

Stellaris® LM3S6730 Microcontroller

DATA SHEET

Copyright © 2007-2010 Texas Instruments Incorporated

DS-LM3S6730-7007

Copyright

Copyright © 2007-2010 Texas Instruments Incorporated All rights reserved. Stellaris and StellarisWare are registered trademarks of Texas Instruments Incorporated. ARM and Thumb are registered trademarks and Cortex is a trademark of ARM Limited. Other names and brands may be claimed as the property of others.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

A Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Texas Instruments Incorporated 108 Wild Basin, Suite 350 Austin, TX 78746 http://www.ti.com/stellaris http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm

Table of Contents

Revision H	History	16
About This	s Document	
Audience		
About This	Manual	
Related Doo	cuments	
Documentat	tion Conventions	
1	Architectural Overview	23
1.1	Product Features	
1.2	Target Applications	
1.3	High-Level Block Diagram	
1.4	Functional Overview	
1.4.	.1 ARM Cortex™-M3	
1.4.	.2 Motor Control Peripherals	
1.4.	.3 Analog Peripherals	
1.4.	.4 Serial Communications Peripherals	
1.4.	.5 System Peripherals	
1.4.	.6 Memory Peripherals	
1.4.	.7 Additional Features	
1.4.	.8 Hardware Details	
2	ARM Cortex-M3 Processor Core	
2.1	Block Diagram	
2.2	-	
2.2.	.1 Serial Wire and JTAG Debug	
2.2.	.2 Embedded Trace Macrocell (ETM)	
2.2.	.3 Trace Port Interface Unit (TPIU)	
2.2.	.4 ROM Table	
2.2.	.5 Memory Protection Unit (MPU)	
2.2.	.6 Nested Vectored Interrupt Controller (NVIC)	
3	Memory Map	42
4	Interrupts	44
5	JTAG Interface	47
5.1	Block Diagram	
5.2	Functional Description	
5.2.	.1 JTAG Interface Pins	
5.2.	.2 JTAG TAP Controller	50
5.2.	.3 Shift Registers	
5.2.	.4 Operational Considerations	
5.3	Initialization and Configuration	
5.4	Register Descriptions	
5.4.	.1 Instruction Register (IR)	
5.4.	.2 Data Registers	
6	System Control	
6.1	Functional Description	
6.1.	.1 Device Identification	59

6.1.2	Reset Control	59
6.1.3	Power Control	-
6.1.4	Clock Control	
6.1.5	System Control	
6.2	Initialization and Configuration	
6.3	Register Map	
6.4	Register Descriptions	
7	Internal Memory	
7.1	Block Diagram	
7.2	Functional Description	
7.2.1 7.2.2	SRAM Memory Flash Memory	
7.2.2	Flash Memory Initialization and Configuration	
7.3.1	Flash Programming	
7.3.2	Nonvolatile Register Programming	
7.4	Register Map	
7.5	Flash Register Descriptions (Flash Control Offset)	
7.6	Flash Register Descriptions (System Control Offset)	
8	General-Purpose Input/Outputs (GPIOs)	
8.1	Functional Description	
8.1.1	Data Control	
8.1.2	Interrupt Control	
8.1.3	Mode Control	
8.1.4	Commit Control	. 144
8.1.5	Pad Control	. 144
8.1.6	Identification	. 144
8.2	Initialization and Configuration	
8.3	Register Map	
8.4	Register Descriptions	
9	General-Purpose Timers	
9.1	Block Diagram	
9.2	Functional Description	
9.2.1	GPTM Reset Conditions	
9.2.2	32-Bit Timer Operating Modes	
9.2.3	16-Bit Timer Operating Modes	
9.3	Initialization and Configuration	
9.3.1 9.3.2	32-Bit Real-Time Clock (RTC) Mode	
9.3.2 9.3.3	16-Bit One-Shot/Periodic Timer Mode	
9.3.4	16-Bit Input Edge Count Mode	
9.3.5	16-Bit Input Edge Timing Mode	
9.3.6	16-Bit PWM Mode	
9.4	Register Map	
9.5	Register Descriptions	
10	Watchdog Timer	
10.1	Block Diagram	
10.2	Functional Description	

10.3	Initialization and Configuration	. 220
10.4	Register Map	. 220
10.5	Register Descriptions	. 221
11	Universal Asynchronous Receivers/Transmitters (UARTs)	242
11.1	Block Diagram	
11.2	Functional Description	. 243
11.2.1	Transmit/Receive Logic	
11.2.2	Baud-Rate Generation	
11.2.3	Data Transmission	
11.2.4	Serial IR (SIR)	
11.2.5	FIFO Operation	
11.2.6	Interrupts	
11.2.7	Loopback Operation	
11.2.8	IrDA SIR block	
11.3	Initialization and Configuration	
11.4	Register Map	
11.5	Register Descriptions	
12	Synchronous Serial Interface (SSI)	
12.1	•	
	Block Diagram	
12.2	Functional Description	
12.2.1	Bit Rate Generation	
12.2.2	FIFO Operation	
12.2.3	Interrupts	
12.2.4	Frame Formats	
12.3	Initialization and Configuration	
12.4	Register Map	
12.5	Register Descriptions	. 294
13	Ethernet Controller	
13.1	Block Diagram	
13.2	Functional Description	
13.2.1	MAC Operation	
13.2.2	Internal MII Operation	
13.2.3	PHY Operation	. 325
13.2.4	Interrupts	
13.3	Initialization and Configuration	. 327
13.3.1	Hardware Configuration	. 327
13.3.2	Software Configuration	. 328
13.4	Ethernet Register Map	. 328
13.5	Ethernet MAC Register Descriptions	. 330
13.6	MII Management Register Descriptions	. 348
14	Analog Comparators	367
14.1	Block Diagram	
14.2	Functional Description	
14.2.1	Internal Reference Programming	
14.3	Initialization and Configuration	
14.4	Register Map	
14.5	Register Descriptions	

15	Pin Diagram	378
16	Signal Tables	380
16.1	100-Pin LQFP Package Pin Tables	. 380
16.2	108-Pin BGA Package Pin Tables	. 390
17	Operating Characteristics	402
18	Electrical Characteristics	403
18.1	DC Characteristics	
18.1.1	Maximum Ratings	
18.1.2	Recommended DC Operating Conditions	
18.1.3	On-Chip Low Drop-Out (LDO) Regulator Characteristics	
18.1.4		
18.1.5	Power Specifications	
18.1.6	Flash Memory Characteristics	
18.2	AC Characteristics	
18.2.1	Load Conditions	
	JTAG and Boundary Scan	
	Reset	
18.2.5 18.2.6	Sleep Modes	
18.2.7	General-Purpose I/O (GPIO) Synchronous Serial Interface (SSI)	
18.2.8	Ethernet Controller	
18.2.9	Analog Comparator	
10.2.9		. 410
		44.
A	Serial Flash Loader	
A.1	Serial Flash Loader	. 417
A.1 A.2	Serial Flash Loader Interfaces	. 417 417
A.1 A.2 A.2.1	Serial Flash Loader Interfaces UART	417 417 417
A.1 A.2 A.2.1 A.2.2	Serial Flash Loader Interfaces UART SSI	. 417 . 417 . 417 . 417 . 417
A.1 A.2 A.2.1 A.2.2 A.3	Serial Flash Loader Interfaces UART SSI Packet Handling	. 417 417 . 417 . 417 . 417 . 418
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format	417 417 417 417 417 418 418
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets	417 417 417 417 417 418 418 418
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets	. 417 417 . 417 . 417 . 418 . 418 . 418 . 418
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands	. 417 417 . 417 . 417 . 418 . 418 . 418 . 418 . 418
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1	Serial Flash Loader Interfaces	417 417 417 417 417 418 418 418 418 418 418 419
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2	Serial Flash Loader Interfaces	417 417 417 417 417 418 418 418 418 418 418 419 419
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21)	. 417 417 417 417 417 418 418 418 418 418 418 419 419 419 419
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x24)	. 417 417 417 417 417 418 418 418 418 418 418 419 419 419 419 419 419
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x24) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22)	417 417 417 417 417 418 418 418 418 418 419 419 419 419 419 419 420
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x24)	417 417 417 417 417 418 418 418 418 418 418 419 419 419 419 419 419 420 420
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference	417 417 417 417 417 418 418 418 418 418 419 419 419 419 419 419 420 420 420 420 422
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22)	417 417 417 417 417 418 418 418 418 418 418 419 419 419 419 419 419 419 419 420 420 420 420 420 423
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information	417 417 417 417 418 418 418 418 418 418 419 419 419 419 419 419 419 420 420 420 420 420 420 423 435
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C C.1	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information Ordering Information	417 417 417 417 418 418 418 418 418 418 419 419 419 419 419 419 420 420 420 420 420 420 420 422 435 435
A.1 A.2 A.2.1 A.2.2 A.3 A.3.1 A.3.2 A.3.3 A.4 A.4.1 A.4.2 A.4.3 A.4.4 A.4.5 A.4.6 B C.1 C.1 C.2	Serial Flash Loader Interfaces UART SSI Packet Handling Packet Format Sending Packets Receiving Packets Commands COMMAND_PING (0X20) COMMAND_GET_STATUS (0x23) COMMAND_GET_STATUS (0x23) COMMAND_DOWNLOAD (0x21) COMMAND_SEND_DATA (0x24) COMMAND_SEND_DATA (0x24) COMMAND_RUN (0x22) COMMAND_RESET (0x25) Register Quick Reference Ordering and Contact Information Ordering Information Part Markings	417 417 417 417 417 418 418 418 418 418 418 419 419 419 419 419 419 420 420 420 420 420 420 420 420 420 420

List of Figures

Figure 1-1.	Stellaris [®] LM3S6730 Microcontroller High-Level Block Diagram	30
Figure 2-1.	CPU Block Diagram	37
Figure 2-2.	TPIU Block Diagram	38
Figure 5-1.	JTAG Module Block Diagram	48
Figure 5-2.	Test Access Port State Machine	51
Figure 5-3.	IDCODE Register Format	57
Figure 5-4.	BYPASS Register Format	
Figure 5-5.	Boundary Scan Register Format	58
Figure 6-1.	Basic RST Configuration	60
Figure 6-2.	External Circuitry to Extend Power-On Reset	61
Figure 6-3.	Reset Circuit Controlled by Switch	61
Figure 6-4.	Power Architecture	63
Figure 6-5.	Main Clock Tree	65
Figure 7-1.	Flash Block Diagram	. 116
Figure 8-1.	GPIO Port Block Diagram	. 142
Figure 8-2.	GPIODATA Write Example	143
Figure 8-3.	GPIODATA Read Example	143
Figure 9-1.	GPTM Module Block Diagram	183
Figure 9-2.	16-Bit Input Edge Count Mode Example	. 187
Figure 9-3.	16-Bit Input Edge Time Mode Example	
Figure 9-4.	16-Bit PWM Mode Example	
Figure 10-1.	WDT Module Block Diagram	219
Figure 11-1.	UART Module Block Diagram	243
Figure 11-2.	UART Character Frame	244
Figure 11-3.	IrDA Data Modulation	246
Figure 12-1.	SSI Module Block Diagram	283
Figure 12-2.	TI Synchronous Serial Frame Format (Single Transfer)	286
Figure 12-3.	TI Synchronous Serial Frame Format (Continuous Transfer)	
Figure 12-4.	Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0	
Figure 12-5.	Freescale SPI Format (Continuous Transfer) with SPO=0 and SPH=0	
Figure 12-6.	Freescale SPI Frame Format with SPO=0 and SPH=1	288
Figure 12-7.	Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0	289
Figure 12-8.	Freescale SPI Frame Format (Continuous Transfer) with SPO=1 and SPH=0	289
Figure 12-9.	Freescale SPI Frame Format with SPO=1 and SPH=1	290
Figure 12-10.	MICROWIRE Frame Format (Single Frame)	291
-	MICROWIRE Frame Format (Continuous Transfer)	
Figure 12-12.	MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements	292
Figure 13-1.	Ethernet Controller	
Figure 13-2.	Ethernet Controller Block Diagram	321
Figure 13-3.	Ethernet Frame	322
Figure 13-4.	Interface to an Ethernet Jack	327
Figure 14-1.	Analog Comparator Module Block Diagram	
Figure 14-2.	Structure of Comparator Unit	
Figure 14-3.	Comparator Internal Reference Structure	
Figure 15-1.	100-Pin LQFP Package Pin Diagram	
Figure 15-2.	108-Ball BGA Package Pin Diagram (Top View)	

Figure 18-1.	Load Conditions	406
Figure 18-2.	JTAG Test Clock Input Timing	408
Figure 18-3.	JTAG Test Access Port (TAP) Timing	
Figure 18-4.	JTAG TRST Timing	409
Figure 18-5.	External Reset Timing (RST)	410
Figure 18-6.	Power-On Reset Timing	
Figure 18-7.	Brown-Out Reset Timing	410
Figure 18-8.	Software Reset Timing	
Figure 18-9.	Watchdog Reset Timing	411
Figure 18-10.	SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing	
-	Measurement	412
Figure 18-11.	SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer	412
Figure 18-12.	SSI Timing for SPI Frame Format (FRF=00), with SPH=1	413
Figure 18-13.	External XTLP Oscillator Characteristics	415
Figure D-1.	100-Pin LQFP Package	437
Figure D-2.	108-Ball BGA Package	439

List of Tables

Table 1.	Revision History	16
Table 2.	Documentation Conventions	20
Table 3-1.	Метогу Мар	42
Table 4-1.	Exception Types	44
Table 4-2.	Interrupts	
Table 5-1.	JTAG Port Pins Reset State	49
Table 5-2.	JTAG Instruction Register Commands	
Table 6-1.	System Control Register Map	
Table 7-1.	Flash Protection Policy Combinations	
Table 7-2.	User-Programmable Flash Memory Resident Registers	. 119
Table 7-3.	Flash Register Map	
Table 8-1.	GPIO Pad Configuration Examples	. 145
Table 8-2.	GPIO Interrupt Configuration Example	. 145
Table 8-3.	GPIO Register Map	
Table 9-1.	Available CCP Pins	. 183
Table 9-2.	16-Bit Timer With Prescaler Configurations	. 186
Table 9-3.	Timers Register Map	. 192
Table 10-1.	Watchdog Timer Register Map	. 220
Table 11-1.	UART Register Map	. 248
Table 12-1.	SSI Register Map	. 293
Table 13-1.	TX & RX FIFO Organization	. 323
Table 13-2.	Ethernet Register Map	. 329
Table 14-1.	Internal Reference Voltage and ACREFCTL Field Values	. 369
Table 14-2.	Analog Comparators Register Map	. 370
Table 16-1.	Signals by Pin Number	. 380
Table 16-2.	Signals by Signal Name	. 383
Table 16-3.	Signals by Function, Except for GPIO	
Table 16-4.	GPIO Pins and Alternate Functions	. 389
Table 16-5.	Signals by Pin Number	. 390
Table 16-6.	Signals by Signal Name	. 394
Table 16-7.	Signals by Function, Except for GPIO	. 398
Table 16-8.	GPIO Pins and Alternate Functions	. 400
Table 17-1.	Temperature Characteristics	. 402
Table 17-2.	Thermal Characteristics	. 402
Table 17-3.	ESD Absolute Maximum Ratings	. 402
Table 18-1.	Maximum Ratings	. 403
Table 18-2.	Recommended DC Operating Conditions	. 403
Table 18-3.	LDO Regulator Characteristics	. 404
Table 18-4.	GPIO Module DC Characteristics	. 404
Table 18-5.	Detailed Power Specifications	. 405
Table 18-6.	Flash Memory Characteristics	
Table 18-7.	Phase Locked Loop (PLL) Characteristics	. 406
Table 18-8.	Actual PLL Frequency	. 406
Table 18-9.	Clock Characteristics	. 407
Table 18-10.	Crystal Characteristics	. 407
Table 18-11.	JTAG Characteristics	. 407

Table 18-12.	Reset Characteristics	. 409
Table 18-13.	Sleep Modes AC Characteristics	. 411
Table 18-14.	GPIO Characteristics	. 411
Table 18-15.	SSI Characteristics	. 411
Table 18-16.	100BASE-TX Transmitter Characteristics	. 413
Table 18-17.	100BASE-TX Transmitter Characteristics (informative)	. 413
Table 18-18.	100BASE-TX Receiver Characteristics	
Table 18-19.	10BASE-T Transmitter Characteristics	. 414
Table 18-20.	10BASE-T Transmitter Characteristics (informative)	. 414
Table 18-21.	10BASE-T Receiver Characteristics	
Table 18-22.	Isolation Transformers	
Table 18-23.	Ethernet Reference Crystal	. 415
Table 18-24.	External XTLP Oscillator Characteristics	
Table 18-25.	Analog Comparator Characteristics	
Table 18-26.	Analog Comparator Voltage Reference Characteristics	. 416
Table C-1.	Part Ordering Information	. 435

List of Registers

System (Control	. 59
Register 1	: Device Identification 0 (DID0), offset 0x000	70
Register 2	: Brown-Out Reset Control (PBORCTL), offset 0x030	72
Register 3	: LDO Power Control (LDOPCTL), offset 0x034	73
Register 4	: Raw Interrupt Status (RIS), offset 0x050	74
Register 5		
Register 6	: Masked Interrupt Status and Clear (MISC), offset 0x058	76
Register 7		
Register 8	: Run-Mode Clock Configuration (RCC), offset 0x060	78
Register 9		
Register 1	0: Run-Mode Clock Configuration 2 (RCC2), offset 0x070	83
Register 1	1: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144	85
Register 1	2: Device Identification 1 (DID1), offset 0x004	86
Register 1	3: Device Capabilities 0 (DC0), offset 0x008	88
Register 1	4: Device Capabilities 1 (DC1), offset 0x010	89
Register 1	5: Device Capabilities 2 (DC2), offset 0x014	91
Register 1	6: Device Capabilities 3 (DC3), offset 0x018	93
Register 1	7: Device Capabilities 4 (DC4), offset 0x01C	95
Register 1	8: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100	97
Register 1	9: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110	98
Register 2	0: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120	99
Register 2	1: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104	100
Register 2	2: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114	102
Register 2	3: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124	104
Register 2	4: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108	106
Register 2	5: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118	108
Register 2	6: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128	110
Register 2	7: Software Reset Control 0 (SRCR0), offset 0x040	112
Register 2	8: Software Reset Control 1 (SRCR1), offset 0x044	113
Register 2	9: Software Reset Control 2 (SRCR2), offset 0x048	114
Internal	Memory	116
Register 1	•	
Register 2	: Flash Memory Data (FMD), offset 0x004	122
Register 3	: Flash Memory Control (FMC), offset 0x008	123
Register 4	: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C	125
Register 5	: Flash Controller Interrupt Mask (FCIM), offset 0x010	126
Register 6	: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014	127
Register 7	: USec Reload (USECRL), offset 0x140	129
Register 8	: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200	130
Register 9	: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400	131
Register 1	0: User Debug (USER_DBG), offset 0x1D0	132
Register 1		
Register 1		
Register 1		
Register 1	4: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208	136

Register 15:	Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C	. 137
Register 16:	Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404	
Register 17:	Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408	
Register 18:	Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C	
General-Pu	rpose Input/Outputs (GPIOs)	. 141
Register 1:	GPIO Data (GPIODATA), offset 0x000	
Register 2:	GPIO Direction (GPIODIR), offset 0x400	
Register 3:	GPIO Interrupt Sense (GPIOIS), offset 0x404	
Register 4:	GPIO Interrupt Both Edges (GPIOIBE), offset 0x408	
Register 5:	GPIO Interrupt Event (GPIOIEV), offset 0x40C	
Register 6:	GPIO Interrupt Mask (GPIOIM), offset 0x410	
Register 7:	GPIO Raw Interrupt Status (GPIORIS), offset 0x414	
Register 8:	GPIO Masked Interrupt Status (GPIOMIS), offset 0x418	
Register 9:	GPIO Interrupt Clear (GPIOICR), offset 0x41C	
Register 10:	GPIO Alternate Function Select (GPIOAFSEL), offset 0x420	
Register 11:	GPIO 2-mA Drive Select (GPIODR2R), offset 0x500	
Register 12:	GPIO 4-mA Drive Select (GPIODR4R), offset 0x504	
Register 13:	GPIO 8-mA Drive Select (GPIODR8R), offset 0x508	
Register 14:	GPIO Open Drain Select (GPIOODR), offset 0x50C	
Register 15:	GPIO Pull-Up Select (GPIOPUR), offset 0x510	
Register 16:	GPIO Pull-Down Select (GPIOPDR), offset 0x514	
Register 17:	GPIO Slew Rate Control Select (GPIOSLR), offset 0x518	
Register 18:	GPIO Digital Enable (GPIODEN), offset 0x51C	
Register 19:	GPIO Lock (GPIOLOCK), offset 0x520	
Register 20:	GPIO Commit (GPIOCR), offset 0x524	
Register 21:	GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0	
Register 22:	GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4	
Register 23:	GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8	
Register 24:	GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC	
Register 25:	GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0	
Register 26:	GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4	. 175
Register 27:	GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8	
Register 28:	GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC	
Register 29:	GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0	
Register 30:	GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4	
Register 31:	GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8	
Register 32:	GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC	
General-Pu	rpose Timers	
Register 1:	GPTM Configuration (GPTMCFG), offset 0x000	
Register 2:	GPTM TimerA Mode (GPTMTAMR), offset 0x004	
Register 3:	GPTM TimerB Mode (GPTMTBMR), offset 0x008	
Register 4:	GPTM Control (GPTMCTL), offset 0x00C	
Register 5:	GPTM Interrupt Mask (GPTMIMR), offset 0x018	
Register 6:	GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C	
Register 7:	GPTM Masked Interrupt Status (GPTMMIS), offset 0x020	
Register 8:	GPTM Interrupt Clear (GPTMICR), offset 0x024	
Register 9:	GPTM TimerA Interval Load (GPTMTAILR), offset 0x024	
Register 10:	GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C	
	γ	

