Distinctive Characteristics

$.244^{\prime \prime}(6.2 \mathrm{~mm})$ square body allows compact mounting.

Heat resistant resin body meets lead-free solder processing requirements and UL flammability rating of 94V-0.

Stick-tube packaging allows rapid automated placement of devices.

Gold plated contacts available for very low voltage/current applications offer advantages of little or no oxidization or sulfurization and stable contact resistance.

Crimped terminals provide a spring type action which ensures secure mounting and prevents dislodging during automated soldering.

Insert molded terminals lock out flux, solvents, and other contaminants and allow automated soldering.

General Specifications

Electrical Capacity (Resistive Load)

Power Level (code P2)
Logic Level (code P4):

3VA maximum @ 28V DC maximum
(Applicable Range $10 \mathrm{~mA} \sim 125 \mathrm{~mA} @ 0.1 \mathrm{~V} \sim 28 \mathrm{~V}$)
0.4VA maximum @ 28V AC/DC maximum
(Applicable Range $0.1 \mathrm{~mA} \sim 0.1 \mathrm{~A} @ 20 \mathrm{mV} \sim 28 \mathrm{~V}$)
Note: See Supplement for further explanation of operating range.

Other Ratings

Contact Resistance: Insulation Resistance:

Dielectric Strength: Mechanical Life: Electrical Life: Nominal Operating Force: Total Travel:

100 milliohms maximum
100 megohms minimum @ 100V DC
250V AC minimum for 1 minute minimum between contacts \& between contacts \& case
500,000 operations minimum
500,000 operations minimum
1.60 N
$.008^{\prime \prime}(0.2 \mathrm{~mm})$

Materials \& Finishes

Actuator:
Case:
Base: Glass fiber reinforced polyamide (UL94V-0)
Movable Contacts:
Stationary Contacts:
Terminals:
Glass fiber reinforced polyamide (UL94V-0)
Stainless steel

Stainless steel with silver or gold plating
Brass with silver or gold plating
Brass with silver or gold plating

Environmental Data

Operating Temperature Range:
$-20^{\circ} \mathrm{C}$ through $+70^{\circ} \mathrm{C}\left(-4^{\circ} \mathrm{F}\right.$ through $\left.+158^{\circ} \mathrm{F}\right)$
90 ~ 95% humidity for 240 hours @ $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$
$10 \sim 55 \mathrm{~Hz}$ with peak-to-peak amplitude of 1.5 mm traversing the frequency range \& returning in 1 minute; 3 right angled directions for 2 hours
Shock: $\quad 100 \mathrm{G}\left(981 \mathrm{~m} / \mathrm{s}^{2}\right)$ acceleration (tested in 6 right angled directions, with 5 shocks in each direction)

PCB Processing

Soldering: Wave Soldering Recommended. See Profile A in Supplement section.
Manual Soldering: See Profile A in Supplement section.
Cleaning: These devices are not process sealed. Hand clean locally using alcohol based solution.

Standards \& Certifications

Flammability Standards:
UL Recognition
\& CSA Certification:

These switches are designed for use in a low-voltage, low-current circuit. When used as intended, the results do not produce hazardous energy.

TYPICAL SWITCH ORDERING EXAMPLE

DESCRIPTION FOR TYPICAL ORDERING EXAMPLE
HP0215AFKP2-S

POLE \& CIRCUIT

POLE \& CIRCUIT					
		Actuator Position () = Momentary		Switch Throw \& Schematic	
Pole	Model	Normal	Down	SPST	Note: Terminal numbers are
SP	HP0215A	OFF	(ON)		notacually on te swich.

TYPICAL SWITCH DIMENSIONS

Straight PC

HP0215AFKP2

PACKAGING

Stick-Tube

Switches must be ordered in 100-piece increments.

Stick-Tube Dimensions

Each stick-tube contains 100 switches.

KEYBOARD MATRIX

Common Bus Matrix

Blue $=$ PCB Trace, Black $=$ Switch Circuit

These single pole, single throw switches can be used in a keyboard matrix and, using strapped terminals, achieve a common bus electrical configuration on a single-sided PC board.

X-Y Matrix

PC Terminations								
		1	2	,	4	5	6	
	1	\bigcirc				\bigcirc		
	2	\bigcirc			\bigcirc			
	3	\bigcirc		\bigcirc				
	4		\bigcirc			\bigcirc		
\bigcirc	5		-		\bigcirc			
$1 \geq 1$	6		\bigcirc	\bigcirc				
\sim	7					\bigcirc	\bigcirc	
	8				\bigcirc		\bigcirc	
	9			\bigcirc			\bigcirc	
$\underset{\underset{\sim}{0}}{1}$	0				\bigcirc			\bigcirc
	A					\bigcirc		\bigcirc
	B			O				O
$\bigcirc=\mathrm{ON}$								

Blue $=$ PCB Trace, Black $=$ Switch Circuit

These single pole, single throw switches can be arranged on a single-sided PC board matrix with strapped terminals to achieve an $X-Y$ type electrical interconnection.

