Item		Symbol	V _{CC} = 2.	$V_{CC} = 2.5 \pm 0.2 \text{ V}$		Test Condition
		Symbol	Min	Max	Unit	rest Condition
Clock frequency		f _{clock}	_	200	MHz	
Setup time	Fast slew rate *4, 6	t _{su}	0.75	_	ns	Data before CLK↑, CLK↓
	Slow slew rate *5, 6		0.9	_		
Hold time	Fast slew rate *4, 6	t _h	0.75	_	ns	Data after CLK↑, CLK↓
	Slow slew rate *5, 6		0.9	_		
Differential input	ts active time	t _{act}	22	_	ns	Data inputs must be low after
						RESET high.
Differential input	ts inactive time	t _{inact}	22	_	ns	Data and clock inputs must be
						held at valid levels (not floating)
						after RESET low.
Pulse width		t _w	2.5	_	ns	CLK, CLK "H" or "L"
Output slew *3		t _{SL}	1	4	volt/ns	

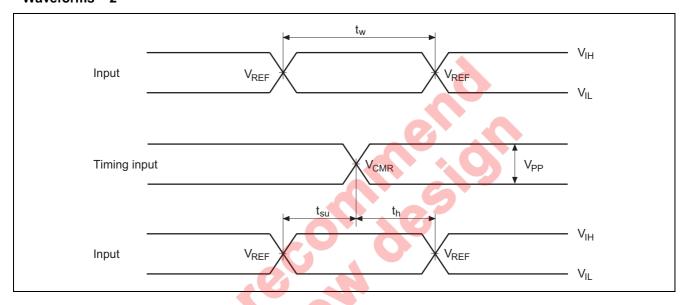

$$(C_L = 30 \text{ pF}, R_L = 50 \Omega, V_{REF} = V_{TT} = V_{DDO} \times 0.5)$$

Item	Symbol	$V_{CC} = 2.5 \pm 0.2 \text{ V}$			Unit	FROM	то
item	Symbol	Min	Тур	Max	Ollin	(Input)	(Output)
Maximum clock frequency	f _{max}	200	_	_	MHz		
Propagation delay time *2	$t_{PLH,} t_{PHL}$	1.1	_	2.8	ns	CLK, CLK	Q
	t _{PHL}	_	_	5.0		RESET	Q

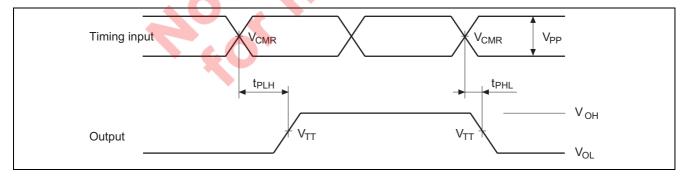
Notes: 1. Although the clock is differential, all timing is relative to CLK going high and CLK going low.

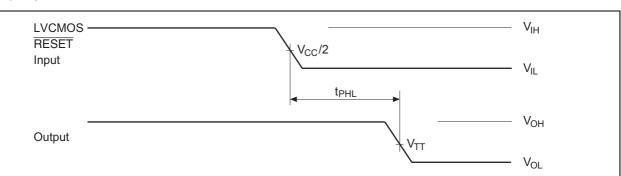

- 2. This timing relationship is specified into test load (see waveforms 3, 4) with all of the outputs switching.
- 3. Assumes into an equivalent, distributed load to the address net structure defined in the application information provided in this specification.
- 4. For data signal input slew rate ≥ 1 V/ns.
- 5. For data signal input slew rate ≥ 0.5 V/ns and < 1 V/ns.
- 6. CLK, CLK signals input slew rates are ≥ 1 V/ns

Test Circuit



- 1. C_L includes probe and jig capacitance.
- 2. $V_{TT} = V_{REF} = V_{DDQ} \times 0.5$
- 3. Input waveform : PRR \leq 10 MHz, Zo = 50 Ω , Input slew rate = 1 V/ns ±20% (unless otherwise noted.)


Waveforms - 1


Waveforms - 2

Waveforms - 3

Waveforms - 4

Notes:

- 1. I_{CC} tested with clock and data inputs held at V_{CC} or GND, and I_{O} = 0 mA.
- 2. All input pulses are supplied by generators having the following characteristics : PRR \leq 10 MHz, Zo = 50 Ω , input slew rate = 1 V/ns \pm 20% (unless otherwise specified).
- 3. The outputs are measured one at a time with one transition per measurement.