Register 11:	GPTM TimerA Match (GPTMTAMATCHR), offset 0x030	210
Register 12:	GPTM TimerB Match (GPTMTBMATCHR), offset 0x034	211
Register 13:	GPTM TimerA Prescale (GPTMTAPR), offset 0x038	212
Register 14:	GPTM TimerB Prescale (GPTMTBPR), offset 0x03C	213
Register 15:	GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040	214
Register 16:	GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044	215
Register 17:	GPTM TimerA (GPTMTAR), offset 0x048	216
Register 18:	GPTM TimerB (GPTMTBR), offset 0x04C	217
Watchdog T	ïmer	218
Register 1:	Watchdog Load (WDTLOAD), offset 0x000	
Register 2:	Watchdog Value (WDTVALUE), offset 0x004	223
Register 3:	Watchdog Control (WDTCTL), offset 0x008	224
Register 4:	Watchdog Interrupt Clear (WDTICR), offset 0x00C	225
Register 5:	Watchdog Raw Interrupt Status (WDTRIS), offset 0x010	226
Register 6:	Watchdog Masked Interrupt Status (WDTMIS), offset 0x014	
Register 7:	Watchdog Test (WDTTEST), offset 0x418	228
Register 8:	Watchdog Lock (WDTLOCK), offset 0xC00	229
Register 9:	Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0	230
Register 10:	Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4	231
Register 11:	Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8	232
Register 12:	Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC	233
Register 13:	Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0	234
Register 14:	Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4	
Register 15:	Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8	
Register 16:	Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC	
Register 17:	Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0	
Register 18:	Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4	239
Register 19:	Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8	240
Register 20:	Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC	241
Universal As	synchronous Receivers/Transmitters (UARTs)	242
Register 1:	UART Data (UARTDR), offset 0x000	
Register 2:	UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004	252
Register 3:	UART Flag (UARTFR), offset 0x018	254
Register 4:	UART IrDA Low-Power Register (UARTILPR), offset 0x020	256
Register 5:	UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024	257
Register 6:	UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028	258
Register 7:	UART Line Control (UARTLCRH), offset 0x02C	259
Register 8:	UART Control (UARTCTL), offset 0x030	261
Register 9:	UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034	263
Register 10:	UART Interrupt Mask (UARTIM), offset 0x038	265
Register 11:	UART Raw Interrupt Status (UARTRIS), offset 0x03C	267
Register 12:	UART Masked Interrupt Status (UARTMIS), offset 0x040	268
Register 13:	UART Interrupt Clear (UARTICR), offset 0x044	
Register 14:	UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0	271
Register 15:	UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4	272
Register 16:	UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8	
Register 17:	UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC	
Register 18:	UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0	275

Register 19:	UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4	276
Register 20:	UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8	277
Register 21:	UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC	278
Register 22:	UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0	279
Register 23:	UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4	280
Register 24:	UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8	281
Register 25:	UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC	
Synchronou	IS Serial Interface (SSI)	283
Register 1:	SSI Control 0 (SSICR0), offset 0x000	
Register 2:	SSI Control 1 (SSICR1), offset 0x004	
Register 3:	SSI Data (SSIDR), offset 0x008	
Register 4:	SSI Status (SSISR), offset 0x00C	
Register 5:	SSI Clock Prescale (SSICPSR), offset 0x010	
Register 6:	SSI Interrupt Mask (SSIIM), offset 0x014	
Register 7:	SSI Raw Interrupt Status (SSIRIS), offset 0x018	
Register 8:	SSI Masked Interrupt Status (SSIMIS), offset 0x01C	306
Register 9:	SSI Interrupt Clear (SSIICR), offset 0x020	
Register 10:	SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0	308
Register 11:	SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4	
Register 12:	SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8	310
Register 13:	SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC	311
Register 14:	SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0	312
Register 15:	SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4	
Register 16:	SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8	314
Register 17:	SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC	
Register 18:	SSI PrimeCell Identification 0 (SSIPCelIID0), offset 0xFF0	
Register 19:	SSI PrimeCell Identification 1 (SSIPCellID1), offset 0xFF4	
Register 20:	SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8	
Register 21:	SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC	
Ethernet Co	ntroller	320
Register 1:	Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK), offset 0x000	
Register 2:	Ethernet MAC Interrupt Mask (MACIM), offset 0x004	
Register 3:	Ethernet MAC Receive Control (MACRCTL), offset 0x008	
Register 4:	Ethernet MAC Transmit Control (MACTCTL), offset 0x00C	
Register 5:	Ethernet MAC Data (MACDATA), offset 0x010	
Register 6:	Ethernet MAC Individual Address 0 (MACIA0), offset 0x014	
Register 7:	Ethernet MAC Individual Address 1 (MACIA1), offset 0x018	
Register 8:	Ethernet MAC Threshold (MACTHR), offset 0x01C	
Register 9:	Ethernet MAC Management Control (MACMCTL), offset 0x020	
Register 10:	Ethernet MAC Management Divider (MACMDV), offset 0x024	
Register 11:	Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C	
Register 12:	Ethernet MAC Management Receive Data (MACMRXD), offset 0x030	
Register 13:	Ethernet MAC Number of Packets (MACNP), offset 0x034	
Register 14:	Ethernet MAC Transmission Request (MACTR), offset 0x038	
Register 15:	Ethernet PHY Management Register 0 – Control (MR0), address 0x00	
Register 16:	Ethernet PHY Management Register 1 – Status (MR1), address 0x01	
Register 17:	Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02	
Register 18:	Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03	
~		

Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04	355
Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05	357
Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06	358
	359
Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address	
0x11	361
Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12	363
Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13	364
Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17	365
Ethernet PHY Management Register 24 - MDI/MDIX Control (MR24), address 0x18	366
nparators	367
Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000	371
Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004	372
Analog Comparator Interrupt Enable (ACINTEN), offset 0x008	373
Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010	374
Analog Comparator Status 0 (ACSTAT0), offset 0x020	375
Analog Comparator Status 1 (ACSTAT1), offset 0x040	375
Analog Comparator Control 0 (ACCTL0), offset 0x024	376
Analog Comparator Control 1 (ACCTL1), offset 0x044	376
	0x04 Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05 Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06 Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10 Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11 Ethernet PHY Management Register 18 – Diagnostic (MR18), address 0x12 Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13 Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x18 Ethernet PHY Management Register 24 –MDI/MDIX Control (MR24), address 0x18

Revision History

The revision history table notes changes made between the indicated revisions of the LM3S6730 data sheet.

Table 1. Revision History

Date	Revision	Description
March 2008	2550	Started tracking revision history.
April 2008	2881	 The O_{JA} value was changed from 55.3 to 34 in the "Thermal Characteristics" table in the Operating Characteristics chapter.
		 Bit 31 of the DC3 register was incorrectly described in prior versions of the data sheet. A reset of 1 indicates that an even CCP pin is present and can be used as a 32-KHz input clock.
		 Values for I_{DD_HIBERNATE} were added to the "Detailed Power Specifications" table in the "Electrical Characteristics" chapter.
		The "Hibernation Module DC Electricals" table was added to the "Electrical Characteristics" chapter.
		 The maximum value on Core supply voltage (V_{DD25}) in the "Maximum Ratings" table in the "Electrical Characteristics" chapter was changed from 4 to 3.
		 The operational frequency of the internal 30-kHz oscillator clock source is 30 kHz ± 50% (prior data sheets incorrectly noted it as 30 kHz ± 30%).
		• A value of 0x3 in bits 5:4 of the MISC register (OSCSRC) indicates the 30-KHz internal oscillator is the input source for the oscillator. Prior data sheets incorrectly noted 0x3 as a reserved value.
		 The reset for bits 6:4 of the RCC2 register (OSCSRC2) is 0x1 (IOSC). Prior data sheets incorrectly noted the reset was 0x0 (MOSC).
		A note on high-current applications was added to the GPIO chapter:
		For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the VOL value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.
		A note on Schmitt inputs was added to the GPIO chapter:
		Pins configured as digital inputs are Schmitt-triggered.
		The Buffer type on the WAKE pin changed from OD to - in the Signal Tables.
		The "Differential Sampling Range" figures in the ADC chapter were clarified.
		The last revision of the data sheet (revision 2550) introduced two errors that have now been corrected:
		 The LQFP pin diagrams and pin tables were missing the comparator positive and negative input pins.
		– The base address was listed incorrectly in the FMPRE0 and FMPPE0 register bit diagrams.
		 Additional minor data sheet clarifications and corrections.
		<u> </u>

Table 1.	Revision	History	(continued)
----------	----------	---------	-------------

Date	Revision	Description
May 2008	2972	 As noted in the PCN, three of the nine Ethernet LED configuration options are no longer supported: TX Activity (0x2), RX Activity (0x3), and Collision (0x4). These values for the LED0 and LED1 bit fields in the MR23 register are now marked as reserved.
		 As noted in the PCN, the option to provide VDD25 power from external sources was removed. Use the LDO output as the source of VDD25 input.
		 As noted in the PCN, pin 41 (ball K3 on the BGA package) was renamed from GNDPHY to ERBIAS. A 12.4-kΩ resistor should be connected between ERBIAS and ground to accommodate future device revisions (see "Functional Description" on page 321).
		 Additional minor data sheet clarifications and corrections.
July 2008	3108	Corrected resistor value in ERBIAS signal description.
		 Additional minor data sheet clarifications and corrections.
August 2008	3447	 Added note on clearing interrupts to Interrupts chapter.
		 Added Power Architecture diagram to System Control chapter.
		 Additional minor data sheet clarifications and corrections.
October 2008	4149	 Corrected values for DSOSCSRC bit field in Deep Sleep Clock Configuration (DSLPCLKCFG) register.
		 The FMA value for the FMPRE3 register was incorrect in the Flash Resident Registers table in the Internal Memory chapter. The correct value is 0x0000.0006.
		 In the Ethernet chapter, major improvements were made including a rewrite of the conceptual information and the addition of new figures to clarify how to use the Ethernet Controller interface.
		 Incorrect Comparator Operating Modes tables were removed from the Analog Comparators chapter.
November 2008	4283	Revised High-Level Block Diagram.
		 Additional minor data sheet clarifications and corrections were made.
January 2009	4660	Corrected bit type for RELOAD bit field in SysTick Reload Value register; changed to R/W.
		 Clarification added as to what happens when the SSI in slave mode is required to transmit but there is no data in the TX FIFO.
		 Added "Hardware Configuration" section to Ethernet Controller chapter.
		 Additional minor data sheet clarifications and corrections.
April 2009	5367	 Added JTAG/SWD clarification (see "Communication with JTAG/SWD" on page 53).
		 Added clarification that the PLL operates at 400 MHz, but is divided by two prior to the application of the output divisor.
		 Added "GPIO Module DC Characteristics" table (see Table 18-4 on page 404).
		 Additional minor data sheet clarifications and corrections.

Table 1. Revision History (continued)

Date	Revision	Description
July 2009	5902	 Clarified Power-on reset and RST pin operation; added new diagrams.
		 Clarified explanation of nonvolatile register programming in Internal Memory chapter.
		 Added explanation of reset value to FMPRE0/1/2/3, FMPPE0/1/2/3, USER_DBG, and USER_REG0/1 registers.
		 Added description for Ethernet PHY power-saving modes.
		• Corrected the reset values for bits 6 and 7 in the Ethernet MR24 register.
		■ Changed buffer type for WAKE pin to TTL and HIB pin to OD.
		 In ADC characteristics table, changed Max value for GAIN parameter from ±1 to ±3 and added E_{IR} (Internal voltage reference error) parameter.
		 Additional minor data sheet clarifications and corrections.
July 2009	5920	Corrected ordering numbers.
October 2009	6462	 Deleted reset value for 16-bit mode from GPTMTAILR, GPTMTAMATCHR, and GPTMTAR registers because the module resets in 32-bit mode.
		 Made these changes to the Electrical Characteristics chapter:
		– Removed V_{SIH} and V_{SIL} parameters from Operating Conditions table.
		 Added table showing actual PLL frequency depending on input crystal.
		 Changed the name of the t_{HIB_REG_WRITE} parameter to t_{HIB_REG_ACCESS}.
		 Changed SSI set up and hold times to be expressed in system clocks, not ns.
January 2010	6712	In "System Control" section, clarified Debug Access Port operation after Sleep modes.
		 Clarified wording on Flash memory access errors.
		 Added section on Flash interrupts.
		 Clarified operation of SSI transmit FIFO.
		 Made these changes to the Operating Characteristics chapter:
		 Added storage temperature ratings to "Temperature Characteristics" table
		 Added "ESD Absolute Maximum Ratings" table
		 Made these changes to the Electrical Characteristics chapter:
		 In "Flash Memory Characteristics" table, corrected Mass erase time
		 Added sleep and deep-sleep wake-up times ("Sleep Modes AC Characteristics" table)
		 In "Reset Characteristics" table, corrected units for supply voltage (VDD) rise time

Date	Revision	Description
April 2010	7007	 Added caution note to the I²C Master Timer Period (I2CMTPR) register description and changed field width to 7 bits.
		 Removed erroneous text about restoring the Flash Protection registers.
		■ Added note about RST signal routing.
		Clarified the function of the TRSTALL bit in the GPTMCTL register.
		Corrected XTALNPHY pin description.
		 Additional minor data sheet clarifications and corrections.

Table 1. Revision History (continued)

About This Document

This data sheet provides reference information for the LM3S6730 microcontroller, describing the functional blocks of the system-on-chip (SoC) device designed around the ARM® Cortex[™]-M3 core.

Audience

This manual is intended for system software developers, hardware designers, and application developers.

About This Manual

This document is organized into sections that correspond to each major feature.

Related Documents

The following related documents are available on the documentation CD or from the Stellaris[®] web site at www.ti.com/stellaris:

- ARM® CoreSight Technical Reference Manual
- ARM® Cortex[™]-M3 Errata
- ARM® Cortex[™]-M3 Technical Reference Manual
- ARM® v7-M Architecture Application Level Reference Manual
- Stellaris® Graphics Library User's Guide
- Stellaris® Peripheral Driver Library User's Guide
- Stellaris® Errata

The following related documents are also referenced:

■ IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture

This documentation list was current as of publication date. Please check the web site for additional documentation, including application notes and white papers.

Documentation Conventions

This document uses the conventions shown in Table 2 on page 20.

Table 2. Documentation Conventions

Notation	Meaning	
General Register Notation		
REGISTER	APB registers are indicated in uppercase bold. For example, PBORCTL is the Power-On and Brown-Out Reset Control register. If a register name contains a lowercase n, it represents more than one register. For example, SRCRn represents any (or all) of the three Software Reset Control registers: SRCR0 , SRCR1 , and SRCR2 .	
bit	A single bit in a register.	

0: however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. yy:xx The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register. Register Bit/Field This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field. RC Software can read this field. The bit or field is cleared by hardware after reading the bit/field. RO Software can read or write this field. RW1C Software can read or write this field. RW1C Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register, the remaining bits remain unchanged. This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reporte at the time the register was read. RW1S Software can are write this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. WU1C Software can write this field. A write of a 0 to a RW1S bit does not affect the bit value in the register the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data. This register is typically used to clear the corresponding bit in an interrupt regist	Notation	Meaning		
in "Memory Map" on page 42. Register N Registers are numbered consecutively throughout the document to aid in referencing them. The register number has no meaning to software. reserved Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to 0, however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. yy:xx The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 it that register. Register Bit/Field This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field. RC Software can read this field. The bit or field is cleared by hardware after reading the bit/field. RW Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register, the remaining bits remain unchanger provides the interrupt status and the write of the read value clears only the interrupts being reporte at the time the register was read. RW1S Software can read or write in the field. A write of a 0 to a RW1S bit does not affect the bit value in the register rupt satus and the write of the register rupt satus and the register. W1C Software can write his field. A write of a 0 to a RW1S bit does not affect the bit value in the register rupt satus and the write of the register rupt satus bits where the register.	bit field	Two or more consecutive and related bits.		
register number has no meaning to software. reserved Register bits marked reserved are reserved for future use. In most cases, reserved bits are set to 0; however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. yy:xx The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 is that register. Register Bit/Field This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field. RC Software can read this field. The bit or field is cleared by hardware after reading the bit/field. RW Software can read or write this field. Always write the chip reset value. RW Software can read or write this field. Always write the chip reset value. RW Software can read or write this field. Always write the register; the remaining bits remain unchanged the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged at the time the register was read. RW1S Software can read or write at 1 to this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. W1C Software and this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can read to write at 1 to this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. <tr< td=""><td>offset 0xnnn</td><td colspan="3"></td></tr<>	offset 0xnnn			
0: however, user software should not rely on the value of a reserved bit. To provide software compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. yy:xx The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register. Register Bit/Field This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field. RC Software can read this field. The bit or field is cleared by hardware after reading the bit/field. RO Software can read or write this field. RW1C Software can read or write this field. RW1C Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register, the remaining bits remain unchanged. This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reporte at the time the register was read. RW1S Software can are write this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. WU1C Software can write this field. A write of a 0 to a RW1S bit does not affect the bit value in the register the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data. This register is typically used to clear the corresponding bit in an interrupt regist	Register N			
Inite register. Register Bit/Field This value in the register bit diagram indicates whether software running on the controller can change the value of the bit field. RC Software can read this field. The bit or field is cleared by hardware after reading the bit/field. RO Software can read or write this field. Aways write the chip reset value. RW Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register, the remaining bits remain unchangee. This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reporter at the time the register. A write of a 1 to this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. RW1S Software can read or write a 1 to this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. W1C Software can read or write a 1 to this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can avrite this field. A write of a 0 to a W1C bit does not affect the bit value in the register is typically used to clear the value of the eighter, the remaining bits remain unchanged. A read of the register is typically used to clear the corresponding bit in an interrupt register. W0 Only a write by software is valid; a read of the register returns no meaningful data. This register bit diagram shows the bit/field value after a	reserved	compatibility with future products, the value of a reserved bit should be preserved across a		
Types change the value of the bit field. RC Software can read this field. The bit or field is cleared by hardware after reading the bit/field. RO Software can read or write this field. RW Software can read or write this field. RW1C Software can read or write this field. RW1C Software can read or write this field. RW1C Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the read value clears only the interrupts being reporter at the time the register was read. RW1S Software can read or write a 1 to this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W0 Only a write by software is valid; a read of the register, the remaining bits remain unchanged. A read of the register fibr/Field graue after is bypically used to clear the corresponding bit in an interrupt register. W0 Only a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. Re	уу:хх	The range of register bits inclusive from xx to yy. For example, 31:15 means bits 15 through 31 in that register.		
RO Software can read this field. Always write the chip reset value. RW Software can read or write this field. RW1C Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register, the remaining bits remain unchanged This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reported at the time the register was read. RW1S Software can read or write a 1 to this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register is typically used to clear the corresponding bit in an interrupt register. W0 Only a write by software is valid; a read of the register returns no meaningful data. Reset Value This value in the register bit diagram shows the bit/field value after any reset, unless noted. Reset Value Bit set to 1 on chip reset. 0 Bit set to 1 on chip reset. 1 Bit set to 1 on chip reset. <t< td=""><td>-</td><td></td></t<>	-			
RW Software can read or write this field. RW1C Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reporte at the time the register was read. RW1S Software can read or write a 1 to this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W0 Software is typically used to clear the corresponding bit in an interrupt register. W0 Only a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. Reset Value Bit set to 1 on chip reset. 1 Bit set to 1 on chip reset. 2 Nondeterministic. Pin/Signal Notation Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. <tr< td=""><td>RC</td><td>Software can read this field. The bit or field is cleared by hardware after reading the bit/field.</td></tr<>	RC	Software can read this field. The bit or field is cleared by hardware after reading the bit/field.		
RW1C Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reporte at the time the register was read. RW1S Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register to a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. Register Late the to 0 on chip reset. Nondeterministic. P	RO	Software can read this field. Always write the chip reset value.		
register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. This register type is primarily used for clearing interrupt status bits where the read operation provides the interrupt status and the write of the read value clears only the interrupts being reporter at the time the register was read. R/W1S Software can read or write a 1 to this field. A write of a 0 to a R/W1S bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W0 Only a write by software is valied; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. 0 Bit cleared to 0 on chip reset. - Nondeterministic. Pin/Signal Notation Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to th	R/W	Software can read or write this field.		
provides the interrupt status and the write of the read value clears only the interrupts being reporter at the time the register was read. RW1S Software can read or write at 10 this field. A write of a 0 to a RW1S bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. W0 Only a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. Reset Value Do n chip reset. 1 Bit set to 1 on chip reset. - Nondeterministic. Pin/Signal Notation Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active high signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False	R/W1C	Software can read or write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged		
value in the register. W1C Software can write this field. A write of a 0 to a W1C bit does not affect the bit value in the register. A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data. This register is typically used to clear the corresponding bit in an interrupt register. WO Only a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. Reset Value Bit cleared to 0 on chip reset. 1 Bit set to 1 on chip reset. - Nondeterministic. Pin/Signal Notation Iii a pin alternate function; a pin defaults to the signal without the brackets. pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is		provides the interrupt status and the write of the read value clears only the interrupts being reported		
A write of a 1 clears the value of the bit in the register; the remaining bits remain unchanged. A read of the register returns no meaningful data. This register is typically used to clear the corresponding bit in an interrupt register. WO Only a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. 0 Bit cleared to 0 on chip reset. 1 Bit set to 1 on chip reset. - Nondeterministic. Pin/Signal Notation [] [] Pin alternate function; a pin defaults to the signal without the brackets. pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.	R/W1S			
WO Only a write by software is valid; a read of the register returns no meaningful data. Register Bit/Field This value in the register bit diagram shows the bit/field value after any reset, unless noted. 0 Bit cleared to 0 on chip reset. 1 Bit set to 1 on chip reset. - Nondeterministic. Pin/Signal Notation Image: Signal Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High.	W1C			
Register Bit/Field Reset Value This value in the register bit diagram shows the bit/field value after any reset, unless noted. 0 Bit cleared to 0 on chip reset. 1 Bit set to 1 on chip reset. - Nondeterministic. Pin/Signal Notation Image: Comparison of the provided straining the provide		This register is typically used to clear the corresponding bit in an interrupt register.		
Reset Value Image: Constraint of the section of th	WO	Only a write by software is valid; a read of the register returns no meaningful data.		
1 Bit set to 1 on chip reset. - Nondeterministic. Pin/Signal Notation [] Pin alternate function; a pin defaults to the signal without the brackets. pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	•	This value in the register bit diagram shows the bit/field value after any reset, unless noted.		
- Nondeterministic. Pin/Signal Notation [] [] Pin alternate function; a pin defaults to the signal without the brackets. pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL Geassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	0	Bit cleared to 0 on chip reset.		
Pin/Signal Notation [] Pin alternate function; a pin defaults to the signal without the brackets. pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	1	Bit set to 1 on chip reset.		
[] Pin alternate function; a pin defaults to the signal without the brackets. pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	-	Nondeterministic.		
pin Refers to the physical connection on the package. signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	Pin/Signal Notation	·		
signal Refers to the electrical signal encoding of a pin. assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates tha it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	[]	Pin alternate function; a pin defaults to the signal without the brackets.		
assert a signal Change the value of the signal from the logically False state to the logically True state. For active High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	pin	Refers to the physical connection on the package.		
High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal value is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGNAL below). deassert a signal Change the value of the signal from the logically True state to the logically False state. SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	signal	Refers to the electrical signal encoding of a pin.		
SIGNAL Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	assert a signal	High signals, the asserted signal value is 1 (High); for active Low signals, the asserted signal val is 0 (Low). The active polarity (High or Low) is defined by the signal name (see SIGNAL and SIGN.		
it is active Low. To assert SIGNAL is to drive it Low; to deassert SIGNAL is to drive it High. SIGNAL Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To	deassert a signal	Change the value of the signal from the logically True state to the logically False state.		
	SIGNAL	Signal names are in uppercase and in the Courier font. An overbar on a signal name indicates that		
0	SIGNAL	Signal names are in uppercase and in the Courier font. An active High signal has no overbar. To assert SIGNAL is to drive it High; to deassert SIGNAL is to drive it Low.		

 Table 2. Documentation Conventions (continued)

Notation	Meaning
X	An uppercase X indicates any of several values is allowed, where X can be any legal pattern. For example, a binary value of 0X00 can be either 0100 or 0000, a hex value of 0xX is 0x0 or 0x1, and so on.
0x	Hexadecimal numbers have a prefix of 0x. For example, 0x00FF is the hexadecimal number FF.
	All other numbers within register tables are assumed to be binary. Within conceptual information, binary numbers are indicated with a b suffix, for example, 1011b, and decimal numbers are written without a prefix or suffix.

Table 2. Documentation Conventions (continued)

1 Architectural Overview

The Stellaris[®] family of microcontrollers—the first ARM® Cortex[™]-M3 based controllers—brings high-performance 32-bit computing to cost-sensitive embedded microcontroller applications. These pioneering parts deliver customers 32-bit performance at a cost equivalent to legacy 8- and 16-bit devices, all in a package with a small footprint.

The Stellaris[®] family offers efficient performance and extensive integration, favorably positioning the device into cost-conscious applications requiring significant control-processing and connectivity capabilities. The Stellaris[®] LM3S6000 series combines both a 10/100 Ethernet Media Access Control (MAC) and Physical (PHY) layer, marking the first time that integrated connectivity is available with an ARM Cortex-M3 MCU and the only integrated 10/100 Ethernet MAC and PHY available in an ARM architecture MCU.

The LM3S6730 microcontroller is targeted for industrial applications, including remote monitoring, electronic point-of-sale machines, test and measurement equipment, network appliances and switches, factory automation, HVAC and building control, gaming equipment, motion control, medical instrumentation, and fire and security.

In addition, the LM3S6730 microcontroller offers the advantages of ARM's widely available development tools, System-on-Chip (SoC) infrastructure IP applications, and a large user community. Additionally, the microcontroller uses ARM's Thumb®-compatible Thumb-2 instruction set to reduce memory requirements and, thereby, cost. Finally, the LM3S6730 microcontroller is code-compatible to all members of the extensive Stellaris[®] family; providing flexibility to fit our customers' precise needs.

Texas Instruments offers a complete solution to get to market quickly, with evaluation and development boards, white papers and application notes, an easy-to-use peripheral driver library, and a strong support, sales, and distributor network. See "Ordering and Contact Information" on page 435 for ordering information for Stellaris[®] family devices.

1.1 **Product Features**

The LM3S6730 microcontroller includes the following product features:

- 32-Bit RISC Performance
 - 32-bit ARM® Cortex[™]-M3 v7M architecture optimized for small-footprint embedded applications
 - System timer (SysTick), providing a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism
 - Thumb®-compatible Thumb-2-only instruction set processor core for high code density
 - 50-MHz operation
 - Hardware-division and single-cycle-multiplication
 - Integrated Nested Vectored Interrupt Controller (NVIC) providing deterministic interrupt handling
 - 21 interrupts with eight priority levels

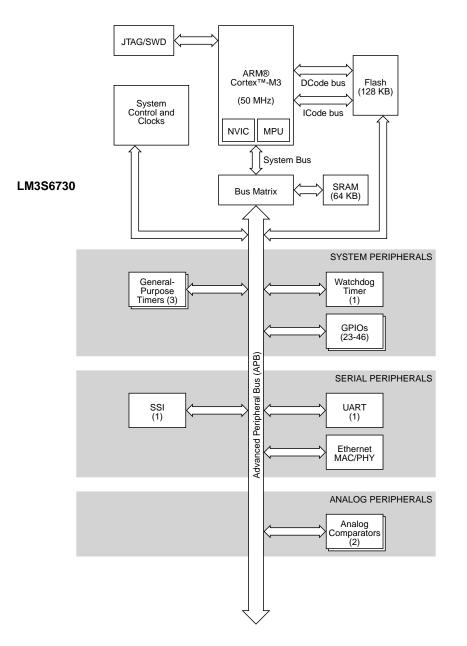
- Memory protection unit (MPU), providing a privileged mode for protected operating system functionality
- Unaligned data access, enabling data to be efficiently packed into memory
- Atomic bit manipulation (bit-banding), delivering maximum memory utilization and streamlined peripheral control
- ARM® Cortex[™]-M3 Processor Core
 - Compact core.
 - Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
 - Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
 - Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
 - Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
 - Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
 - Migration from the ARM7[™] processor family for better performance and power efficiency.
 - Full-featured debug solution
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
 - Optimized for single-cycle flash usage
 - Three sleep modes with clock gating for low power
 - Single-cycle multiply instruction and hardware divide
 - Atomic operations
 - ARM Thumb2 mixed 16-/32-bit instruction set
 - 1.25 DMIPS/MHz
- JTAG

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST
- ARM additional instructions: APACC, DPACC and ABORT
- Integrated ARM Serial Wire Debug (SWD)
- Internal Memory
 - 128 KB single-cycle flash
 - User-managed flash block protection on a 2-KB block basis
 - User-managed flash data programming
 - User-defined and managed flash-protection block
 - 64 KB single-cycle SRAM
- GPIOs
 - 23-46 GPIOs, depending on configuration
 - 5-V-tolerant input/outputs
 - Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - · Level-sensitive on High or Low values
 - Bit masking in both read and write operations through address lines
 - Pins configured as digital inputs are Schmitt-triggered.
 - Programmable control for GPIO pad configuration
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables
- General-Purpose Timers
 - Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers/counters. Each GPTM can be configured to operate independently:

- As a single 32-bit timer
- As one 32-bit Real-Time Clock (RTC) to event capture
- For Pulse Width Modulation (PWM)
- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - · User-enabled stalling when the controller asserts CPU Halt flag during debug
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal
- ARM FiRM-compliant Watchdog Timer
 - 32-bit down counter with a programmable load register
 - Separate watchdog clock with an enable
 - Programmable interrupt generation logic with interrupt masking
 - Lock register protection from runaway software
 - Reset generation logic with an enable/disable
 - User-enabled stalling when the controller asserts the CPU Halt flag during debug
- UART
 - Fully programmable 16C550-type UART with IrDA support
 - Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading

- Programmable baud-rate generator allowing speeds up to 3.125 Mbps
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Standard asynchronous communication bits for start, stop, and parity
- False-start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation
- IrDA serial-IR (SIR) encoder/decoder providing
 - Programmable use of IrDA Serial Infrared (SIR) or UART input/output
 - Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex
 - Support of normal 3/16 and low-power (1.41-2.23 μs) bit durations
 - Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration
- Synchronous Serial Interface (SSI)
 - Master or slave operation
 - Programmable clock bit rate and prescale
 - Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
 - Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
 - Programmable data frame size from 4 to 16 bits
 - Internal loopback test mode for diagnostic/debug testing
- 10/100 Ethernet Controller
 - Conforms to the IEEE 802.3-2002 specification
 - 10BASE-T/100BASE-TX IEEE-802.3 compliant. Requires only a dual 1:1 isolation transformer interface to the line
 - 10BASE-T/100BASE-TX ENDEC, 100BASE-TX scrambler/descrambler
 - Full-featured auto-negotiation

- Multiple operational modes
 - Full- and half-duplex 100 Mbps
 - Full- and half-duplex 10 Mbps
 - Power-saving and power-down modes
- Highly configurable
 - Programmable MAC address
 - LED activity selection
 - Promiscuous mode support
 - CRC error-rejection control
 - User-configurable interrupts
- Physical media manipulation
 - Automatic MDI/MDI-X cross-over correction
 - Register-programmable transmit amplitude
 - Automatic polarity correction and 10BASE-T signal reception
- Analog Comparators
 - Two independent integrated analog comparators
 - Configurable for output to drive an output pin or generate an interrupt
 - Compare external pin input to external pin input or to internal programmable voltage reference
 - Compare a test voltage against any one of these voltages
 - An individual external reference voltage
 - A shared single external reference voltage
 - A shared internal reference voltage
- Power
 - On-chip Low Drop-Out (LDO) voltage regulator, with programmable output user-adjustable from 2.25 V to 2.75 V
 - Low-power options on controller: Sleep and Deep-sleep modes
 - Low-power options for peripherals: software controls shutdown of individual peripherals
 - 3.3-V supply brown-out detection and reporting via interrupt or reset
- Flexible Reset Sources


- Power-on reset (POR)
- Reset pin assertion
- Brown-out (BOR) detector alerts to system power drops
- Software reset
- Watchdog timer reset
- Internal low drop-out (LDO) regulator output goes unregulated
- Industrial and extended temperature 100-pin RoHS-compliant LQFP package
- Industrial-range 108-ball RoHS-compliant BGA package

1.2 Target Applications

- Remote monitoring
- Electronic point-of-sale (POS) machines
- Test and measurement equipment
- Network appliances and switches
- Factory automation
- HVAC and building control
- Gaming equipment
- Motion control
- Medical instrumentation
- Fire and security
- Power and energy
- Transportation

1.3 High-Level Block Diagram

Figure 1-1 on page 30 depicts the features on the Stellaris[®] LM3S6730 microcontroller.

Figure 1-1. Stellaris[®] LM3S6730 Microcontroller High-Level Block Diagram

1.4 Functional Overview

The following sections provide an overview of the features of the LM3S6730 microcontroller. The page number in parenthesis indicates where that feature is discussed in detail. Ordering and support information can be found in "Ordering and Contact Information" on page 435.

1.4.1 ARM Cortex[™]-M3

1.4.1.1 Processor Core (see page 36)

All members of the Stellaris[®] product family, including the LM3S6730 microcontroller, are designed around an ARM Cortex[™]-M3 processor core. The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low-power consumption, while delivering outstanding computational performance and exceptional system response to interrupts.

"ARM Cortex-M3 Processor Core" on page 36 provides an overview of the ARM core; the core is detailed in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

1.4.1.2 System Timer (SysTick) (see page 39)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

1.4.1.3 Nested Vectored Interrupt Controller (NVIC) (see page 44)

The LM3S6730 controller includes the ARM Nested Vectored Interrupt Controller (NVIC) on the ARM® Cortex[™]-M3 core. The NVIC and Cortex-M3 prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration. Software can set eight priority levels on 7 exceptions (system handlers) and 21 interrupts.

"Interrupts" on page 44 provides an overview of the NVIC controller and the interrupt map. Exceptions and interrupts are detailed in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

1.4.2 Motor Control Peripherals

To enhance motor control, the LM3S6730 controller features Pulse Width Modulation (PWM) outputs.

1.4.2.1 PWM

Pulse width modulation (PWM) is a powerful technique for digitally encoding analog signal levels. High-resolution counters are used to generate a square wave, and the duty cycle of the square wave is modulated to encode an analog signal. Typical applications include switching power supplies and motor control.

On the LM3S6730, PWM motion control functionality can be achieved through:

The motion control features of the general-purpose timers using the CCP pins

CCP Pins (see page 188)

The General-Purpose Timer Module's CCP (Capture Compare PWM) pins are software programmable to support a simple PWM mode with a software-programmable output inversion of the PWM signal.

1.4.3 Analog Peripherals

For support of analog signals, the LM3S6730 microcontroller offers two analog comparators.

1.4.3.1 Analog Comparators (see page 367)

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

The LM3S6730 microcontroller provides two independent integrated analog comparators that can be configured to drive an output or generate an interrupt .

A comparator can compare a test voltage against any one of these voltages:

- An individual external reference voltage
- A shared single external reference voltage
- A shared internal reference voltage

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

1.4.4 Serial Communications Peripherals

The LM3S6730 controller supports both asynchronous and synchronous serial communications with:

- One fully programmable 16C550-type UART
- One SSI module
- Ethernet controller

1.4.4.1 UART (see page 242)

A Universal Asynchronous Receiver/Transmitter (UART) is an integrated circuit used for RS-232C serial communications, containing a transmitter (parallel-to-serial converter) and a receiver (serial-to-parallel converter), each clocked separately.

The LM3S6730 controller includes one fully programmable 16C550-type UARTthat supports data transfer speeds up to 3.125 Mbps. (Although similar in functionality to a 16C550 UART, it is not register-compatible.) In addition, each UART is capable of supporting IrDA.

Separate 16x8 transmit (TX) and receive (RX) FIFOs reduce CPU interrupt service loading. The UART can generate individually masked interrupts from the RX, TX, modem status, and error conditions. The module provides a single combined interrupt when any of the interrupts are asserted and are unmasked.

1.4.4.2 SSI (see page 283)

Synchronous Serial Interface (SSI) is a four-wire bi-directional full and low-speed communications interface.

The LM3S6730 controller includes one SSI module that provides the functionality for synchronous serial communications with peripheral devices, and can be configured to use the Freescale SPI, MICROWIRE, or TI synchronous serial interface frame formats. The size of the data frame is also configurable, and can be set between 4 and 16 bits, inclusive.

The SSI module performs serial-to-parallel conversion on data received from a peripheral device, and parallel-to-serial conversion on data transmitted to a peripheral device. The TX and RX paths are buffered with internal FIFOs, allowing up to eight 16-bit values to be stored independently.

The SSI module can be configured as either a master or slave device. As a slave device, the SSI module can also be configured to disable its output, which allows a master device to be coupled with multiple slave devices.

The SSI module also includes a programmable bit rate clock divider and prescaler to generate the output serial clock derived from the SSI module's input clock. Bit rates are generated based on the input clock and the maximum bit rate is determined by the connected peripheral.

1.4.4.3 Ethernet Controller (see page 320)

Ethernet is a frame-based computer networking technology for local area networks (LANs). Ethernet has been standardized as IEEE 802.3. It defines a number of wiring and signaling standards for the physical layer, two means of network access at the Media Access Control (MAC)/Data Link Layer, and a common addressing format.

The Stellaris® Ethernet Controller consists of a fully integrated media access controller (MAC) and network physical (PHY) interface device. The Ethernet Controller conforms to IEEE 802.3 specifications and fully supports 10BASE-T and 100BASE-TX standards. In addition, the Ethernet Controller supports automatic MDI/MDI-X cross-over correction.

1.4.5 System Peripherals

1.4.5.1 Programmable GPIOs (see page 141)

General-purpose input/output (GPIO) pins offer flexibility for a variety of connections.

The Stellaris[®] GPIO module is comprised of seven physical GPIO blocks, each corresponding to an individual GPIO port. The GPIO module is FiRM-compliant (compliant to the ARM Foundation IP for Real-Time Microcontrollers specification) and supports 23-46 programmable input/output pins. The number of GPIOs available depends on the peripherals being used (see "Signal Tables" on page 380 for the signals available to each GPIO pin).

The GPIO module features programmable interrupt generation as either edge-triggered or level-sensitive on all pins, programmable control for GPIO pad configuration, and bit masking in

both read and write operations through address lines. Pins configured as digital inputs are Schmitt-triggered.

1.4.5.2 Three Programmable Timers (see page 182)

Programmable timers can be used to count or time external events that drive the Timer input pins.

The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks. Each GPTM block provides two 16-bit timers/counters that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

When configured in 32-bit mode, a timer can run as a Real-Time Clock (RTC), one-shot timer or periodic timer. When in 16-bit mode, a timer can run as a one-shot timer or periodic timer, and can extend its precision by using an 8-bit prescaler. A 16-bit timer can also be configured for event capture or Pulse Width Modulation (PWM) generation.

1.4.5.3 Watchdog Timer (see page 218)

A watchdog timer can generate an interrupt or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module consists of a 32-bit down counter, a programmable load register, interrupt generation logic, and a locking register.

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

1.4.6 Memory Peripherals

The LM3S6730 controller offers both single-cycle SRAM and single-cycle Flash memory.

1.4.6.1 SRAM (see page 116)

The LM3S6730 static random access memory (SRAM) controller supports 64 KB SRAM. The internal SRAM of the Stellaris[®] devices is located at offset 0x0000.0000 of the device memory map. To reduce the number of time-consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the new Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

1.4.6.2 Flash (see page 117)

The LM3S6730 Flash controller supports 128 KB of flash memory. The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. These blocks are paired into a set of 2-KB blocks that can be individually protected. The blocks can be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

1.4.7 Additional Features

1.4.7.1 Memory Map (see page 42)

A memory map lists the location of instructions and data in memory. The memory map for the LM3S6730 controller can be found in "Memory Map" on page 42. Register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map.

The *ARM*® *Cortex*™-*M*3 *Technical Reference Manual* provides further information on the memory map.

1.4.7.2 JTAG TAP Controller (see page 47)

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is composed of the standard five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.

The Stellaris[®] JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Stellaris[®] JTAG instructions select the Stellaris[®] TDO outputs. The multiplexer is controlled by the Stellaris[®] JTAG controller, which has comprehensive programming for the ARM, Stellaris[®], and unimplemented JTAG instructions.

1.4.7.3 System Control and Clocks (see page 59)

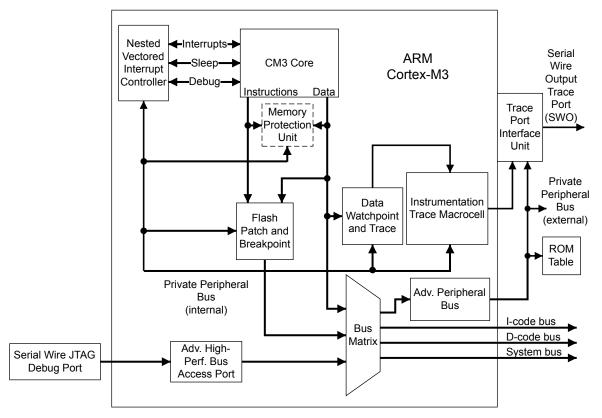
System control determines the overall operation of the device. It provides information about the device, controls the clocking of the device and individual peripherals, and handles reset detection and reporting.

1.4.8 Hardware Details

Details on the pins and package can be found in the following sections:

- "Pin Diagram" on page 378
- "Signal Tables" on page 380
- "Operating Characteristics" on page 402
- "Electrical Characteristics" on page 403
- "Package Information" on page 437

2 ARM Cortex-M3 Processor Core


The ARM Cortex-M3 processor provides the core for a high-performance, low-cost platform that meets the needs of minimal memory implementation, reduced pin count, and low power consumption, while delivering outstanding computational performance and exceptional system response to interrupts. Features include:

- Compact core.
- Thumb-2 instruction set, delivering the high-performance expected of an ARM core in the memory size usually associated with 8- and 16-bit devices; typically in the range of a few kilobytes of memory for microcontroller class applications.
- Rapid application execution through Harvard architecture characterized by separate buses for instruction and data.
- Exceptional interrupt handling, by implementing the register manipulations required for handling an interrupt in hardware.
- Deterministic, fast interrupt processing: always 12 cycles, or just 6 cycles with tail-chaining
- Memory protection unit (MPU) to provide a privileged mode of operation for complex applications.
- Migration from the ARM7[™] processor family for better performance and power efficiency.
- Full-featured debug solution
 - Serial Wire JTAG Debug Port (SWJ-DP)
 - Flash Patch and Breakpoint (FPB) unit for implementing breakpoints
 - Data Watchpoint and Trigger (DWT) unit for implementing watchpoints, trigger resources, and system profiling
 - Instrumentation Trace Macrocell (ITM) for support of printf style debugging
 - Trace Port Interface Unit (TPIU) for bridging to a Trace Port Analyzer
- Optimized for single-cycle flash usage
- Three sleep modes with clock gating for low power
- Single-cycle multiply instruction and hardware divide
- Atomic operations
- ARM Thumb2 mixed 16-/32-bit instruction set
- 1.25 DMIPS/MHz

The Stellaris[®] family of microcontrollers builds on this core to bring high-performance 32-bit computing to cost-sensitive embedded microcontroller applications, such as factory automation and control, industrial control power devices, building and home automation, and stepper motors.

For more information on the ARM Cortex-M3 processor core, see the ARM® Cortex[™]-M3 Technical Reference Manual. For information on SWJ-DP, see the ARM® CoreSight Technical Reference Manual.

2.1 Block Diagram

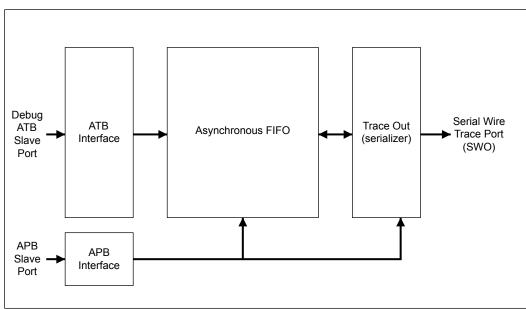
Figure 2-1. CPU Block Diagram

2.2 Functional Description

Important: The *ARM*[®] *Cortex*[™]-*M3 Technical Reference Manual* describes all the features of an ARM Cortex-M3 in detail. However, these features differ based on the implementation. This section describes the Stellaris[®] implementation.

Texas Instruments has implemented the ARM Cortex-M3 core as shown in Figure 2-1 on page 37. As noted in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, several Cortex-M3 components are flexible in their implementation: SW/JTAG-DP, ETM, TPIU, the ROM table, the MPU, and the Nested Vectored Interrupt Controller (NVIC). Each of these is addressed in the sections that follow.

2.2.1 Serial Wire and JTAG Debug


Texas Instruments has replaced the ARM SW-DP and JTAG-DP with the ARM CoreSight[™]-compliant Serial Wire JTAG Debug Port (SWJ-DP) interface. The SWJ-DP interface combines the SWD and JTAG debug ports into one module. See the *CoreSight[™] Design Kit Technical Reference Manual* for details on SWJ-DP.

2.2.2 Embedded Trace Macrocell (ETM)

ETM was not implemented in the Stellaris[®] devices. This means Chapters 15 and 16 of the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* can be ignored.

2.2.3 Trace Port Interface Unit (TPIU)

The TPIU acts as a bridge between the Cortex-M3 trace data from the ITM, and an off-chip Trace Port Analyzer. The Stellaris[®] devices have implemented TPIU as shown in Figure 2-2 on page 38. This is similar to the non-ETM version described in the *ARM*® *Cortex*[™]-*M3 Technical Reference Manual*, however, SWJ-DP only provides SWV output for the TPIU.

Figure 2-2. TPIU Block Diagram

2.2.4 ROM Table

The default ROM table was implemented as described in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

2.2.5 Memory Protection Unit (MPU)

The Memory Protection Unit (MPU) is included on the LM3S6730 controller and supports the standard ARMv7 Protected Memory System Architecture (PMSA) model. The MPU provides full support for protection regions, overlapping protection regions, access permissions, and exporting memory attributes to the system.

2.2.6 Nested Vectored Interrupt Controller (NVIC)

The Nested Vectored Interrupt Controller (NVIC):

- Facilitates low-latency exception and interrupt handling
- Controls power management
- Implements system control registers

The NVIC supports up to 240 dynamically reprioritizable interrupts each with up to 256 levels of priority. The NVIC and the processor core interface are closely coupled, which enables low latency interrupt processing and efficient processing of late arriving interrupts. The NVIC maintains knowledge of the stacked (nested) interrupts to enable tail-chaining of interrupts.

You can only fully access the NVIC from privileged mode, but you can pend interrupts in user-mode if you enable the Configuration Control Register (see the ARM® Cortex[™]-M3 Technical Reference Manual). Any other user-mode access causes a bus fault.

All NVIC registers are accessible using byte, halfword, and word unless otherwise stated.

2.2.6.1 Interrupts

The *ARM*® *Cortex*[™]-*M3 Technical Reference Manual* describes the maximum number of interrupts and interrupt priorities. The LM3S6730 microcontroller supports 21 interrupts with eight priority levels.