- 4. $V_{TT} = V_{REF} = V_{DDQ}/2$
- 5. $V_{IH} = V_{REF} + 310 \text{ mV}$ (AC voltage levels) for differential inputs. $V_{IH} = V_{CC}$ for LVCMOS input.
- 6. $V_{IL} = V_{REF}$ -310 mV (AC voltage levels) for differential inputs. $V_{IL} = GND$ for LVCMOS input.
- 7. t_{PLH} and t_{PHL} are the same as t_{pd}

Application Data

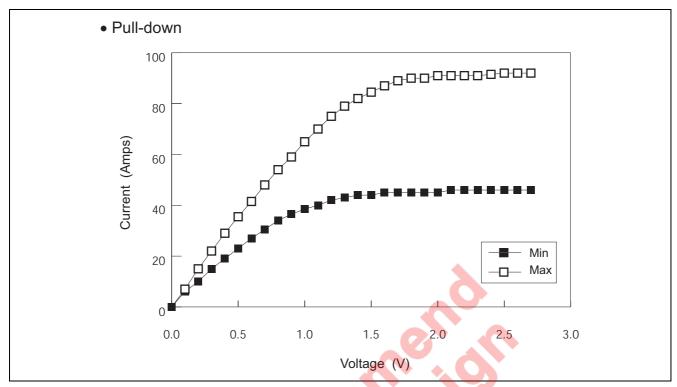
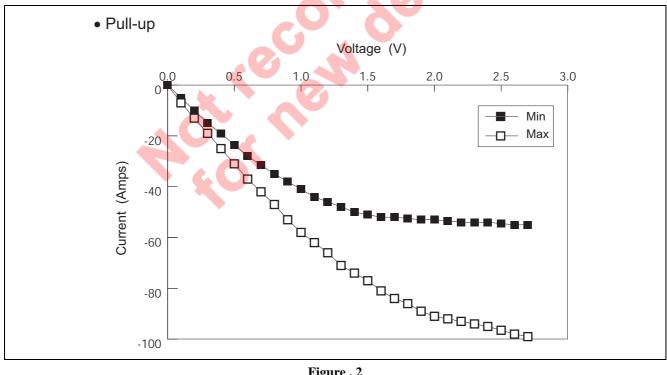
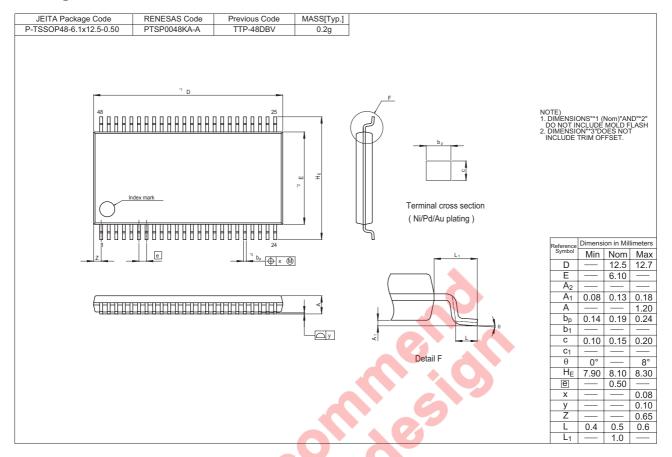
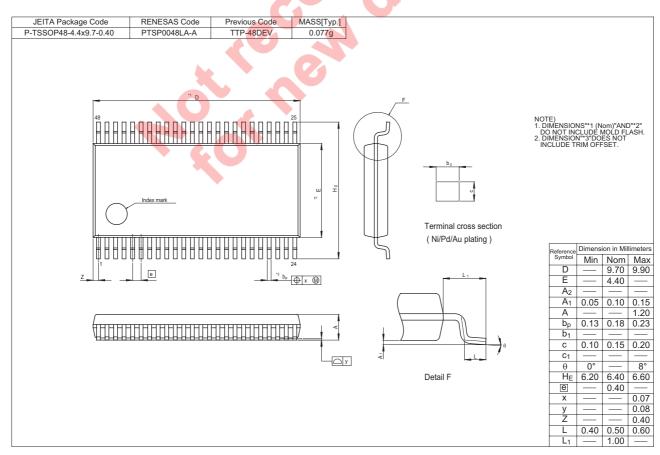


Figure . 1


Figure . 2

Curve Data

	Pull-	down	Pull-up		
Voltage (V)	I (mA)	I (mA)	I (mA)	I (mA)	
	Min	Max	Min	Max	
0.0	0	0	0	0	
0.1	6	7	- 5	– 7	
0.2	10	15	–10	–13	
0.3	15	22	–15	– 19	
0.4	19	29	-19	-25	
0.5	23	35.5	-23.5	-31	
0.6	27	41.5	-28	-37	
0.7	30.5	48	-31.5	-42	
0.8	34	54	-35	-4 7	
0.9	36.5	59	-38	– 53	
1.0	38.5	65	-4 1	– 58	
1.1	40	70	44	– 62	
1.2	42	75	-46	– 66	
1.3	43	79	-48	– 71	
1.4	44	82	-50	-74	
1.5	44	84.5	– 51	– 77	
1.6	45	87	-52	- 81	
1.7	45	89	– 52	-84	
1.8	45	90	-52.5	-86	
1.9	45	90	– 53	– 89	
2.0	45	91	– 53	– 91	
2.1	46	91	-53.5	– 92	
2.2	46	91	– 54	– 93	
2.3	46	91	– 54	-94	
2.4	46	91.5	-54	– 95	
2.5	46	92	-54.5	-96.5	
2.6	46	92	– 55	–98	
2.7	46	92	– 55	– 99	

Package Dimensions

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials 1. These materials are intended
- Notes regarding these materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors.

 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to

- Home page (http://www.renesas.com).

 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resoluting from the information contained herein.

 5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
- use.

 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.

 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd.10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd.Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510