2.2.6.2 System Timer (SysTick)

Cortex-M3 includes an integrated system timer, SysTick. SysTick provides a simple, 24-bit clear-on-write, decrementing, wrap-on-zero counter with a flexible control mechanism. The counter can be used in several different ways, for example:

- An RTOS tick timer which fires at a programmable rate (for example, 100 Hz) and invokes a SysTick routine.
- A high-speed alarm timer using the system clock.
- A variable rate alarm or signal timer—the duration is range-dependent on the reference clock used and the dynamic range of the counter.
- A simple counter. Software can use this to measure time to completion and time used.
- An internal clock source control based on missing/meeting durations. The COUNTFLAG bit-field in the control and status register can be used to determine if an action completed within a set duration, as part of a dynamic clock management control loop.

Functional Description

The timer consists of three registers:

- A control and status counter to configure its clock, enable the counter, enable the SysTick interrupt, and determine counter status.
- The reload value for the counter, used to provide the counter's wrap value.
- The current value of the counter.

A fourth register, the SysTick Calibration Value Register, is not implemented in the Stellaris[®] devices.

When enabled, the timer counts down from the reload value to zero, reloads (wraps) to the value in the SysTick Reload Value register on the next clock edge, then decrements on subsequent clocks. Writing a value of zero to the Reload Value register disables the counter on the next wrap. When the counter reaches zero, the COUNTFLAG status bit is set. The COUNTFLAG bit clears on reads.

Writing to the Current Value register clears the register and the COUNTFLAG status bit. The write does not trigger the SysTick exception logic. On a read, the current value is the value of the register at the time the register is accessed.

If the core is in debug state (halted), the counter will not decrement. The timer is clocked with respect to a reference clock. The reference clock can be the core clock or an external clock source.

SysTick Control and Status Register

Use the SysTick Control and Status Register to enable the SysTick features. The reset is 0x0000.0000.

Bit/Field	Name	Туре	Reset	Description
31:17	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
16	COUNTFLAG	R/W	0	Count Flag
				Returns 1 if timer counted to 0 since last time this was read. Clears on read by application. If read by the debugger using the DAP, this bit is cleared on read-only if the MasterType bit in the AHB-AP Control Register is set to 0. Otherwise, the COUNTFLAG bit is not changed by the debugger read.
15:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	CLKSOURCE	R/W	0	Clock Source
				Value Description
				0 External reference clock. (Not implemented for Stellaris microcontrollers.)
				1 Core clock
				If no reference clock is provided, it is held at 1 and so gives the same time as the core clock. The core clock must be at least 2.5 times faster than the reference clock. If it is not, the count values are unpredictable.
1	TICKINT	R/W	0	Tick Interrupt
				Value Description
				0 Counting down to 0 does not generate the interrupt request to the NVIC. Software can use the COUNTFLAG to determine if ever counted to 0.
				1 Counting down to 0 pends the SysTick handler.
0	ENABLE	R/W	0	Enable
				Value Description
				0 Counter disabled.
				1 Counter operates in a multi-shot way. That is, counter loads with the Reload value and then begins counting down. On reaching 0, it sets the COUNTFLAG to 1 and optionally pends the SysTick handler, based on TICKINT. It then loads the Reload value again, and begins counting.

SysTick Reload Value Register

Use the SysTick Reload Value Register to specify the start value to load into the current value register when the counter reaches 0. It can be any value between 1 and 0x00FF.FFFF. A start value of 0 is possible, but has no effect because the SysTick interrupt and COUNTFLAG are activated when counting from 1 to 0.

Therefore, as a multi-shot timer, repeated over and over, it fires every N+1 clock pulse, where N is any value from 1 to 0x00FF.FFFF. So, if the tick interrupt is required every 100 clock pulses, 99 must be written into the RELOAD. If a new value is written on each tick interrupt, so treated as single shot, then the actual count down must be written. For example, if a tick is next required after 400 clock pulses, 400 must be written into the RELOAD.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	RELOAD	R/W	-	Reload Value to load into the SysTick Current Value Register when the counter reaches 0.

SysTick Current Value Register

Use the SysTick Current Value Register to find the current value in the register.

Bit/Field	Name	Туре	Reset	Description
31:24	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
23:0	CURRENT	W1C	-	Current Value
				Current value at the time the register is accessed. No read-modify-write protection is provided, so change with care.
				This register is write-clear. Writing to it with any value clears the register to 0. Clearing this register also clears the COUNTFLAG bit of the SysTick Control and Status Register.

SysTick Calibration Value Register

The SysTick Calibration Value register is not implemented.

3 Memory Map

The memory map for the LM3S6730 controller is provided in Table 3-1 on page 42.

In this manual, register addresses are given as a hexadecimal increment, relative to the module's base address as shown in the memory map. See also Chapter 4, "Memory Map" in the *ARM*® *Cortex*[™]*-M3 Technical Reference Manual*.

Table 3-1. Memory Map^a

Start End		Description	For details on registers, see page
Memory	I		
0x0000.0000	0x0001.FFFF	On-chip flash ^b	120
0x0002.0000	0x1FFF.FFFF	Reserved	-
0x2000.0000	0x2000.FFFF	Bit-banded on-chip SRAM ^c	120
0x2001.0000	0x21FF.FFFF	Reserved	-
0x2200.0000	0x221F.FFFF	Bit-band alias of 0x2000.0000 through 0x200F.FFFF	116
0x2220.0000	0x3FFF.FFFF	Reserved	-
FiRM Peripherals			
0x4000.0000	0x4000.0FFF	Watchdog timer	221
0x4000.1000	0x4000.3FFF	Reserved	-
0x4000.4000	0x4000.4FFF	GPIO Port A	147
0x4000.5000	0x4000.5FFF	GPIO Port B	147
0x4000.6000	0x4000.6FFF	GPIO Port C	147
0x4000.7000	0x4000.7FFF	GPIO Port D	147
0x4000.8000	0x4000.8FFF	SSIO	294
0x4000.9000	0x4000.BFFF	Reserved	-
0x4000.C000	0x4000.CFFF	UART0	249
0x4000.D000	0x4001.FFFF	Reserved	-
Peripherals			
0x4002.0000	0x4002.3FFF	Reserved	-
0x4002.4000	0x4002.4FFF	GPIO Port E	147
0x4002.5000	0x4002.5FFF	GPIO Port F	147
0x4002.6000	0x4002.6FFF	GPIO Port G	147
0x4002.7000	0x4002.FFFF	Reserved	-
0x4003.0000	0x4003.0FFF	Timer0	193
0x4003.1000	0x4003.1FFF	Timer1	193
0x4003.2000	0x4003.2FFF	Timer2	193
0x4003.3000	0x4003.BFFF	Reserved	-
0x4003.C000	0x4003.CFFF	Analog Comparators	367
0x4003.D000	0x4004.7FFF	Reserved	-
0x4004.8000	0x4004.8FFF	Ethernet Controller	330
0x4004.9000	0x400F.CFFF	Reserved	-
0x400F.D000	0x400F.DFFF	Flash control	120

Table 3-1. Memory Map (continued)

Start End		Description	For details on registers, see page
0x400F.E000	0x400F.EFFF	0x400F.EFFF System control	
0x400F.F000	0x41FF.FFFF	Reserved	-
0x4200.0000	0x43FF.FFFF	Bit-banded alias of 0x4000.0000 through 0x400F.FFFF	-
0x4400.0000	0xDFFF.FFFF	Reserved	-
Private Peripheral Bu	IS		I
0xE000.0000	0xE000.0FFF	Instrumentation Trace Macrocell (ITM)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.1000	0xE000.1FFF	Data Watchpoint and Trace (DWT)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.2000	0xE000.2FFF Flash Patch and Breakpoint (FPB)		ARM® Cortex™-M3 Technical Reference Manual
0xE000.3000	0xE000.DFFF	Reserved	-
0xE000.E000 0xE000.EFFF		Nested Vectored Interrupt Controller (NVIC)	ARM® Cortex™-M3 Technical Reference Manual
0xE000.F000	0xE003.FFFF	Reserved	-
0xE004.0000	0xE004.0FFF	Trace Port Interface Unit (TPIU)	ARM® Cortex™-M3 Technical Reference Manual
0xE004.1000	0xFFFF.FFFF	Reserved	-

a. All reserved space returns a bus fault when read or written.

b. The unavailable flash will bus fault throughout this range.

c. The unavailable SRAM will bus fault throughout this range.

4 Interrupts

The ARM Cortex-M3 processor and the Nested Vectored Interrupt Controller (NVIC) prioritize and handle all exceptions. All exceptions are handled in Handler Mode. The processor state is automatically stored to the stack on an exception, and automatically restored from the stack at the end of the Interrupt Service Routine (ISR). The vector is fetched in parallel to the state saving, which enables efficient interrupt entry. The processor supports tail-chaining, which enables back-to-back interrupts to be performed without the overhead of state saving and restoration.

Table 4-1 on page 44 lists all exception types. Software can set eight priority levels on seven of these exceptions (system handlers) as well as on 21 interrupts (listed in Table 4-2 on page 45).

Priorities on the system handlers are set with the NVIC System Handler Priority registers. Interrupts are enabled through the NVIC Interrupt Set Enable register and prioritized with the NVIC Interrupt Priority registers. You also can group priorities by splitting priority levels into pre-emption priorities and subpriorities. All of the interrupt registers are described in Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*™-*M3 Technical Reference Manual*.

Internally, the highest user-settable priority (0) is treated as fourth priority, after a Reset, NMI, and a Hard Fault. Note that 0 is the default priority for all the settable priorities.

If you assign the same priority level to two or more interrupts, their hardware priority (the lower position number) determines the order in which the processor activates them. For example, if both GPIO Port A and GPIO Port B are priority level 1, then GPIO Port A has higher priority.

Important: It may take several processor cycles after a write to clear an interrupt source in order for NVIC to see the interrupt source de-assert. This means if the interrupt clear is done as the last action in an interrupt handler, it is possible for the interrupt handler to complete while NVIC sees the interrupt as still asserted, causing the interrupt handler to be re-entered errantly. This can be avoided by either clearing the interrupt source at the beginning of the interrupt handler or by performing a read or write after the write to clear the interrupt source (and flush the write buffer).

See Chapter 5, "Exceptions" and Chapter 8, "Nested Vectored Interrupt Controller" in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* for more information on exceptions and interrupts.

Exception Type	Vector Number	Priority ^a	Description
-	0	-	Stack top is loaded from first entry of vector table on reset.
Reset	1	-3 (highest)	Invoked on power up and warm reset. On first instruction, drops to lowest priority (and then is called the base level of activation). This is asynchronous.
Non-Maskable Interrupt (NMI)	2	-2	Cannot be stopped or preempted by any exception but reset. This is asynchronous. An NMI is only producible by software, using the NVIC Interrupt Control State register.
Hard Fault	3	-1	All classes of Fault, when the fault cannot activate due to priority or the configurable fault handler has been disabled. This is synchronous.
Memory Management	4	settable	MPU mismatch, including access violation and no match. This is synchronous. The priority of this exception can be changed.

Table 4-1. Exception Types

Exception Type	Vector Number	Priority ^a	Description
Bus Fault	5	settable	Pre-fetch fault, memory access fault, and other address/memory related faults. This is synchronous when precise and asynchronous when imprecise.
			You can enable or disable this fault.
Usage Fault	6	settable	Usage fault, such as undefined instruction executed or illegal state transition attempt. This is synchronous.
-	7-10	-	Reserved.
SVCall	11	settable	System service call with SVC instruction. This is synchronous.
Debug Monitor	12	settable	Debug monitor (when not halting). This is synchronous, but only active when enabled. It does not activate if lower priority than the current activation.
-	13	-	Reserved.
PendSV	14	settable	Pendable request for system service. This is asynchronous and only pended by software.
SysTick	15	settable	System tick timer has fired. This is asynchronous.
Interrupts	16 and above	settable	Asserted from outside the ARM Cortex-M3 core and fed through the NVIC (prioritized). These are all asynchronous. Table 4-2 on page 45 lists the interrupts on the LM3S6730 controller.

Table 4-1. Exception Types (continued)	Table 4-1.	Exception	Types	(continued)
--	------------	-----------	-------	-------------

a. 0 is the default priority for all the settable priorities.

Table 4-2. Interrupts

Vector Number	Interrupt Number (Bit in Interrupt Registers)	Description
0-15	-	Processor exceptions
16	0	GPIO Port A
17	1	GPIO Port B
18	2	GPIO Port C
19	3	GPIO Port D
20	4	GPIO Port E
21	5	UART0
22	6	Reserved
23	7	SSI0
24-33	8-17	Reserved
34	18	Watchdog timer
35	19	Timer0 A
36	20	Timer0 B
37	21	Timer1 A
38	22	Timer1 B
39	23	Timer2 A
40	24	Timer2 B
41	25	Analog Comparator 0
42	26	Analog Comparator 1
43	27	Reserved
44	28	System Control

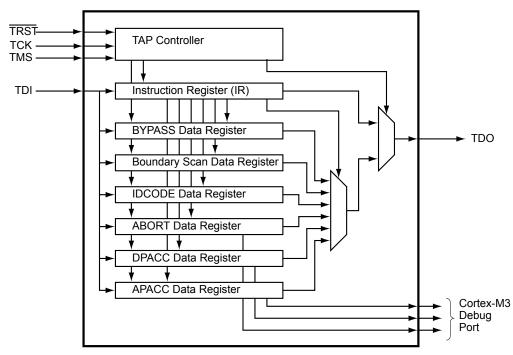
Vector Number	Interrupt Number (Bit in Interrupt Registers)	Description
45	29	Flash Control
46	30	GPIO Port F
47	31	GPIO Port G
48-57	32-41	Reserved
58	42	Ethernet Controller
59-70	43-54	Reserved

Table 4-2. Interrupts (continued)

5 JTAG Interface

The Joint Test Action Group (JTAG) port is an IEEE standard that defines a Test Access Port and Boundary Scan Architecture for digital integrated circuits and provides a standardized serial interface for controlling the associated test logic. The TAP, Instruction Register (IR), and Data Registers (DR) can be used to test the interconnections of assembled printed circuit boards and obtain manufacturing information on the components. The JTAG Port also provides a means of accessing and controlling design-for-test features such as I/O pin observation and control, scan testing, and debugging.

The JTAG port is comprised of five pins: TRST, TCK, TMS, TDI, and TDO. Data is transmitted serially into the controller on TDI and out of the controller on TDO. The interpretation of this data is dependent on the current state of the TAP controller. For detailed information on the operation of the JTAG port and TAP controller, please refer to the *IEEE Standard 1149.1-Test Access Port and Boundary-Scan Architecture*.


The Stellaris[®] JTAG controller works with the ARM JTAG controller built into the Cortex-M3 core. This is implemented by multiplexing the TDO outputs from both JTAG controllers. ARM JTAG instructions select the ARM TDO output while Stellaris[®] JTAG instructions select the Stellaris[®] TDO outputs. The multiplexer is controlled by the Stellaris[®] JTAG controller, which has comprehensive programming for the ARM, Stellaris[®], and unimplemented JTAG instructions.

The Stellaris[®] JTAG module has the following features:

- IEEE 1149.1-1990 compatible Test Access Port (TAP) controller
- Four-bit Instruction Register (IR) chain for storing JTAG instructions
- IEEE standard instructions: BYPASS, IDCODE, SAMPLE/PRELOAD, EXTEST and INTEST
- ARM additional instructions: APACC, DPACC and ABORT
- Integrated ARM Serial Wire Debug (SWD)

See the *ARM*® *Cortex*™-*M3 Technical Reference Manual* for more information on the ARM JTAG controller.

5.1 Block Diagram

Figure 5-1. JTAG Module Block Diagram

5.2 Functional Description

A high-level conceptual drawing of the JTAG module is shown in Figure 5-1 on page 48. The JTAG module is composed of the Test Access Port (TAP) controller and serial shift chains with parallel update registers. The TAP controller is a simple state machine controlled by the TRST, TCK and TMS inputs. The current state of the TAP controller depends on the current value of TRST and the sequence of values captured on TMS at the rising edge of TCK. The TAP controller determines when the serial shift chains capture new data, shift data from TDI towards TDO, and update the parallel load registers. The current state of the TAP controller also determines whether the Instruction Register (IR) chain or one of the Data Register (DR) chains is being accessed.

The serial shift chains with parallel load registers are comprised of a single Instruction Register (IR) chain and multiple Data Register (DR) chains. The current instruction loaded in the parallel load register determines which DR chain is captured, shifted, or updated during the sequencing of the TAP controller.

Some instructions, like EXTEST and INTEST, operate on data currently in a DR chain and do not capture, shift, or update any of the chains. Instructions that are not implemented decode to the BYPASS instruction to ensure that the serial path between TDI and TDO is always connected (see Table 5-2 on page 54 for a list of implemented instructions).

See "JTAG and Boundary Scan" on page 407 for JTAG timing diagrams.

5.2.1 JTAG Interface Pins

The JTAG interface consists of five standard pins: TRST, TCK, TMS, TDI, and TDO. These pins and their associated reset state are given in Table 5-1 on page 49. Detailed information on each pin follows.

Pin Name	Data Direction	Internal Pull-Up	Internal Pull-Down	Drive Strength	Drive Value
TRST	Input	Enabled	Disabled	N/A	N/A
TCK	Input	Enabled	Disabled	N/A	N/A
TMS	Input	Enabled	Disabled	N/A	N/A
TDI	Input	Enabled	Disabled	N/A	N/A
TDO	Output	Enabled	Disabled	2-mA driver	High-Z

Table 5-1. JTAG Port Pins Reset State

5.2.1.1 Test Reset Input (TRST)

The TRST pin is an asynchronous active Low input signal for initializing and resetting the JTAG TAP controller and associated JTAG circuitry. When TRST is asserted, the TAP controller resets to the Test-Logic-Reset state and remains there while TRST is asserted. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE.

By default, the internal pull-up resistor on the TRST pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port B should ensure that the internal pull-up resistor remains enabled on PB7/TRST; otherwise JTAG communication could be lost.

5.2.1.2 Test Clock Input (TCK)

The TCK pin is the clock for the JTAG module. This clock is provided so the test logic can operate independently of any other system clocks. In addition, it ensures that multiple JTAG TAP controllers that are daisy-chained together can synchronously communicate serial test data between components. During normal operation, TCK is driven by a free-running clock with a nominal 50% duty cycle. When necessary, TCK can be stopped at 0 or 1 for extended periods of time. While TCK is stopped at 0 or 1, the state of the TAP controller does not change and data in the JTAG Instruction and Data Registers is not lost.

By default, the internal pull-up resistor on the TCK pin is enabled after reset. This assures that no clocking occurs if the pin is not driven from an external source. The internal pull-up and pull-down resistors can be turned off to save internal power as long as the TCK pin is constantly being driven by an external source.

5.2.1.3 Test Mode Select (TMS)

The TMS pin selects the next state of the JTAG TAP controller. TMS is sampled on the rising edge of TCK. Depending on the current TAP state and the sampled value of TMS, the next state is entered. Because the TMS pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TMS to change on the falling edge of TCK.

Holding TMS high for five consecutive TCK cycles drives the TAP controller state machine to the Test-Logic-Reset state. When the TAP controller enters the Test-Logic-Reset state, the JTAG Instruction Register (IR) resets to the default instruction, IDCODE. Therefore, this sequence can be used as a reset mechanism, similar to asserting TRST. The JTAG Test Access Port state machine can be seen in its entirety in Figure 5-2 on page 51.

By default, the internal pull-up resistor on the TMS pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC1/TMS; otherwise JTAG communication could be lost.

5.2.1.4 Test Data Input (TDI)

The TDI pin provides a stream of serial information to the IR chain and the DR chains. TDI is sampled on the rising edge of TCK and, depending on the current TAP state and the current instruction, presents this data to the proper shift register chain. Because the TDI pin is sampled on the rising edge of TCK, the *IEEE Standard 1149.1* expects the value on TDI to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDI pin is enabled after reset. Changes to the pull-up resistor settings on GPIO Port C should ensure that the internal pull-up resistor remains enabled on PC2/TDI; otherwise JTAG communication could be lost.

5.2.1.5 Test Data Output (TDO)

The TDO pin provides an output stream of serial information from the IR chain or the DR chains. The value of TDO depends on the current TAP state, the current instruction, and the data in the chain being accessed. In order to save power when the JTAG port is not being used, the TDO pin is placed in an inactive drive state when not actively shifting out data. Because TDO can be connected to the TDI of another controller in a daisy-chain configuration, the *IEEE Standard 1149.1* expects the value on TDO to change on the falling edge of TCK.

By default, the internal pull-up resistor on the TDO pin is enabled after reset. This assures that the pin remains at a constant logic level when the JTAG port is not being used. The internal pull-up and pull-down resistors can be turned off to save internal power if a High-Z output value is acceptable during certain TAP controller states.

5.2.2 JTAG TAP Controller

The JTAG TAP controller state machine is shown in Figure 5-2 on page 51. The TAP controller state machine is reset to the Test-Logic-Reset state on the assertion of a Power-On-Reset (POR) or the assertion of TRST. Asserting the correct sequence on the TMS pin allows the JTAG module to shift in new instructions, shift in data, or idle during extended testing sequences. For detailed information on the function of the TAP controller and the operations that occur in each state, please refer to *IEEE Standard 1149.1*.

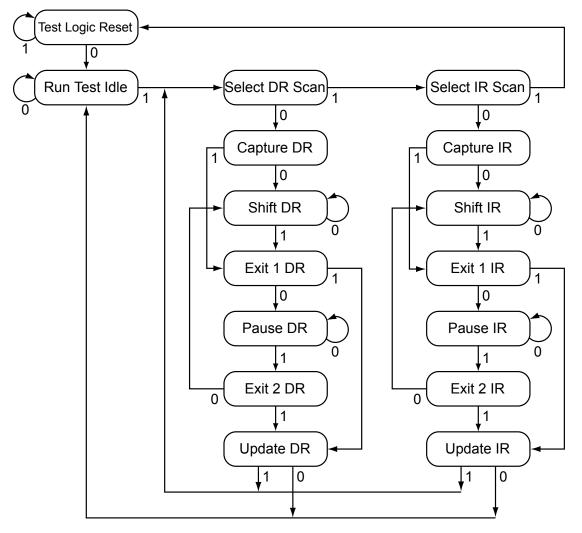


Figure 5-2. Test Access Port State Machine

5.2.3 Shift Registers

The Shift Registers consist of a serial shift register chain and a parallel load register. The serial shift register chain samples specific information during the TAP controller's CAPTURE states and allows this information to be shifted out of TDO during the TAP controller's SHIFT states. While the sampled data is being shifted out of the chain on TDO, new data is being shifted into the serial shift register on TDI. This new data is stored in the parallel load register during the TAP controller's UPDATE states. Each of the shift registers is discussed in detail in "Register Descriptions" on page 54.

5.2.4 Operational Considerations

There are certain operational considerations when using the JTAG module. Because the JTAG pins can be programmed to be GPIOs, board configuration and reset conditions on these pins must be considered. In addition, because the JTAG module has integrated ARM Serial Wire Debug, the method for switching between these two operational modes is described below.

5.2.4.1 GPIO Functionality

When the controller is reset with either a POR or \overline{RST} , the JTAG/SWD port pins default to their JTAG/SWD configurations. The default configuration includes enabling digital functionality (setting **GPIODEN** to 1), enabling the pull-up resistors (setting **GPIOPUR** to 1), and enabling the alternate hardware function (setting **GPIOAFSEL** to 1) for the PB7 and PC[3:0] JTAG/SWD pins.

It is possible for software to configure these pins as GPIOs after reset by writing 0s to PB7 and PC[3:0] in the **GPIOAFSEL** register. If the user does not require the JTAG/SWD port for debugging or board-level testing, this provides five more GPIOs for use in the design.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris[®] microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is currently provided for the five JTAG/SWD pins (PB7 and PC[3:0]). Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 157) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 167) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 168) have been set to 1.

Recovering a "Locked" Device

Note: Performing the sequence below causes the nonvolatile registers discussed in "Nonvolatile Register Programming" on page 119 to be restored to their factory default values. The mass erase of the flash memory caused by the below sequence occurs prior to the nonvolatile registers being restored.

If software configures any of the JTAG/SWD pins as GPIO and loses the ability to communicate with the debugger, there is a debug sequence that can be used to recover the device. Performing a total of ten JTAG-to-SWD and SWD-to-JTAG switch sequences while holding the device in reset mass erases the flash memory. The sequence to recover the device is:

- **1.** Assert and hold the \overline{RST} signal.
- 2. Perform the JTAG-to-SWD switch sequence.
- 3. Perform the SWD-to-JTAG switch sequence.
- 4. Perform the JTAG-to-SWD switch sequence.
- 5. Perform the SWD-to-JTAG switch sequence.
- 6. Perform the JTAG-to-SWD switch sequence.
- 7. Perform the SWD-to-JTAG switch sequence.
- 8. Perform the JTAG-to-SWD switch sequence.
- 9. Perform the SWD-to-JTAG switch sequence.
- 10. Perform the JTAG-to-SWD switch sequence.

- **11.** Perform the SWD-to-JTAG switch sequence.
- **12.** Release the \overline{RST} signal.
- 13. Wait 400 ms.
- **14.** Power-cycle the device.

The JTAG-to-SWD and SWD-to-JTAG switch sequences are described in "ARM Serial Wire Debug (SWD)" on page 53. When performing switch sequences for the purpose of recovering the debug capabilities of the device, only steps 1 and 2 of the switch sequence in the section called "JTAG-to-SWD Switching" on page 53 must be performed.

5.2.4.2 Communication with JTAG/SWD

Because the debug clock and the system clock can be running at different frequencies, care must be taken to maintain reliable communication with the JTAG/SWD interface. In the Capture-DR state, the result of the previous transaction, if any, is returned, together with a 3-bit ACK response. Software should check the ACK response to see if the previous operation has completed before initiating a new transaction. Alternatively, if the system clock is at least 8 times faster than the debug clock (TCK or SWCLK), the previous operation has enough time to complete and the ACK bits do not have to be checked.

5.2.4.3 ARM Serial Wire Debug (SWD)

In order to seamlessly integrate the ARM Serial Wire Debug (SWD) functionality, a serial-wire debugger must be able to connect to the Cortex-M3 core without having to perform, or have any knowledge of, JTAG cycles. This is accomplished with a SWD preamble that is issued before the SWD session begins.

The switching preamble used to enable the SWD interface of the SWJ-DP module starts with the TAP controller in the Test-Logic-Reset state. From here, the preamble sequences the TAP controller through the following states: Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, Test Logic Reset, Test Logic Reset, Run Test Idle, Run Test Idle, Select DR, Select IR, and Test Logic Reset states.

Stepping through this sequences of the TAP state machine enables the SWD interface and disables the JTAG interface. For more information on this operation and the SWD interface, see the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual* and the *ARM*® *CoreSight Technical Reference Manual*.

Because this sequence is a valid series of JTAG operations that could be issued, the ARM JTAG TAP controller is not fully compliant to the *IEEE Standard 1149.1*. This is the only instance where the ARM JTAG TAP controller does not meet full compliance with the specification. Due to the low probability of this sequence occurring during normal operation of the TAP controller, it should not affect normal performance of the JTAG interface.

JTAG-to-SWD Switching

To switch the operating mode of the Debug Access Port (DAP) from JTAG to SWD mode, the external debug hardware must send the switching preamble to the device. The 16-bit switch sequence for switching to SWD mode is defined as b1110011110011110, transmitted LSB first. This can also be represented as 16'hE79E when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.

- 2. Send the 16-bit JTAG-to-SWD switch sequence, 16'hE79E.
- 3. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in SWD mode, before sending the switch sequence, the SWD goes into the line reset state.

SWD-to-JTAG Switching

To switch the operating mode of the Debug Access Port (DAP) from SWD to JTAG mode, the external debug hardware must send a switch sequence to the device. The 16-bit switch sequence for switching to JTAG mode is defined as b1110011100111100, transmitted LSB first. This can also be represented as 16'hE73C when transmitted LSB first. The complete switch sequence should consist of the following transactions on the TCK/SWCLK and TMS/SWDIO signals:

- 1. Send at least 50 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that both JTAG and SWD are in their reset/idle states.
- 2. Send the 16-bit SWD-to-JTAG switch sequence, 16'hE73C.
- 3. Send at least 5 TCK/SWCLK cycles with TMS/SWDIO set to 1. This ensures that if SWJ-DP was already in JTAG mode, before sending the switch sequence, the JTAG goes into the Test Logic Reset state.

5.3 Initialization and Configuration

After a Power-On-Reset or an external reset (\mathbb{RST}), the JTAG pins are automatically configured for JTAG communication. No user-defined initialization or configuration is needed. However, if the user application changes these pins to their GPIO function, they must be configured back to their JTAG functionality before JTAG communication can be restored. This is done by enabling the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) for their alternate function using the **GPIOAFSEL** register. In addition to enabling the alternate functions, any other changes to the GPIO pad configurations on the five JTAG pins ($\mathbb{PB7}$ and $\mathbb{PC}[3:0]$) should be reverted to their default settings.

5.4 Register Descriptions

There are no APB-accessible registers in the JTAG TAP Controller or Shift Register chains. The registers within the JTAG controller are all accessed serially through the TAP Controller. The registers can be broken down into two main categories: Instruction Registers and Data Registers.

5.4.1 Instruction Register (IR)

The JTAG TAP Instruction Register (IR) is a four-bit serial scan chain connected between the JTAG TDI and TDO pins with a parallel load register. When the TAP Controller is placed in the correct states, bits can be shifted into the Instruction Register. Once these bits have been shifted into the chain and updated, they are interpreted as the current instruction. The decode of the Instruction Register bits is shown in Table 5-2 on page 54. A detailed explanation of each instruction, along with its associated Data Register, follows.

IR[3:0]	Instruction	Description
0000	EXTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction onto the pads.
0001	INTEST	Drives the values preloaded into the Boundary Scan Chain by the SAMPLE/PRELOAD instruction into the controller.

Table 5-2. JTAG Instruction Register Commands

IR[3:0]	Instruction	Description
0010	SAMPLE / PRELOAD	Captures the current I/O values and shifts the sampled values out of the Boundary Scan Chain while new preload data is shifted in.
1000	ABORT	Shifts data into the ARM Debug Port Abort Register.
1010	DPACC	Shifts data into and out of the ARM DP Access Register.
1011	APACC	Shifts data into and out of the ARM AC Access Register.
1110	IDCODE	Loads manufacturing information defined by the <i>IEEE Standard 1149.1</i> into the IDCODE chain and shifts it out.
1111	BYPASS	Connects TDI to TDO through a single Shift Register chain.
All Others	Reserved	Defaults to the BYPASS instruction to ensure that ${\tt TDI}$ is always connected to ${\tt TDO}.$

Table 5-2. JTAG Instruction Register Commands	(continued)	1
	(continucu)	

5.4.1.1 EXTEST Instruction

The EXTEST instruction is not associated with its own Data Register chain. The EXTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the EXTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the outputs and output enables are used to drive the GPIO pads rather than the signals coming from the core. This allows tests to be developed that drive known values out of the controller, which can be used to verify connectivity. While the EXTEST instruction is present in the Instruction Register, the Boundary Scan Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register.

5.4.1.2 INTEST Instruction

The INTEST instruction is not associated with its own Data Register chain. The INTEST instruction uses the data that has been preloaded into the Boundary Scan Data Register using the SAMPLE/PRELOAD instruction. When the INTEST instruction is present in the Instruction Register, the preloaded data in the Boundary Scan Data Register associated with the inputs are used to drive the signals going into the core rather than the signals coming from the GPIO pads. This allows tests to be developed that drive known values into the controller, which can be used for testing. It is important to note that although the RST input pin is on the Boundary Scan Data Register chain, it is only observable. While the INTEXT instruction is present in the Instruction Register, the Boundary Scan Data Register can be accessed to sample and shift out the current data and load new data into the Boundary Scan Data Register.

5.4.1.3 SAMPLE/PRELOAD Instruction

The SAMPLE/PRELOAD instruction connects the Boundary Scan Data Register chain between TDI and TDO. This instruction samples the current state of the pad pins for observation and preloads new test data. Each GPIO pad has an associated input, output, and output enable signal. When the TAP controller enters the Capture DR state during this instruction, the input, output, and output-enable signals to each of the GPIO pads are captured. These samples are serially shifted out of TDO while the TAP controller is in the Shift DR state and can be used for observation or comparison in various tests.

While these samples of the inputs, outputs, and output enables are being shifted out of the Boundary Scan Data Register, new data is being shifted into the Boundary Scan Data Register from TDI. Once the new data has been shifted into the Boundary Scan Data Register, the data is saved in the parallel load registers when the TAP controller enters the Update DR state. This update of the parallel load register preloads data into the Boundary Scan Data Register that is associated with

each input, output, and output enable. This preloaded data can be used with the EXTEST and INTEST instructions to drive data into or out of the controller. Please see "Boundary Scan Data Register" on page 57 for more information.

5.4.1.4 ABORT Instruction

The ABORT instruction connects the associated ABORT Data Register chain between TDI and TDO. This instruction provides read and write access to the ABORT Register of the ARM Debug Access Port (DAP). Shifting the proper data into this Data Register clears various error bits or initiates a DAP abort of a previous request. Please see the "ABORT Data Register" on page 58 for more information.

5.4.1.5 DPACC Instruction

The DPACC instruction connects the associated DPACC Data Register chain between TDI and TDO. This instruction provides read and write access to the DPACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to the ARM debug and status registers. Please see "DPACC Data Register" on page 58 for more information.

5.4.1.6 APACC Instruction

The APACC instruction connects the associated APACC Data Register chain between TDI and TDO. This instruction provides read and write access to the APACC Register of the ARM Debug Access Port (DAP). Shifting the proper data into this register and reading the data output from this register allows read and write access to internal components and buses through the Debug Port. Please see "APACC Data Register" on page 58 for more information.

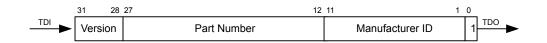
5.4.1.7 IDCODE Instruction

The IDCODE instruction connects the associated IDCODE Data Register chain between TDI and TDO. This instruction provides information on the manufacturer, part number, and version of the ARM core. This information can be used by testing equipment and debuggers to automatically configure their input and output data streams. IDCODE is the default instruction that is loaded into the JTAG Instruction Register when a Power-On-Reset (POR) is asserted, TRST is asserted, or the Test-Logic-Reset state is entered. Please see "IDCODE Data Register" on page 57 for more information.

5.4.1.8 BYPASS Instruction

The BYPASS instruction connects the associated BYPASS Data Register chain between TDI and TDO. This instruction is used to create a minimum length serial path between the TDI and TDO ports. The BYPASS Data Register is a single-bit shift register. This instruction improves test efficiency by allowing components that are not needed for a specific test to be bypassed in the JTAG scan chain by loading them with the BYPASS instruction. Please see "BYPASS Data Register" on page 57 for more information.

5.4.2 Data Registers


The JTAG module contains six Data Registers. These include: IDCODE, BYPASS, Boundary Scan, APACC, DPACC, and ABORT serial Data Register chains. Each of these Data Registers is discussed in the following sections.

5.4.2.1 IDCODE Data Register

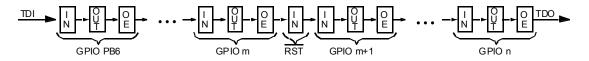
The format for the 32-bit IDCODE Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-3 on page 57. The standard requires that every JTAG-compliant device implement either the IDCODE instruction or the BYPASS instruction as the default instruction. The LSB of the IDCODE Data Register is defined to be a 1 to distinguish it from the BYPASS instruction, which has an LSB of 0. This allows auto configuration test tools to determine which instruction is the default instruction.

The major uses of the JTAG port are for manufacturer testing of component assembly, and program development and debug. To facilitate the use of auto-configuration debug tools, the IDCODE instruction outputs a value of 0x3BA0.0477. This allows the debuggers to automatically configure themselves to work correctly with the Cortex-M3 during debug.

Figure 5-3. IDCODE Register Format

5.4.2.2 BYPASS Data Register

The format for the 1-bit BYPASS Data Register defined by the *IEEE Standard 1149.1* is shown in Figure 5-4 on page 57. The standard requires that every JTAG-compliant device implement either the BYPASS instruction or the IDCODE instruction as the default instruction. The LSB of the BYPASS Data Register is defined to be a 0 to distinguish it from the IDCODE instruction, which has an LSB of 1. This allows auto configuration test tools to determine which instruction is the default instruction.


Figure 5-4. BYPASS Register Format

5.4.2.3 Boundary Scan Data Register

The format of the Boundary Scan Data Register is shown in Figure 5-5 on page 58. Each GPIO pin, starting with a GPIO pin next to the JTAG port pins, is included in the Boundary Scan Data Register. Each GPIO pin has three associated digital signals that are included in the chain. These signals are input, output, and output enable, and are arranged in that order as can be seen in the figure.

When the Boundary Scan Data Register is accessed with the SAMPLE/PRELOAD instruction, the input, output, and output enable from each digital pad are sampled and then shifted out of the chain to be verified. The sampling of these values occurs on the rising edge of TCK in the Capture DR state of the TAP controller. While the sampled data is being shifted out of the Boundary Scan chain in the Shift DR state of the TAP controller, new data can be preloaded into the chain for use with the EXTEST and INTEST instructions. These instructions either force data out of the controller, with the EXTEST instruction, or into the controller, with the INTEST instruction.

Figure 5-5. Boundary Scan Register Format

5.4.2.4 APACC Data Register

The format for the 35-bit APACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

5.4.2.5 DPACC Data Register

The format for the 35-bit DPACC Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

5.4.2.6 ABORT Data Register

The format for the 35-bit ABORT Data Register defined by ARM is described in the *ARM*® *Cortex*[™]-*M*3 *Technical Reference Manual*.

6 System Control

System control determines the overall operation of the device. It provides information about the device, controls the clocking to the core and individual peripherals, and handles reset detection and reporting.

6.1 Functional Description

The System Control module provides the following capabilities:

- Device identification, see "Device Identification" on page 59
- Local control, such as reset (see "Reset Control" on page 59), power (see "Power Control" on page 62) and clock control (see "Clock Control" on page 64)
- System control (Run, Sleep, and Deep-Sleep modes), see "System Control" on page 67

6.1.1 Device Identification

Several read-only registers provide software with information on the microcontroller, such as version, part number, SRAM size, flash size, and other features. See the **DID0**, **DID1**, and **DC0-DC4** registers.

6.1.2 Reset Control

This section discusses aspects of hardware functions during reset as well as system software requirements following the reset sequence.

6.1.2.1 CMOD0 and CMOD1 Test-Mode Control Pins

Two pins, CMOD0 and CMOD1, are defined for internal use for testing the microcontroller during manufacture. They have no end-user function and should not be used. The CMOD pins should be connected to ground.

6.1.2.2 Reset Sources

The controller has five sources of reset:

- **1.** External reset input pin (\overline{RST}) assertion, see "External \overline{RST} Pin" on page 60.
- 2. Power-on reset (POR), see "Power-On Reset (POR)" on page 59.
- 3. Internal brown-out (BOR) detector, see "Brown-Out Reset (BOR)" on page 61.
- 4. Software-initiated reset (with the software reset registers), see "Software Reset" on page 62.
- 5. A watchdog timer reset condition violation, see "Watchdog Timer Reset" on page 62.

After a reset, the **Reset Cause (RESC)** register is set with the reset cause. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an internal POR is the cause, and then all the other bits in the **RESC** register are cleared except for the POR indicator.

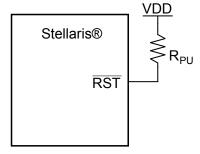
6.1.2.3 Power-On Reset (POR)

Note: The power-on reset also resets the JTAG controller. An external reset does not.

The internal Power-On Reset (POR) circuit monitors the power supply voltage (V_{DD}) and generates a reset signal to all of the internal logic including JTAG when the power supply ramp reaches a threshold value (V_{TH}). The microcontroller must be operating within the specified operating parameters when the on-chip power-on reset pulse is complete. The 3.3-V power supply to the microcontroller must reach 3.0 V within 10 msec of V_{DD} crossing 2.0 V to guarantee proper operation. For applications that require the use of an external reset signal to hold the microcontroller in reset longer than the internal POR, the \overline{RST} input may be used as discussed in "External \overline{RST} Pin" on page 60.

The Power-On Reset sequence is as follows:

- **1.** The microcontroller waits for internal POR to go inactive.
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

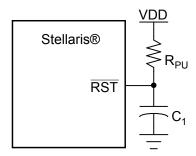

The internal POR is only active on the initial power-up of the microcontroller. The Power-On Reset timing is shown in Figure 18-6 on page 410.

6.1.2.4 External RST Pin

Note: It is recommended that the trace for the \overline{RST} signal must be kept as short as possible. Be sure to place any components connected to the \overline{RST} signal as close to the microcontroller as possible.

If the application only uses the internal POR circuit, the \overline{RST} input must be connected to the power supply (V_{DD}) through an optional pull-up resistor (0 to 100K Ω) as shown in Figure 6-1 on page 60.

Figure 6-1. Basic RST Configuration

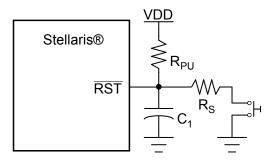

 $R_{PU} = 0$ to 100 k Ω

The external reset pin (\overline{RST}) resets the microcontroller including the core and all the on-chip peripherals except the JTAG TAP controller (see "JTAG Interface" on page 47). The external reset sequence is as follows:

- 1. The external reset pin (\overline{RST}) is asserted for the duration specified by T_{MIN} and then de-asserted (see "Reset" on page 409).
- 2. The internal reset is released and the core loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

To improve noise immunity and/or to delay reset at power up, the \overline{RST} input may be connected to an RC network as shown in Figure 6-2 on page 61.

Figure 6-2. External Circuitry to Extend Power-On Reset



 R_{PU} = 1 k Ω to 100 k Ω

 $C_1 = 1 \text{ nF to } 10 \mu \text{F}$

If the application requires the use of an external reset switch, Figure 6-3 on page 61 shows the proper circuitry to use.

Figure 6-3. Reset Circuit Controlled by Switch

Typical R_{PU} = 10 kΩ

Typical $R_S = 470 \Omega$

C₁ = 10 nF

The R_{PU} and C_1 components define the power-on delay.

The external reset timing is shown in Figure 18-5 on page 410.

6.1.2.5 Brown-Out Reset (BOR)

A drop in the input voltage resulting in the assertion of the internal brown-out detector can be used to reset the controller. This is initially disabled and may be enabled by software.

The system provides a brown-out detection circuit that triggers if the power supply (V_{DD}) drops below a brown-out threshold voltage (V_{BTH}) . If a brown-out condition is detected, the system may generate a controller interrupt or a system reset.

Brown-out resets are controlled with the **Power-On and Brown-Out Reset Control (PBORCTL)** register. The BORIOR bit in the **PBORCTL** register must be set for a brown-out condition to trigger a reset.

The brown-out reset is equivalent to an assertion of the external \overline{RST} input and the reset is held active until the proper V_{DD} level is restored. The **RESC** register can be examined in the reset interrupt

handler to determine if a Brown-Out condition was the cause of the reset, thus allowing software to determine what actions are required to recover.

The internal Brown-Out Reset timing is shown in Figure 18-7 on page 410.

6.1.2.6 Software Reset

Software can reset a specific peripheral or generate a reset to the entire system .

Peripherals can be individually reset by software via three registers that control reset signals to each peripheral (see the **SRCRn** registers). If the bit position corresponding to a peripheral is set and subsequently cleared, the peripheral is reset. The encoding of the reset registers is consistent with the encoding of the clock gating control for peripherals and on-chip functions (see "System Control" on page 67). Note that all reset signals for all clocks of the specified unit are asserted as a result of a software-initiated reset.

The entire system can be reset by software by setting the SYSRESETREQ bit in the Cortex-M3 Application Interrupt and Reset Control register resets the entire system including the core. The software-initiated system reset sequence is as follows:

- 1. A software system reset is initiated by writing the SYSRESETREQ bit in the ARM Cortex-M3 Application Interrupt and Reset Control register.
- 2. An internal reset is asserted.
- **3.** The internal reset is deasserted and the controller loads from memory the initial stack pointer, the initial program counter, and the first instruction designated by the program counter, and then begins execution.

The software-initiated system reset timing is shown in Figure 18-8 on page 410.

6.1.2.7 Watchdog Timer Reset

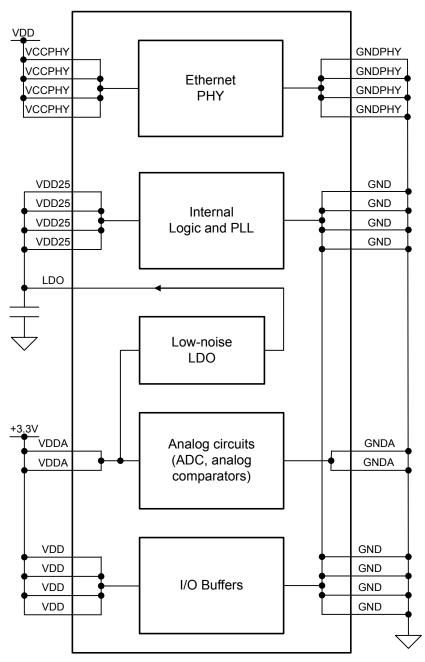
The watchdog timer module's function is to prevent system hangs. The watchdog timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out.

After the first time-out event, the 32-bit counter is reloaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled, the watchdog timer asserts its reset signal to the system. The watchdog timer reset sequence is as follows:

- 1. The watchdog timer times out for the second time without being serviced.
- 2. An internal reset is asserted.
- **3.** The internal reset is released and the controller loads from memory the initial stack pointer, the initial program counter, the first instruction designated by the program counter, and begins execution.

The watchdog reset timing is shown in Figure 18-9 on page 411.

6.1.3 Power Control


The Stellaris[®] microcontroller provides an integrated LDO regulator that may be used to provide power to the majority of the controller's internal logic. For power reduction, the LDO regulator provides

software a mechanism to adjust the regulated value, in small increments (VSTEP), over the range of 2.25 V to 2.75 V (inclusive)—or 2.5 V \pm 10%. The adjustment is made by changing the value of the VADJ field in the **LDO Power Control (LDOPCTL)** register.

Figure 6-4 on page 63 shows the power architecture.

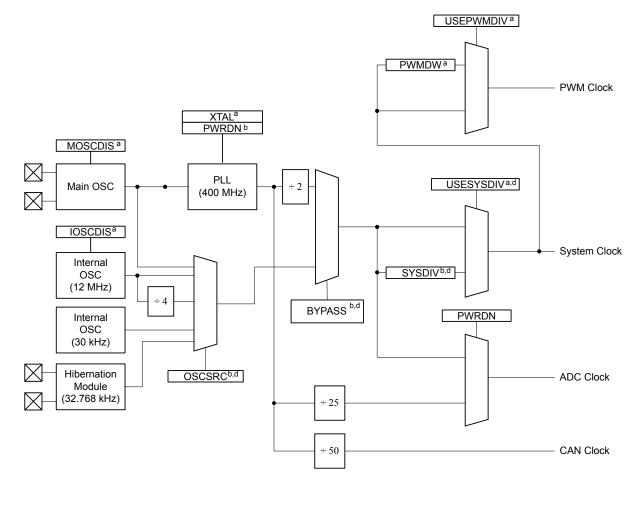
Note: On the printed circuit board, use the LDO output as the source of VDD25 input. In addition, the LDO requires decoupling capacitors. See "On-Chip Low Drop-Out (LDO) Regulator Characteristics" on page 404.

6.1.4 Clock Control

System control determines the control of clocks in this part.

6.1.4.1 Fundamental Clock Sources

There are multiple clock sources for use in the device:


- Internal Oscillator (IOSC). The internal oscillator is an on-chip clock source. It does not require the use of any external components. The frequency of the internal oscillator is 12 MHz ± 30%. Applications that do not depend on accurate clock sources may use this clock source to reduce system cost. The internal oscillator is the clock source the device uses during and following POR. If the main oscillator is required, software must enable the main oscillator following reset and allow the main oscillator to stabilize before changing the clock reference.
- Main Oscillator (MOSC). The main oscillator provides a frequency-accurate clock source by one of two means: an external single-ended clock source is connected to the OSCO input pin, or an external crystal is connected across the OSCO input and OSC1 output pins. If the PLL is being used, the crystal value must be one of the supported frequencies between 3.579545 MHz through 8.192 MHz (inclusive). If the PLL is not being used, the crystal may be any one of the supported frequencies between 1 MHz and 8.192 MHz. The single-ended clock source range is from DC through the specified speed of the device. The supported crystals are listed in the XTAL bit field in the RCC register (see page 78).
- Internal 30-kHz Oscillator. The internal 30-kHz oscillator is similar to the internal oscillator, except that it provides an operational frequency of 30 kHz ± 50%. It is intended for use during Deep-Sleep power-saving modes. This power-savings mode benefits from reduced internal switching and also allows the main oscillator to be powered down.

The internal system clock (SysClk), is derived from any of the above sources plus two others: the output of the main internal PLL, and the internal oscillator divided by four (3 MHz \pm 30%). The frequency of the PLL clock reference must be in the range of 3.579545 MHz to 8.192 MHz (inclusive).

The **Run-Mode Clock Configuration (RCC)** and **Run-Mode Clock Configuration 2 (RCC2)** registers provide control for the system clock. The **RCC2** register is provided to extend fields that offer additional encodings over the **RCC** register. When used, the **RCC2** register field values are used by the logic over the corresponding field in the **RCC** register. In particular, **RCC2** provides for a larger assortment of clock configuration options.

Figure 6-5 on page 65 shows the logic for the main clock tree. The peripheral blocks are driven by the system clock signal and can be individually enabled/disabled.

Figure 6-5. Main Clock Tree

a. Control provided by RCC register bit/field.

b. Control provided by RCC register bit/field or RCC2 register bit/field, if overridden with RCC2 register bit USERCC2.

c. Control provided by RCC2 register bit/field.

d. Also may be controlled by DSLPCLKCFG when in deep sleep mode.

Note: The figure above shows all features available on all Stellaris® Fury-class devices.

6.1.4.2 Crystal Configuration for the Main Oscillator (MOSC)

The main oscillator supports the use of a select number of crystals. If the main oscillator is used by the PLL as a reference clock, the supported range of crystals is 3.579545 to 8.192 MHz, otherwise, the range of supported crystals is 1 to 8.192 MHz.

The XTAL bit in the **RCC** register (see page 78) describes the available crystal choices and default programming values.

Software configures the **RCC** register XTAL field with the crystal number. If the PLL is used in the design, the XTAL field value is internally translated to the PLL settings.

6.1.4.3 Main PLL Frequency Configuration

The main PLL is disabled by default during power-on reset and is enabled later by software if required. Software specifies the output divisor to set the system clock frequency, and enables the main PLL to drive the output. The PLL operates at 400 MHz, but is divided by two prior to the application of the output divisor.

If the main oscillator provides the clock reference to the main PLL, the translation provided by hardware and used to program the PLL is available for software in the **XTAL to PLL Translation** (**PLLCFG**) register (see page 82). The internal translation provides a translation within \pm 1% of the targeted PLL VCO frequency. Table 18-8 on page 406 shows the actual PLL frequency and error for a given crystal choice.

The Crystal Value field (XTAL) on page 78 describes the available crystal choices and default programming of the **PLLCFG** register. The crystal number is written into the XTAL field of the **Run-Mode Clock Configuration (RCC)** register. Any time the XTAL field changes, the new settings are translated and the internal PLL settings are updated.

6.1.4.4 PLL Modes

The PLL has two modes of operation: Normal and Power-Down

- Normal: The PLL multiplies the input clock reference and drives the output.
- Power-Down: Most of the PLL internal circuitry is disabled and the PLL does not drive the output.

The modes are programmed using the RCC/RCC2 register fields (see page 78 and page 83).

6.1.4.5 PLL Operation

If a PLL configuration is changed, the PLL output frequency is unstable until it reconverges (relocks) to the new setting. The time between the configuration change and relock is T_{READY} (see Table 18-7 on page 406). During the relock time, the affected PLL is not usable as a clock reference.

The PLL is changed by one of the following:

- Change to the XTAL value in the RCC register—writes of the same value do not cause a relock.
- Change in the PLL from Power-Down to Normal mode.

A counter is defined to measure the T_{READY} requirement. The counter is clocked by the main oscillator. The range of the main oscillator has been taken into account and the down counter is set to 0x1200 (that is, ~600 µs at an 8.192 MHz external oscillator clock). Hardware is provided to keep the PLL from being used as a system clock until the T_{READY} condition is met after one of the two changes above. It is the user's responsibility to have a stable clock source (like the main oscillator) before the **RCC/RCC2** register is switched to use the PLL.

If the main PLL is enabled and the system clock is switched to use the PLL in one step, the system control hardware continues to clock the controller from the oscillator selected by the **RCC/RCC2** register until the main PLL is stable (T_{READY} time met), after which it changes to the PLL. Software can use many methods to ensure that the system is clocked from the main PLL, including periodically polling the PLLLRIS bit in the **Raw Interrupt Status (RIS)** register, and enabling the PLL Lock interrupt.

6.1.5 System Control

For power-savings purposes, the **RCGCn**, **SCGCn**, and **DCGCn** registers control the clock gating logic for each peripheral or block in the system while the controller is in Run, Sleep, and Deep-Sleep mode, respectively.

There are four levels of operation for the device defined as:

- Run Mode. In Run mode, the controller actively executes code. Run mode provides normal operation of the processor and all of the peripherals that are currently enabled by the RCGCn registers. The system clock can be any of the available clock sources including the PLL.
- Sleep Mode. In Sleep mode, the clock frequency of the active peripherals is unchanged, but the processor and the memory subsystem are not clocked and therefore no longer execute code. Sleep mode is entered by the Cortex-M3 core executing a WFI(Wait for Interrupt) instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

Peripherals are clocked that are enabled in the **SCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when the auto-clock gating is disabled. The system clock has the same source and frequency as that during Run mode.

■ Deep-Sleep Mode. In Deep-Sleep mode, the clock frequency of the active peripherals may change (depending on the Run mode clock configuration) in addition to the processor clock being stopped. An interrupt returns the device to Run mode from one of the sleep modes; the sleep modes are entered on request from the code. Deep-Sleep mode is entered by first writing the Deep Sleep Enable bit in the ARM Cortex-M3 NVIC system control register and then executing a WFI instruction. Any properly configured interrupt event in the system will bring the processor back into Run mode. See the system control NVIC section of the ARM® CortexTM-M3 Technical Reference Manual for more details.

The Cortex-M3 processor core and the memory subsystem are not clocked. Peripherals are clocked that are enabled in the **DCGCn** register when auto-clock gating is enabled (see the **RCC** register) or the **RCGCn** register when auto-clock gating is disabled. The system clock source is the main oscillator by default or the internal oscillator specified in the **DSLPCLKCFG** register if one is enabled. When the **DSLPCLKCFG** register is used, the internal oscillator is powered up, if necessary, and the main oscillator is powered down. If the PLL is running at the time of the WFI instruction, hardware will power the PLL down and override the SYSDIV field of the active **RCC/RCC2** register, to be determined by the DSDIVORIDE setting in the **DSLPCLKCFG** register, up to /16 or /64 respectively. When the Deep-Sleep exit event occurs, hardware brings the system clock back to the source and frequency it had at the onset of Deep-Sleep mode before enabling the clocks that had been stopped during the Deep-Sleep duration.

Caution – If the Cortex-M3 Debug Access Port (DAP) has been enabled, and the device wakes from a low power sleep or deep-sleep mode, the core may start executing code before all clocks to peripherals have been restored to their run mode configuration. The DAP is usually enabled by software tools accessing the JTAG or SWD interface when debugging or flash programming. If this condition occurs, a Hard Fault is triggered when software accesses a peripheral with an invalid clock.

A software delay loop can be used at the beginning of the interrupt routine that is used to wake up a system from a WFI (Wait For Interrupt) instruction. This stalls the execution of any code that accesses a peripheral register that might cause a fault. This loop can be removed for production software as the DAP is most likely not enabled during normal execution.

Because the DAP is disabled by default (power on reset), the user can also power-cycle the device. The DAP is not enabled unless it is enabled through the JTAG or SWD interface.

6.2 Initialization and Configuration

The PLL is configured using direct register writes to the **RCC/RCC2** register. If the **RCC2** register is being used, the USERCC2 bit must be set and the appropriate **RCC2** bit/field is used. The steps required to successfully change the PLL-based system clock are:

- 1. Bypass the PLL and system clock divider by setting the BYPASS bit and clearing the USESYS bit in the RCC register. This configures the system to run off a "raw" clock source and allows for the new PLL configuration to be validated before switching the system clock to the PLL.
- Select the crystal value (XTAL) and oscillator source (OSCSRC), and clear the PWRDN bit in RCC/RCC2. Setting the XTAL field automatically pulls valid PLL configuration data for the appropriate crystal, and clearing the PWRDN bit powers and enables the PLL and its output.
- 3. Select the desired system divider (SYSDIV) in RCC/RCC2 and set the USESYS bit in RCC. The SYSDIV field determines the system frequency for the microcontroller.
- 4. Wait for the PLL to lock by polling the PLLLRIS bit in the Raw Interrupt Status (RIS) register.
- 5. Enable use of the PLL by clearing the BYPASS bit in RCC/RCC2.

6.3 Register Map

Table 6-1 on page 68 lists the System Control registers, grouped by function. The offset listed is a hexadecimal increment to the register's address, relative to the System Control base address of 0x400F.E000.

Note: Spaces in the System Control register space that are not used are reserved for future or internal use. Software should not modify any reserved memory address.

Offset	Name	Туре	Reset	Description	See page
0x000	DID0	RO	-	Device Identification 0	70
0x004	DID1	RO	-	Device Identification 1	86
0x008	DC0	RO	0x00FF.003F	Device Capabilities 0	88
0x010	DC1	RO	0x0000.309F	Device Capabilities 1	89

Table 6-1. System Control Register Map

Offset	Name	Туре	Reset	Description	See page		
0x014	DC2	RO	0x0307.0011	Device Capabilities 2	91		
0x018	DC3	RO	0x8F00.0FC0	Device Capabilities 3	93		
0x01C	DC4	RO	0x5000.007F	Device Capabilities 4	95		
0x030	PBORCTL	R/W	0x0000.7FFD	Brown-Out Reset Control	72		
0x034	LDOPCTL	R/W	0x0000.0000	LDO Power Control	73		
0x040	SRCR0	R/W	0x00000000	Software Reset Control 0	112		
0x044	SRCR1	R/W	0x00000000	Software Reset Control 1	113		
0x048	SRCR2	R/W	0x00000000	Software Reset Control 2	114		
0x050	RIS	RO	0x0000.0000	Raw Interrupt Status	74		
0x054	IMC	R/W	0x0000.0000	Interrupt Mask Control	75		
0x058	MISC	R/W1C	0x0000.0000	Masked Interrupt Status and Clear	76		
0x05C	RESC	R/W	-	Reset Cause	77		
0x060	RCC	R/W	0x0780.3AD1	Run-Mode Clock Configuration	78		
0x064	PLLCFG	RO	-	XTAL to PLL Translation	82		
0x070	RCC2	R/W	0x0780.2810	Run-Mode Clock Configuration 2	83		
0x100	RCGC0	R/W	0x00000040	Run Mode Clock Gating Control Register 0	97		
0x104	RCGC1	R/W	0x00000000	Run Mode Clock Gating Control Register 1	100		
0x108	RCGC2	R/W	0x00000000	Run Mode Clock Gating Control Register 2	106		
0x110	SCGC0	R/W	0x00000040	Sleep Mode Clock Gating Control Register 0	98		
0x114	SCGC1	R/W	0x00000000	Sleep Mode Clock Gating Control Register 1	102		
0x118	SCGC2	R/W	0x00000000	Sleep Mode Clock Gating Control Register 2	108		
0x120	DCGC0	R/W	0x00000040	Deep Sleep Mode Clock Gating Control Register 0	99		
0x124	DCGC1	R/W	0x00000000	Deep Sleep Mode Clock Gating Control Register 1	104		
0x128	DCGC2	R/W	0x00000000	Deep Sleep Mode Clock Gating Control Register 2	110		
0x144	DSLPCLKCFG	R/W	0x0780.0000	Deep Sleep Clock Configuration	85		

Table 6-1. System Control Register Map (continued)

6.4 Register Descriptions

All addresses given are relative to the System Control base address of 0x400F.E000.

Register 1: Device Identification 0 (DID0), offset 0x000

This register identifies the version of the device.

Base Offse	ice Ider 0x400F.E t 0x000 RO, rese	000	on 0 (DII	D0)														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	reserved	erved VER reserved									1	CL	ASS	1	1	•		
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	ľ		1 1	MA	JOR	1	1 1				1	I MIN	NOR	1	1	·		
Type Reset	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO		
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription									
	31		reserv	ved	R	0	0	com	patibility	with fut	ure prod	ucts, the		a reserv	bit. To provide erved bit should be			
	30:28		VEF	र	R	0	0x1	DID	0 Versio	า								
										Id defines the DID0 register format version. The version number eric. The value of the VER field is encoded as follows:								
								Valı	ue Desc	ription								
								0x1			on of the	e DID0 re	egister fo	ormat.				
	27:24	reserved RO 0x0				Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.												
	23:16		CLAS	SS	R	0	0x1	Dev	ice Clas	6								
								sets field (for field	are gene value is example s require	ternal de particula t lines, fo y case w devices encoding	r product or change here the . The val	line. The es in fab MAJOR o lue of the	process r MINOR					
								Valu	ue Desc	ription								
								0x1	Stella	aris® Fu	ry-class	devices.						

Bit/Field	Name	Туре	Reset	Description						
15:8	MAJOR	RO	-	Major Revision						
				This field specifies the major revision number of the device. The major revision reflects changes to base layers of the design. The major revision number is indicated in the part number as a letter (A for first revision, B for second, and so on). This field is encoded as follows:						
				Value Description						
				0x0 Revision A (initial device)						
				0x1 Revision B (first base layer revision)						
				0x2 Revision C (second base layer revision)						
				and so on.						
7:0	MINOR	RO	-	Minor Revision						
				This field specifies the minor revision number of the device. The minor revision reflects changes to the metal layers of the design. The MINOR field value is reset when the MAJOR field is changed. This field is numeric and is encoded as follows:						
				Value Description						
				0x0 Initial device, or a major revision update.						
				0x1 First metal layer change.						
				0x2 Second metal layer change.						
				and so on.						

Brown-Out Reset Control (PBORCTL)

Register 2: Brown-Out Reset Control (PBORCTL), offset 0x030

This register is responsible for controlling reset conditions after initial power-on reset.

Offse	0x400F.E t 0x030 R/W, rese		0.7FFD		- ,											
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[г		1				1 1	rese	rved			I		1	1 1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[г	reserved									1	BORIOR	reserved			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0
Resel	U	0	U	0	0	0	0	0	0	U	0	0	0	0	0	0
В	it/Field		Nam	ie	Ту	pe	Reset	Des	cription							
31:2 reserved				RO 0x0			com		with futu	ure produ	ucts, the	value of	a reserv	t. To prov ved bit sh		
	1		BORI	OR	R/	W	0	BOF	R Interrup	ot or Res	set					
									bit contr t is signa						ontroller.	lf set, a
0			reserved RO		0	0	com	Software should not rely on the value of a reserved bit. To provid compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.								

Register 3: LDO Power Control (LDOPCTL), offset 0x034

The <code>VADJ</code> field in this register adjusts the on-chip output voltage (V $_{OUT}$).

Base Offse	D Powe 0x400F.E t 0x034 R/W, res	E000	ol (LDO	PCTL)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved					•	•	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1	rese	rved				1		1	VA	'DJ	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:6		reser	ved	R	0	0	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		
	preserved across a read-modify-write operation. 5:0 VADJ R/W 0x0 LDO Output Voltage															
										ts the on Id are pr			age. The	progran	nming va	alues for
								Val	ue	V _{OUT} (V))					
								0x0	00	2.50						
								0x0)1	2.45						
								0x0		2.40						
								0x0		2.35						
								0x0		2.30						
								0x0		2.25						
										Reserve	d					
								0x1 0x1		2.75 2.70						
								0x1		2.70						
								0x1		2.60						
								0x1		2.55						

Raw Interrupt Status (RIS)

Register 4: Raw Interrupt Status (RIS), offset 0x050

Central location for system control raw interrupts. These are set and cleared by hardware.

Base Offse	0x400F.I t 0x050	E000 et 0x0000.		,												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	1	1		•		rese	erved			1		•	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	reserved					PLLLRIS		rese	erved	1	BORRIS	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:7 reserved RO 0 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation.									a reser	•					
	6		PLLLI	RIS	R	0	0			aw Interro et when tl			imer ass	serts.		
	5:2		reser	ved	R	0	0	com	patibilit	nould not in y with futu across a re	ire prod	ucts, the	value of	a reser		
	1		BOR	RIS	R	0	0	Bro	wn-Out	Reset Ra	w Interr	upt Statu	IS			
1 BORRIS RO 0 Brown-Out Reset Raw Interrupt sta a brown-out condition is curree from the brown-out detection of bit in the IMC register is set and is cleared.											ently acti circuit. Ai	ve. This n interrup	is an un ot is repo	registere	d signal BORIM	
	0		reser	ved	R	0	0	com	patibilit	nould not in y with futu across a re	ire prod	ucts, the	value of	a reser		

Register 5: Interrupt Mask Control (IMC), offset 0x054

Central location for system control interrupt masks.

Interrupt Mask Control (IMC)

Offse	0x400F.E t 0x054 R/W, res	E000 et 0x0000	0.0000	- /												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I		1	1				rese	erved			•		1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1	1	reserved					PLLLIM		rese	erved	1	BORIM	reserved
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0
В	8it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:7		reser	ved	R	0	0	com	patibility	ould not i y with futu cross a re	ire prod	ucts, the	value of	a reserv	•	
	6		PLLL	.IM	R/	W	0	This inte	s bit spec rrupt. If s	terrupt M cifies whe set, an int an interrup	ther a Pl errupt is	s genera	ted if ℙL	•		
	5:2		reser	ved	R	0	0	con	patibility	ould not i y with futu icross a re	ire prod	ucts, the	value of	a reserv		
	1		BOR	IM	R/	W	0	Bro	wn-Out l	Reset Inte	errupt M	ask				
								con	troller in	cifies whe terrupt. If an interrup	set, an	interrupt	is gener	•		
	0		reser	ved	R	0	0	con	patibility	ould not i y with futu icross a re	ire prod	ucts, the	value of	a reserv	•	

Register 6: Masked Interrupt Status and Clear (MISC), offset 0x058

On a read, this register gives the current masked status value of the corresponding interrupt. All of the bits are R/W1C and this action also clears the corresponding raw interrupt bit in the RIS register (see page 74).

Masked Interrupt Status and Clear (MISC)

Base 0x400F.E000 Offset 0x058 Type R/W1C, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		г т		1 1	rese	rved					1		
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ï		1 1		reserved		1 1			PLLLMIS		rese	rved	ſ	BORMIS	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	RO	RO	RO	RO	R/W1C	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
P	Bit/Field		Nam	e	Тур	he	Reset	Des	cription							
Ľ			Null				Rebet	DCO	onption							
	31:7		reserv	ved	R	C	0	com	patibility	ould not r / with futu cross a re	re produ	ucts, the	value of	a reserv	•	
	6		PLLL	/IS	R/W	1C	0	PLL	Lock M	asked Inte	errupt S	tatus				
										t when the 1 to this b		READY time	er asserf	s. The ir	iterrupt is	cleared
	5:2		reserv	ved	R	D	0	com	patibility	ould not r / with futu cross a re	re produ	ucts, the	value of	a reserv	•	
	1		BORN	/IS	R/W	1C	0	BOF	R Maske	d Interrup	ot Status	6				
								The	BORMIS	s is simply	the BOI	RRIS AN	Ded with	n the ma	sk value,	BORIM.
	0		reserv	ved	R	D	0	com	patibility	ould not r / with futu cross a re	re produ	ucts, the	value of	a reserv	•	

Register 7: Reset Cause (RESC), offset 0x05C

This register is set with the reset cause after reset. The bits in this register are sticky and maintain their state across multiple reset sequences, except when an power-on reset is the cause, in which case, all bits other than POR in the **RESC** register are cleared.

Offse	0x400F.E t 0x05C R/W, rese		,													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I			•		•	• •	rese	erved		1	1		•	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		1			reserved	1 1				1	SW	WDT	BOR	POR	EXT
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W -	R/W -	R/W -	R/W -	R/W -
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:5		reserv	ved	R	0	0	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	4		SW	I	R/	W	-		tware Re en set, in		a softwa	re reset	is the ca	use of th	ne reset e	event.
	3		WD	Т	R/	W	-		chdog Ti en set, in			dog reset	t is the c	ause of t	the reset	event.
	2		BOI	R	R/	W	-		wn-Out F en set, in		a brown	-out rese	t is the c	ause of	the rese	t event
	1		POI	R	R/	W	-	Pow	ver-On R	eset						
	0		EX	Т	R/	W	-		en set, in ernal Res		a power	-on reset	is the ca	ause of t	ne reset	event.
									en set, in reset eve		an exter	nal reset	(RST as	sertion)	is the ca	use of

Reset Cause (RESC)

Register 8: Run-Mode Clock Configuration (RCC), offset 0x060

This register is defined to provide source control and frequency speed.

Run-Mode Clock Configuration (RC	C)
Base 0x400F.E000 Offset 0x060 Type R/W, reset 0x0780.3AD1	

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		rese	l erved	1	ACG		SYS	DIV	1	USESYSDIV		1	rese	rved	1	
Туре	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	rese	rved	PWRDN	reserved	BYPASS	reserved		ТХ	AL	1	OSC	SRC	rese	rved	IOSCDIS	MOSCDIS
Туре	RO	RO	R/W	RO	R/W	RO	R/W	R/W	R/W	R/W	R/W	R/W	RO	RO	R/W	R/W
Reset	0	0	1	1	1	0	1	0	1	1	0	1	0	0	0	1
E	Bit/Field		Nan	ıe	Ту	ре	Reset	Des	cription							
	31:28		reser	ved	R	0	0x0	com	patibility	ould not r with futu cross a re	re prod	ucts, the	value of	a reserv	•	
	27		AC	G	R/	W	0	Auto	Clock	Gating						
								Gat	ing Con	trol (SCC) trol (SCC)	GCn) reg	gisters a	nd Deep	-Sleep-l	Mode Cl	ock

Gating Control (DCGCn) registers and Deep-steep-Mode Clock Gating Control (DCGCn) registers if the controller enters a Sleep or Deep-Sleep mode (respectively). If set, the SCGCn or DCGCn registers are used to control the clocks distributed to the peripherals when the controller is in a sleep mode. Otherwise, the Run-Mode Clock Gating Control (RCGCn) registers are used when the controller enters a sleep mode.

The $\ensuremath{\textbf{RCGCn}}$ registers are always used to control the clocks in Run mode.

This allows peripherals to consume less power when the controller is in a sleep mode and the peripheral is unused.

Bit/Field	Name	Туре	Reset	Description	
26:23	SYSDIV	R/W	0xF	System Clock Divisor	
				Specifies which divisor PLL output.	is used to generate the system clock from the
				Although the PLL VCO f the divisor is applied.	requency is 400 MHz, it is predivided by 2 before
				Value Divisor (BYPAS	S=1) Frequency (BYPASS=0)
				0x0 reserved	reserved
				0x1 /2	reserved
				0x2 /3	reserved
				0x3 /4	50 MHz
				0x4 /5	40 MHz
				0x5 /6	33.33 MHz
				0x6 /7	28.57 MHz
				0x7 /8	25 MHz
				0x8 /9	22.22 MHz
				0x9 /10	20 MHz
				0xA /11	18.18 MHz
				0xB /12	16.67 MHz
				0xC /13	15.38 MHz
				0xD /14	14.29 MHz
				0xE /15	13.33 MHz
				0xF /16	12.5 MHz (default)
				page 78), the SYSDIV	Mode Clock Configuration (RCC) register (see value is MINSYSDIV if a lower divider was is being used. This lower value is allowed to e.
22	USESYSDIV	R/W	0	Enable System Clock D	Divider
				Use the system clock d	ivider as the source for the system clock. The forced to be used when the PLL is selected as
21:14	reserved	RO	0	compatibility with future	y on the value of a reserved bit. To provide products, the value of a reserved bit should be d-modify-write operation.
13	PWRDN	R/W	1	PLL Power Down	
				This bit connects to the down the PLL.	PLL PWRDN input. The reset value of 1 powers
12	reserved	RO	1	compatibility with future	y on the value of a reserved bit. To provide products, the value of a reserved bit should be d-modify-write operation.

Bit/Field	Name	Туре	Reset	Description		
11	BYPASS	R/W	1	PLL Bypass		
				the OSC sou source. Othe	urce. If set, the clock that	derived from the PLL output or drives the system is the OSC es the system is the PLL output
10	reserved	RO	0	compatibility		of a reserved bit. To provide value of a reserved bit should be operation.
9:6	XTAL	R/W	0xB	Crystal Value	e	
					ecifies the crystal value att this field is provided belo	tached to the main oscillator. The w.
					tal Frequency (MHz) Not g the PLL	Crystal Frequency (MHz) Using the PLL
				0x0	1.000	reserved
				0x1	1.8432	reserved
				0x2	2.000	reserved
				0x3	2.4576	reserved
				0x4	3.5795	45 MHz
				0x5	3.686	4 MHz
				0x6	4 1	MHz
				0x7	4.09	6 MHz
				0x8	4.915	2 MHz
				0x9	51	MHz
				0xA	5.12	2 MHz
				0xB	6 MHz (re	eset value)
				0xC	6.14	4 MHz
				0xD	7.372	8 MHz
				0xE	8 1	MHz
				0xF	8.192	2 MHz
5:4	OSCSRC	R/W	0x1	Oscillator So	ource	
				Selects the in	nput source for the OSC.	The values are:
				Value Input 0x0 MOS		
					oscillator	
				0x1 IOSC		
				Interr	nal oscillator (default)	
				0x2 IOSC	2/4	
				Interr	nal oscillator / 4 (this is ne	cessary if used as input to PLL)
				0x3 30 kH	Ηz	
				30-KI	Hz internal oscillator	
				For additiona	al oscillator sources, see t	he RCC2 register.

Bit/Field	Name	Туре	Reset	Description
3:2	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	IOSCDIS	R/W	0	Internal Oscillator Disable
				0: Internal oscillator (IOSC) is enabled.
				1: Internal oscillator is disabled.
0	MOSCDIS	R/W	1	Main Oscillator Disable
				0: Main oscillator is enabled .
				1: Main oscillator is disabled (default).

Register 9: XTAL to PLL Translation (PLLCFG), offset 0x064

This register provides a means of translating external crystal frequencies into the appropriate PLL settings. This register is initialized during the reset sequence and updated anytime that the XTAL field changes in the **Run-Mode Clock Configuration (RCC)** register (see page 78).

The PLL frequency is calculated using the PLLCFG field values, as follows:

PLLFreq = OSCFreq * F / (R + 1)

XTAL to PLL Translation (PLLCFG)

Base 0x400F.E000

Offset 0x064 Type RO, reset -

Type																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[ſ		1 1		1	ſ	1 1	rese	rved		1	Γ	I			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ	reser	rved			1	[F		ı ı		I		1	R	ſ	
Type Reset	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO -	RO -	RO -						
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:14		reserv	/ed	R	0	0x0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	13:5		F		R	0	-		F Value	ecifies th	ie value	supplied	to the P	'LL's F in	put.	
	4:0		R		R	0	-	PLL	R Value							

This field specifies the value supplied to the PLL's R input.

Register 10: Run-Mode Clock Configuration 2 (RCC2), offset 0x070

This register overrides the **RCC** equivalent register fields when the USERCC2 bit is set, allowing the extended capabilities of the **RCC2** register to be used while also providing a means to be backward-compatible to previous parts. The fields within the **RCC2** register occupy the same bit positions as they do within the **RCC** register as LSB-justified.

The SYSDIV2 field is 2 bits wider than the SYSDIV field in the RCC register so that additional larger divisors are possible, allowing a lower system clock frequency for improved Deep Sleep power consumption. The PLL VCO frequency is 400 MHz.

Offse	0x400F.E t 0x070 R/W, rese).2810																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	USERCC2	rese	erved			SYS	DIV2	•			•	•	reserved		•	•			
Type Reset	R/W 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	reser	ved	PWRDN2	reserved	BYPASS2		rese	rved			OSCSRC2			rese	erved	-			
Type Reset	RO 0	RO 0	R/W 1	RO 0	R/W 1	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	RO 0	RO 0	RO 0	RO 0			
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription										
	31		USER	CC2	R/\	N	0	Use	RCC2										
								Whe	en set, ov	verrides	the RCC	registe	r fields.						
30:29 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.																			
	28:23		SYSD	IV2	R/\	N	0x0F	Sys	tem Cloc	k Diviso	r								
									cifies wh output.	ich divis	or is use	ed to ger	erate the	system	ı clock fr	om the			
									ough the divisor is		•	ncy is 40	00 MHz, it	is prediv	vided by	2 before			
								add muc the	itional div ch lower f RCC reg	visor val requenc ister SY:	ues. This cies durir SDIV en	s permits ng Deep coding c	er SYSDIV s the syste Sleep mo of 1111 pro provides	em cloc de. For ovides /	k to be r example	run at e, where			
	22:14		reserv	ved	R	C	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	13		PWRD	0N2	R/\	N	1	Pow	/er-Down	PLL									
								Whe	en set, po	owers do	own the I	PLL.							
	12		reserv	ved	R	C	0	 When set, powers down the PLL. Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 											

Run-Mode Clock Configuration 2 (RCC2)

Bit/Field	Name	Туре	Reset	Description
11	BYPASS2	R/W	1	Bypass PLL
				When set, bypasses the PLL for the clock source.
10:7	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6:4	OSCSRC2	R/W	0x1	Oscillator Source
				Selects the input source for the OSC. The values are:
				Value Description
				0x0 MOSC
				Main oscillator
				0x1 IOSC
				Internal oscillator
				0x2 IOSC/4
				Internal oscillator / 4
				0x3 30 kHz
				30-kHz internal oscillator
				0x4 Reserved
				0x5 Reserved
				0x6 Reserved
				0x7 Reserved
3:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 11: Deep Sleep Clock Configuration (DSLPCLKCFG), offset 0x144

This register provides configuration information for the hardware control of Deep Sleep Mode.

Deep Sleep Clock Configuration (DSLPCLKCFG) Base 0x400F.E000 Offset 0x144 Type R/W, reset 0x0780.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		reserved	I			DSDIV	/ORIDE				Î	ì	reserved	Ì	Í	
Type Reset	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 1	R/W 1	R/W 1	R/W	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	reserved	-	1 1	-	r		DSOSCSR	r i		ľ	rved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0
10000	0	Ū	0	0	Ū	Ū	Ū	0	Ū	Ŭ	Ŭ	Ŭ	Ū	Ū	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:29		reser	ved	R	0	0x0	com	patibility	with fut		ucts, the	value of	a reserv	To prov ved bit sh	
	28:23		DSDIVC	RIDE	R/	W	0x0F	Divi	der Field	Overrid	е					
								6-bii runr	•	divider f	ield to ov	verride w	hen Dee	p-Sleep	occurs v	vith PLL
	22:7		reser	ved	R	0	0x0	com	patibility	with fut		ucts, the	value of	a reserv	To prov ved bit sh	
	6:4		DSOSC	CSRC	R/	W	0x0	Cloc	ck Sourc	е						
								Spe	cifies the	e clock s	ource du	iring Dee	ep-Sleep	mode.		
								Vali	ue Desc	ription						
								0x0	MOS	C						
									Use	main oso	cillator as	s source				
								0x1	IOSC	2						
								00			12-MHz	oscillato	r as sour	ce.		
								0x2 0x3								
								ente			nternal c	scillator	as sourc	e.		
								0x4								
								0x5	Rese	erved						
								0x6	Rese	erved						
								0x7	Rese	erved						
	3:0		reser	ved	R	0	0x0	com	patibility	with fut		ucts, the	value of	a reserv	. To prov ved bit sh	

Register 12: Device Identification 1 (DID1), offset 0x004

This register identifies the device family, part number, temperature range, pin count, and package type.

Base Offse	ice Ider 0x400F.E t 0x004 RO, rese	E000	on 1 (DI	D1)												
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			ĒR	•		F	AM					PAR	TNO			
Type Reset	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 1
r	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	i	PINCOUNT	ſ			reserved	· ·			TEMP		P	kg	ROHS	QL	JAL
Type Reset	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO -	RO -	RO -	RO -	RO -	RO 1	RO -	RO -
B	8it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:28		VE	R	R	0	0x1	DID	1 Versio	n						
								is ni	umeric. ⁻		e of the	-		sion. The ded as fo		
								Val	ue Deso	cription						
								0x1	Seco	ond versi	on of the	e DID1 re	egister fo	ormat.		
	27:24		FAN	M	R	0	0x0	Fam	nily							
								Lum	ninary M		uct portf	olio. The		the device encode		
								Val	ue Deso	cription						
								0x0		aris famil rnal part				t is, all de 13S.	vices wi	ith
	00.40				_	0	0	Devi	N I	_						
	23:16		PART	NO	R	0	0xA3		Numbe							
									•		•			rice withir Igs are re		•
								Val	ue Deso	cription						
								0xA	A3 LM3	S6730						
	15:13		PINCO	UNT	R	0	0x2	Pac	kage Pir	n Count						
									•			•		evice pac e reserve	-	he value
								Val	ue Deso	cription						
								0x2		pin or 10	8-ball pa	ackage				
												0.				

Bit/Field	Name	Туре	Reset	Description
12:8	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:5	TEMP	RO	-	Temperature Range
				This field specifies the temperature rating of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Commercial temperature range (0°C to 70°C)
				0x1 Industrial temperature range (-40°C to 85°C)
				0x2 Extended temperature range (-40°C to 105°C)
4:3	PKG	RO	-	Package Type
				This field specifies the package type. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 SOIC package
				0x1 LQFP package
				0x2 BGA package
2	ROHS	RO	1	RoHS-Compliance
				This bit specifies whether the device is RoHS-compliant. A 1 indicates the part is RoHS-compliant.
1:0	QUAL	RO	-	Qualification Status
				This field specifies the qualification status of the device. The value is encoded as follows (all other encodings are reserved):
				Value Description
				0x0 Engineering Sample (unqualified)
				0x1 Pilot Production (unqualified)
				0x2 Fully Qualified

Register 13: Device Capabilities 0 (DC0), offset 0x008

This register is predefined by the part and can be used to verify features.

Base Offse	ice Cap 0x400F.E t 0x008 RO, rese	E000	s 0 (DC	0)												
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1			1 1	SRA	MSZ		I				1	
Туре	RO	RO	RO 0	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	U	0	0	0	0	0	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1				FLAS	SHSZ		1	1		1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1
	Bit/Field 31:16		Nan SRAN		Ty R	pe O	Reset 0x00FF	SR/ India Val	ue De	scription		hip SRA	M memc	ory.		
	15:0		FLAS	HSZ	R	0	0x003F	Flas Indi Val		e size of scription	the on-c	hip flash	memory	ı.		

Register 14: Device Capabilities 1 (DC1), offset 0x010

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: CANs, PWM, ADC, Watchdog timer, Hibernation module, and debug capabilities. This register also indicates the maximum clock frequency and maximum ADC sample rate. The format of this register is consistent with the **RCGC0**, **SCGC0**, and **DCGC0** clock control registers and the **SRCR0** software reset control register.

Offse	0x400F.E t 0x010 RO, reset	0x0000														
ſ	31	30	29	28	27	26	25	24 rese	23 I erved	22	21	20	19 I	18	17 1	16
ype [RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			YSDIV	-			erved		MPU		erved	PLL	WDT	SWO	SWD	JTAG
ype eset	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1
В	lit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		reserv	ved	R	0	0	com	tware sho patibility served a	with fut	ure prod	ucts, the	value of	a reserv		
	15:12		MINSY	SDIV	R	0	0x3	Sys	tem Cloo	k Divide	er					
								hard	imum 4-l dware-de tem clocl	ependent	t. See th	e RCC r	egister fo			
								Val	ue Desc	ription						
								0x3	8 Spec	cifies a 5	0-MHz (CPU cloc	k with a	PLL divi	der of 4.	
	11:8		reserv	ved	R	0	0	com	tware sho patibility served a	with fut	ure prod	ucts, the	value of	f a reserv		
	7		MP	U	R	0	1	MP	U Preser	nt						
								mod	en set, in dule is pre details or	esent. Se	ee the AF					
	6:5		reserv	ved	R	0	0	com	tware sho npatibility served a	with fut	ure prod	ucts, the	value of	a reserv		
	4		PLI	L	R	0	1	PLL	. Present	t						
									en set, ir sent.	dicates	that the	on-chip l	Phase Lo	ocked Lo	oop (PLL) is
	3		WD	т	R	0	1	Wat	chdog T	imer Pre	sent					
								Whe	en set, in	dicates	that a wa	atchdog	timer is r	oresent		

Bit/Field	Name	Туре	Reset	Description
2	SWO	RO	1	SWO Trace Port Present
				When set, indicates that the Serial Wire Output (SWO) trace port is present.
1	SWD	RO	1	SWD Present
				When set, indicates that the Serial Wire Debugger (SWD) is present.
0	JTAG	RO	1	JTAG Present
				When set, indicates that the JTAG debugger interface is present.

Register 15: Device Capabilities 2 (DC2), offset 0x014

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparators, General-Purpose Timers, I2Cs, QEIs, SSIs, and UARTs. The format of this register is consistent with the **RCGC1**, **SCGC1**, and **DCGC1** clock control registers and the **SRCR1** software reset control register.

Base Offse	0x400F.E t 0x014 RO, reset	000	.0011	-)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			rese	rved			COMP1	COMP0			reserved	•		TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	-				L	reserved	-			-	-	SSI0		reserved	-	UART0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1
В	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:26		reserv	ved	R	0	0	com	patibility	with fut	ure prod		value of	erved bit f a reserv on.	•	
	25		СОМ	P1	R	0	1	Ana	log Com	parator	1 Preser	nt				
								Whe	en set, in	dicates	that anal	og comp	parator 1	is prese	nt.	
	24		COM	P0	R	0	1	Ana	log Com	parator	0 Preser	nt				
								Whe	en set, in	dicates	that anal	og comp	oarator 0	is prese	nt.	
	23:19		reserv	ved	R	0	0	com	patibility	with fut	ure prod		value of	erved bit f a reserv on.	•	
	18		TIME	R2	R	0	1	Time	er 2 Pres	sent						
								Whe	en set, in	dicates	that Gen	eral-Pur	pose Tin	ner modu	ıle 2 is p	resent.
	17		TIME	R1	R	0	1	Time	er 1 Pres	sent						
								Whe	en set, in	dicates	that Gen	eral-Pur	pose Tin	ner modu	ule 1 is p	resent.
	16		TIME	R0	R	0	1	Time	er 0 Pres	sent						
								Whe	en set, in	dicates	that Gen	eral-Pur	pose Tin	ner modu	ule 0 is p	resent.
	15:5		reserv	ved	R	0	0	com	patibility	with fut	ure prod		value of	erved bit f a reserv on.	•	
	4		SSI	0	R	0	1	SSI) Preser	t						
								Whe	en set, in	dicates	that SSI	module	0 is pres	ent.		

Device Capabilities 2 (DC2)

Bit/Field	Name	Туре	Reset	Description
3:1	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	UART0	RO	1	UART0 Present
				When set, indicates that UART module 0 is present.

Register 16: Device Capabilities 3 (DC3), offset 0x018

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Analog Comparator I/Os, CCP I/Os, ADC I/Os, and PWM I/Os.

Offse	0x400F.E t 0x018 RO, reset		0FC0													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	32KHZ		reserved		CCP3	CCP2	CCP1	CCP0		r r		rese	ved	r – – – –	1	1
Type Reset	RO 1	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ	rese	rved		C10	C1PLUS	C1MINUS	C00	COPLUS	COMINUS			rese	rved		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31		32KF	ΗZ	R	0	1	32K	Hz Input	Clock A	vailable					
									en set, in KHz inpu	dicates a t clock.	an even	CCP pin	is prese	ent and c	an be u	sed as a
	30:28		reserv	/ed	R	0	0	con	patibility	ould not r with futu cross a re	ire prodi	ucts, the	value of	a reserv		
	27		CCF	23	R	0	1	CCI	P3 Pin P	resent						
								Whe	en set, in	dicates t	hat Cap	ture/Con	pare/P\	VM pin 3	is pres	ent.
	26		CCF	2	R	0	1	CCI	P2 Pin P	resent						
								Whe	en set, in	dicates t	hat Cap	ture/Con	pare/P	VM pin 2	is pres	ent.
	25		CCF	P1	R	0	1	CCI	P1 Pin P	resent						
								Whe	en set, in	dicates t	hat Cap	ture/Con	pare/P	VM pin 1	is pres	ent.
	24		CCF	0	R	0	1	CCI	P0 Pin P	resent						
								Whe	en set, in	dicates t	hat Cap	ture/Con	pare/P	VM pin C) is pres	ent.
	23:12		reserv	/ed	R	0	0	con	patibility	ould not r with futu cross a re	ire prodi	ucts, the	value of	a reserv		
	11		C10	C	R	0	1	C1c	Pin Pre	sent						
								Whe	en set, in	dicates tl	hat the a	analog co	mparato	or 1 outp	ut pin is	present.
	10		C1PL	US	R	0	1	C1+	Pin Pre	sent						
								Whe	en set, in	dicates th	at the a	nalog cor	nparator	⁻ 1 (+) inp	out pin is	present.
	9		C1MIN	IUS	R	0	1	C1-	Pin Pres	sent						
								Whe	en set, in	dicates th	nat the a	nalog coi	nparato	r 1 (-) inp	ut pin is	present.

Bit/Field	Name	Туре	Reset	Description
8	C0O	RO	1	C0o Pin Present When set, indicates that the analog comparator 0 output pin is present.
7	COPLUS	RO	1	C0+ Pin Present When set, indicates that the analog comparator 0 (+) input pin is present.
6	COMINUS	RO	1	C0- Pin Present When set, indicates that the analog comparator 0 (-) input pin is present.
5:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 17: Device Capabilities 4 (DC4), offset 0x01C

This register provides a list of features available in the system. The Stellaris family uses this register format to indicate the availability of the following family features in the specific device: Ethernet MAC and PHY, GPIOs, and CCP I/Os. The format of this register is consistent with the **RCGC2**, **SCGC2**, and **DCGC2** clock control registers and the **SRCR2** software reset control register.

Offse	e 0x400F.E et 0x01C e RO, rese		007F													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved	EPHY0	reserved	EMAC0	•					rese	rved	•			•	
Type Reset	RO 0	RO 1	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	I		reserved		1 I		1	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31		reserv	ved	R	C	0	com	patibility	ould not / with futu cross a r	ure prod	ucts, the	value of	f a reserv		
	30		EPH	Y0	R	C	1	Ethe	ernet PH	IY0 Pres	ent					
								Whe	en set, ir	ndicates f	that Ethe	ernet PH	Y modul	e 0 is pre	esent.	
	29		reserv	ved	R	C	0	com	patibility	ould not / with futu cross a r	ure prod	ucts, the	value of	f a reserv		
	28		EMA	C0	R	C	1			C0 Pres			·			
								Whe	en set, ir	ndicates	that Ethe	ernet MA	.C modu	le 0 is pr	esent.	
	27:7		reserv	ved	R	C	0	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	f a reserv		
	6		GPIC	G	R	C	1	GPI	O Port (G Presen	t					
								Whe	en set, ir	ndicates	that GPI	O Port G	is prese	ent.		
	5		GPIC	DF	R	D	1	GPI	O Port F	Present	:					
								Whe	en set, ir	ndicates	that GPI	O Port F	is prese	ent.		
	4		GPIC	DE	R	C	1	GPI	O Port E	Present	t					
								Whe	en set, ir	ndicates	that GPI	O Port E	is prese	ent.		
	3		GPIC	DD	R	C	1	GPI	O Port [) Presen	t					
								Whe	en set, ir	ndicates f	that GPI	O Port D	is prese	ent.		
	2		GPIC	DC	R	C	1	GPI	O Port C	Presen	t					
								Whe	en set, ir	ndicates f	that GPI	O Port C	is prese	ent.		

Device Capabilities 4 (DC4) Base 0x400F.E000 Offset 0x01C Type RO, reset 0x5000.007F

Bit/Field	Name	Туре	Reset	Description
1	GPIOB	RO	1	GPIO Port B Present
				When set, indicates that GPIO Port B is present.
0	GPIOA	RO	1	GPIO Port A Present
				When set, indicates that GPIO Port A is present.

Register 18: Run Mode Clock Gating Control Register 0 (RCGC0), offset 0x100

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offset	0x400F.E t 0x100 R/W, rese		00040													
,,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	ĩ		1		1 F		1 1	rese	rved	1 I		i	i		1 1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	ľ		1		reserved		1 1			reserved	rese	rved	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
В	it/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31:7		reserv	ved	compatibility with fu preserved across a		/ with futu	ire prod	ucts, the	value of	a reserv	•				
	6		reserv	ved	RO 1		1	com	Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved b preserved across a read-modify-write operation.							
	5:4		reserv	ved	R	C	0	com	patibility	ould not r / with futu cross a re	ire prod	ucts, the	value of	a reserv		
	3		WD	т	R/\	N	0	WD.	T Clock	Gating C	ontrol					
								rece disa	eives a c	trols the c lock and the unit is	function	s. Other	wise, the	unit is u	unclocked	d and
	2:0		reserv	ved	R	C	0	com	patibility	ould not r / with futu cross a re	ire prod	ucts, the	value of	a reserv		

Run Mode Clock Gating Control Register 0 (RCGC0)

Base 0x400F.E000

Register 19: Sleep Mode Clock Gating Control Register 0 (SCGC0), offset 0x110

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x110 R/W, res	Ξ000 et 0x0000	00040													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			• •	rese	erved			1		1	1	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ı	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					reserved					reserved	rese	erved	WDT		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:7		reser	ved	R	RO 0 Software should not rely on the value of a reserved compatibility with future products, the value of a reserved across a read-modify-write operation. RO 1 Software should not rely on the value of a reserved		a reserv								
	6		reser	ved	R	0	1	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv		
	5:4		reser	ved	R	0	0	com	patibility	ould not i v with futu cross a re	ire prod	ucts, the	value of	a reserv	•	
	3		WD	т	R/	W	0	WD	T Clock	Gating C	ontrol					
								rece disa	eives a c	trols the c clock and the unit is	function	is. Other	wise, the	e unit is ι	unclocke	d and
	2:0		reser	ved	R	0	0	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv		

Sleep Mode Clock Gating Control Register 0 (SCGC0)

Register 20: Deep Sleep Mode Clock Gating Control Register 0 (DCGC0), offset 0x120

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC0** is the clock configuration register for running operation, **SCGC0** for Sleep operation, and **DCGC0** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

				0		0	``	,								
Offse	0x400F.E t 0x120 R/W, res	E000 et 0x0000	00040													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	Ì	r	1		1 1	rese	erved	1 1		Ì				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	I	reserved		1 1		ı	reserved	rese	rved	WDT		reserved	
Туре Г	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:7		reser	ved	ed RO 0 Software should not rely on the value of a reserved bit compatibility with future products, the value of a reserved across a read-modify-write operation.				•							
	6	6 reserved RO		1	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
	5:4		reser	ved	R	0	0	com	npatibility	ould not r with futu cross a re	ire prod	ucts, the	value of	a reserv	•	
	3		WD	т	R/	W	0	WD	T Clock	Gating C	ontrol					
								rece disa	eives a c	rols the c lock and he unit is	function	s. Other	wise, the	unit is u	inclocke	d and
	2:0		reser	ved	R	0	0	com	npatibility	ould not r with futu cross a re	ire prod	ucts, the	value of	a reserv		

Deep Sleep Mode Clock Gating Control Register 0 (DCGC0)

Base 0x400F.E000

Register 21: Run Mode Clock Gating Control Register 1 (RCGC1), offset 0x104

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

_	31		30		29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1		1	rese	rved	1		COMP1	COMP0		1	reserved	1		TIMER2	TIMER1	TIMER
ype eset	RO 0		RO 0		RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
_	15		14		13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		1	1		1	reserved	1	1		1	1	SSI0		reserved		UART
ype eset	RO 0		RO 0		RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
В	Bit/Field				Nam	ie	Ту	pe	Reset	Des	cription							
	31:26				reserv	ved	R	0	 Software should not rely on the value of a reserve compatibility with future products, the value of a represerved across a read-modify-write operation. Analog Comparator 1 Clock Gating 				f a reserv	a reserved bit should be				
	25				СОМ	P1	R/W 0 Analog Comparator 1 Clock Gating											
								This bit controls the clock Gating This bit controls the clock gating for analor receives a clock and functions. Otherwis disabled. If the unit is unclocked, reads or a bus fault.		wise, th	e unit is ι	inclocke	d and					
	24				COM	P0	R/	W	0	Ana	log Com	parator	0 Clock (Gating				
										rece disa	ives a c	lock and	function	s. Other	wise, th	mparator e unit is u es to the u	inclocke	d and
	23:19				reserv	/ed	R	RO 0 Software should not rely on the value of a reserved bit. To compatibility with future products, the value of a reserved preserved across a read-modify-write operation.			of a reserved bit should b							
	18				TIME	R2	2 R/W 0				Timer 2 Clock Gating Control							
				This bit controls the clock gating for General-Purpose Timer mo If set, the unit receives a clock and functions. Otherwise, the un unclocked and disabled. If the unit is unclocked, reads or writes unit will generate a bus fault.			nit is											

Run Mode Clock Gating Control Register 1 (RCGC1)

Bit/Field	Name	Туре	Reset	Description
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:1	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 22: Sleep Mode Clock Gating Control Register 1 (SCGC1), offset 0x114

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse	0x400F.E t 0x114 R/W, rese	000	Ū				,									
Г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
l			rese		1		COMP1	COMP0			reserved		I	TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					· ·	reserved	1				•	SSI0		reserved	1	UART0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
В	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:26		reserved RO 0 Software should n compatibility with to preserved across COMP1 R/W 0 Analog Comparate		with fut	ure prod	ucts, the	value o	f a reserv	•						
	25		СОМ	P1	R/\	N	0	Ana	log Com	parator	1 Clock	Gating				
								rece disa	ives a c	lock and	clock gati I function s unclock	s. Other	wise, the	e unit is u	inclocke	d and
	24		COM	P0	R/\	N	0	Ana	log Com	parator	0 Clock	Gating				
								rece disa	ives a c	lock and	clock gati I function s unclock	s. Other	wise, the	e unit is u	inclocke	d and
	23:19	reserved RO 0 Software should not rely on the value of a r compatibility with future products, the value preserved across a read-modify-write opera		value o	f a reserv	•										
	18 TIMER2 R/W			N	0	Time	er 2 Cloo	k Gatin	g Control							
								lf se uncl	t, the ur ocked a	it receiv nd disat	clock gat ves a cloc bled. If the bus fault.	k and fu	nctions.	Otherwis	se, the u	nit is

Sleep Mode Clock Gating Control Register 1 (SCGC1)

Bit/Field	Name	Туре	Reset	Description
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:1	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 23: Deep Sleep Mode Clock Gating Control Register 1 (DCGC1), offset 0x124

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC1** is the clock configuration register for running operation, **SCGC1** for Sleep operation, and **DCGC1** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	0x400F.E t 0x124 R/W, rese	000	00000			logiolo	(50	001)								
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•		rese	rved	· ·		COMP1	COMP0			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1			reserved	1				1	SSI0		reserved		UART0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:26		reserv	/ed	RO 0 Software should not rely on the value of a reserved b compatibility with future products, the value of a reserved across a read-modify-write operation. R/W 0 Analog Comparator 1 Clock Gating		f a reserv	•								
	25		COMP1 R/W				0	Ana	log Com	parator	1 Clock (Gating				
								rece disa	ives a cl	ock and	function	s. Other	wise, the	mparator e unit is u es to the u	inclocke	d and
	24		COM	P0	R/	W	0	Ana	log Com	parator	0 Clock (Gating				
								rece disa	ives a cl	ock and	function	s. Other	wise, the	mparator e unit is u es to the u	inclocke	d and
	23:19		reserv	/ed	R	C	0	com	patibility	with fut		ucts, the	value of	erved bit f a reserv on.		
	18		TIME	R2	R/	W	0	Time	er 2 Cloc	k Gating	g Control					
	18 TIMER2					lf se uncl	t, the un	it receiv nd disab	es a cloc led. If the	k and fu	nctions.	Ourpose Otherwis ed, reads	se, the u	nit is		

Deep Sleep Mode Clock Gating Control Register 1 (DCGC1)

Bit/Field	Name	Туре	Reset	Description
17	TIMER1	R/W	0	Timer 1 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 1. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
16	TIMER0	R/W	0	Timer 0 Clock Gating Control
				This bit controls the clock gating for General-Purpose Timer module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
15:5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	SSI0	R/W	0	SSI0 Clock Gating Control
				This bit controls the clock gating for SSI module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3:1	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
0	UART0	R/W	0	UART0 Clock Gating Control
				This bit controls the clock gating for UART module 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 24: Run Mode Clock Gating Control Register 2 (RCGC2), offset 0x108

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base Offse	Base 0x400F.E000 Offset 0x108 Type R/W, reset 0x00000000															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved	EPHY0	reserved	EMAC0	I		1 1			rese	rved	1			1	
Туре	RO	R/W	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					reserved				1	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Тур	be	Reset	Des	cription							
	31		reserv	ved	R	C	0	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv	•	
	30 EPHY0			R/\	N	0	PH	/0 Clock	Gating (Control						
				EPHY0 R/W			rece disa	eives a c	rols the c lock and he unit is	function	s. Other	wise, the	e unit is u	inclocke	d and	
	29		reserv	ved	R	C	0	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv		
	28		EMA	C0	R/\	N	0	MAG	C0 Clock	Gating	Control					
								rece disa	eives a c	rols the c lock and he unit is	function	s. Other	wise, the	e unit is u	inclocke	d and
	27:7		reserv	ved	R	C	0	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv		
	6		GPIC)G	R/\	N	0	Port	G Clock	Gating	Control					
								cloc	k and fu	rols the onctions.	Otherwis	se, the u	nit is und	locked a	and disat	oled. If

Run Mode Clock Gating Control Register 2 (RCGC2)

Bit/Field	Name	Туре	Reset	Description
5	GPIOF	R/W	0	Port F Clock Gating Control
				This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	GPIOE	R/W	0	Port E Clock Gating Control
				This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If

clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 25: Sleep Mode Clock Gating Control Register 2 (SCGC2), offset 0x118

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Base 0x400F.E000 Offset 0x118 Type R/W, reset 0x00000000																		
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	reserved	EPHY0	YO reserved EMACO				1 1		reserved			1						
Туре	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Reset																		
I	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
									1	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0								
Reset	0	0	0	0	0	0	Ū	0	Ū	0	U	Ū	0	0	U	0		
Bit/Field			Name		Туре		Reset	Des	Description									
31			reserved		RC	RO 0		com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	30		EPHY0		R/W		0	PHY	PHY0 Clock Gating Control									
								rece disa	This bit controls the clock gating for Ethernet PHY unit 0. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.									
29			reserved		RO		0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
28			EMAC0		R/W		0	MAG	MAC0 Clock Gating Control									
								rece disa	This bit controls the clock gating for Ethernet MAC unit 0. If set, the un receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generat a bus fault.									
27:7			reserved		RO		0	com	ftware should not rely on the value of a reserved bit. To provide mpatibility with future products, the value of a reserved bit should be served across a read-modify-write operation.									

Sleep Mode Clock Gating Control Register 2 (SCGC2)

Bit/Field	Name	Туре	Reset	Description
6	GPIOG	R/W	0	Port G Clock Gating Control
				This bit controls the clock gating for Port G. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
5	GPIOF	R/W	0	Port F Clock Gating Control
				This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	GPIOE	R/W	0	Port E Clock Gating Control
				This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Base 0x400F.E000

Register 26: Deep Sleep Mode Clock Gating Control Register 2 (DCGC2), offset 0x128

This register controls the clock gating logic. Each bit controls a clock enable for a given interface, function, or unit. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled (saving power). If the unit is unclocked, reads or writes to the unit will generate a bus fault. The reset state of these bits is 0 (unclocked) unless otherwise noted, so that all functional units are disabled. It is the responsibility of software to enable the ports necessary for the application. Note that these registers may contain more bits than there are interfaces, functions, or units to control. This is to assure reasonable code compatibility with other family and future parts. **RCGC2** is the clock configuration register for running operation, **SCGC2** for Sleep operation, and **DCGC2** for Deep-Sleep operation. Setting the ACG bit in the **Run-Mode Clock Configuration (RCC)** register specifies that the system uses sleep modes.

Offse	e 0x400F.i et 0x128 R/W, res	=000 et 0x0000	0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved	EPHY0	reserved	EMAC0		[т т		r	rese	erved	1		I	1	1
Type Reset	RO 0	R/W 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ı	r	1 1	reserved	r	т т		1	GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31		reser	ved	R	0	0	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		
	30		EPH	Y0	R/	W	0	PH	/0 Clock	Gating	Control					
								rece disa	eives a c	rols the c lock and he unit is	function	s. Other	wise, the	e unit is ι	unclocke	
	29		reser	ved	R	0	0	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		
	28		EMA	C0	R/	W	0	MAG	C0 Clock	Gating	Control					
								rece disa	eives a c	rols the c lock and he unit is	function	s. Other	wise, the	e unit is ι	unclocke	
	27:7		reser	ved	R	0	0	com	patibility	ould not with futi cross a r	ure prod	ucts, the	value of	a reserv	•	

Deep Sleep Mode Clock Gating Control Register 2 (DCGC2)

Bit/Field	Name	Туре	Reset	Description
6	GPIOG	R/W	0	Port G Clock Gating Control
				This bit controls the clock gating for Port G. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
5	GPIOF	R/W	0	Port F Clock Gating Control
				This bit controls the clock gating for Port F. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
4	GPIOE	R/W	0	Port E Clock Gating Control
				This bit controls the clock gating for Port E. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
3	GPIOD	R/W	0	Port D Clock Gating Control
				This bit controls the clock gating for Port D. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
2	GPIOC	R/W	0	Port C Clock Gating Control
				This bit controls the clock gating for Port C. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
1	GPIOB	R/W	0	Port B Clock Gating Control
				This bit controls the clock gating for Port B. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.
0	GPIOA	R/W	0	Port A Clock Gating Control
				This bit controls the clock gating for Port A. If set, the unit receives a clock and functions. Otherwise, the unit is unclocked and disabled. If the unit is unclocked, reads or writes to the unit will generate a bus fault.

Register 27: Software Reset Control 0 (SRCR0), offset 0x040

Writes to this register are masked by the bits in the **Device Capabilities 1 (DC1)** register.

Software Reset Control 0 (SRCR0) Base 0x400F.E000 Offset 0x040 Type R/W, reset 0x00000000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		г г		1 1	rese	erved	I	I	1	1 1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1		г г	res	erved		ı	1	1	1	WDT		reserved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:4		Nan reser		Tyj R(Reset 0	Soft corr	patibility	with futu	ure prod	ucts, the	e of a rese value of e operatic	a reser	•	
	3		WD	Т	R/	N	0	WD	T Reset	Control						
								Res	et contro	ol for Wa	tchdog u	nit.				
	2:0		reser	ved	R	C	0	com	patibility	with futu	ure prod	ucts, the	e of a rese value of operation	a reser	•	

Register 28: Software Reset Control 1 (SRCR1), offset 0x044

Writes to this register are masked by the bits in the **Device Capabilities 2 (DC2)** register.

Software Reset Control 1 (SRCR1) Base 0x400F.E000 Offset 0x044 Type R/W, reset 0x00000000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	I	I	reser	rved			COMP1	COMP0			reserved			TIMER2	TIMER1	TIMER0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I	I	ľ			reserved		ſ	г т 1		1	SSI0		reserved		UART0
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	R/W 0
В	it/Field		Nam	е	Тур	be	Reset	Des	cription							
:	31:26		reserv	red	R	C	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	f a reserv		
	25		COM	P1	R/\	N	0	Ana	log Comp	1 Res	et Contro	d				
								Res	et control	for ana	alog com	parator 1				
	24		COM	P0	R۸	N	0	Ana	log Comp	0 Res	et Contro	d				
								Res	et control	for ana	alog com	parator 0	-			
:	23:19		reserv	red	R	C	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	f a reserv	•	
	18		TIME	R2	R/\	N	0	Time	er 2 Rese	t Contro	ol					
								Res	et control	for Ge	neral-Pur	pose Tin	ner moo	lule 2.		
	17		TIME	R1	R۸	N	0	Time	er 1 Rese	t Contro	ol					
								Res	et control	for Ge	neral-Pur	pose Tin	ner moo	lule 1.		
	16		TIME	R0	R۸	N	0	Time	er 0 Rese	t Contro	ol					
								Res	et control	for Ge	neral-Pur	pose Tin	ner moo	lule 0.		
	15:5		reserv	red	R	C	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	f a reserv		
	4		SSI	D	R۸	N	0	SSI	0 Reset C	ontrol						
								Res	et control	for SS	l unit 0.					
	3:1		reserv	red	R	C	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	f a reserv		
	0		UAR	ГО	R۸	N	0	UAF	RT0 Rese	t Contro	ol					
								Res	et control	for UA	RT unit 0).				

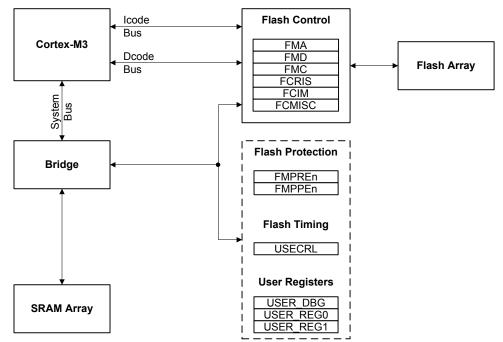
Register 29: Software Reset Control 2 (SRCR2), offset 0x048

Writes to this register are masked by the bits in the Device Capabilities 4 (DC4) register.

Software Reset Control 2 (SRCR2) Base 0x400F.E000 Offset 0x048 Type R/W, reset 0x00000000

туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	reserved	EPHY0	reserved	EMAC0		20	1 1	27		rese		1		1		
Туре	RO	R/W	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
l	15	14	13	12	11 reserved	10	9	8	7	6 GPIOG	5 GPIOF	4 GPIOE	3 GPIOD	2 GPIOC	1 GPIOB	0 GPIOA
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Тур	e	Reset	Des	cription							
	31		reserv	ved	R)	0	com	patibility	with futu	ure produ	he value ucts, the lify-write	value of	a reserv		
	30		EPH'	Y0	RΛ	N	0	PHY	0 Reset	Control						
								Res	et contro	ol for Eth	ernet PH	IY unit 0				
	29		reserv	ved	R	D	0	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	a reserv		
28 EMAC0 R/W 0 MAC0 Reset Control																
								Res	et contro	ol for Eth	ernet MA	AC unit 0).			
	27:7		reserv	ved	R	D	0	com	patibility	with futu	ure produ	he value ucts, the dify-write	value of	a reserv		
	6		GPIC)G	R/\	N	0	Port	G Rese	t Control						
								Res	et contro	ol for GP	IO Port (Э.				
	5		GPIC	DF	R/\	N	0	Port	F Reset	t Control						
								Res	et contro	ol for GP	IO Port F	Ξ.				
	4		GPIC	DE	R/\	N	0	Port	E Rese	t Control						
								Res	et contro	ol for GP	IO Port E	Ξ.				
	3		GPIC	D	R/\	N	0	Port	D Rese	t Control						
								Res	et contro	ol for GP	IO Port [D.				
	2		GPIC	C	R/\	N	0	Port	C Rese	t Control						
								Res	et contro	ol for GP	IO Port (С.				
	1		GPIC	ЭB	R/\	N	0	Port	B Rese	t Control						
								Res	et contro	ol for GP	IO Port E	3.				
								Res	et contro	ol for GP	IO Port E	3.				

Bit/Field	Name	Туре	Reset	Description
0	GPIOA	R/W	0	Port A Reset Control
				Reset control for GPIO Port A.


7 Internal Memory

The LM3S6730 microcontroller comes with 64 KB of bit-banded SRAM and 128 KB of flash memory. The flash controller provides a user-friendly interface, making flash programming a simple task. Flash protection can be applied to the flash memory on a 2-KB block basis.

7.1 Block Diagram

Figure 7-1 on page 116 illustrates the Flash functions. The dashed boxes in the figure indicate registers residing in the System Control module rather than the Flash Control module.

7.2 Functional Description

This section describes the functionality of the SRAM and Flash memories.

7.2.1 SRAM Memory

The internal SRAM of the Stellaris[®] devices is located at address 0x2000.0000 of the device memory map. To reduce the number of time consuming read-modify-write (RMW) operations, ARM has introduced *bit-banding* technology in the Cortex-M3 processor. With a bit-band-enabled processor, certain regions in the memory map (SRAM and peripheral space) can use address aliases to access individual bits in a single, atomic operation.

The bit-band alias is calculated by using the formula:

bit-band alias = bit-band base + (byte offset * 32) + (bit number * 4)

For example, if bit 3 at address 0x2000.1000 is to be modified, the bit-band alias is calculated as:

0x2200.0000 + (0x1000 * 32) + (3 * 4) = 0x2202.000C

With the alias address calculated, an instruction performing a read/write to address 0x2202.000C allows direct access to only bit 3 of the byte at address 0x2000.1000.

For details about bit-banding, please refer to Chapter 4, "Memory Map" in the *ARM*® *Cortex*™-*M*3 *Technical Reference Manual.*

7.2.2 Flash Memory

The flash is organized as a set of 1-KB blocks that can be individually erased. Erasing a block causes the entire contents of the block to be reset to all 1s. An individual 32-bit word can be programmed to change bits that are currently 1 to a 0. These blocks are paired into a set of 2-KB blocks that can be individually protected. The protection allows blocks to be marked as read-only or execute-only, providing different levels of code protection. Read-only blocks cannot be erased or programmed, protecting the contents of those blocks from being modified. Execute-only blocks cannot be erased or programmed, and can only be read by the controller instruction fetch mechanism, protecting the contents of those blocks from being read by either the controller or by a debugger.

See also "Serial Flash Loader" on page 417 for a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface.

7.2.2.1 Flash Memory Timing

The timing for the flash is automatically handled by the flash controller. However, in order to do so, it must know the clock rate of the system in order to time its internal signals properly. The number of clock cycles per microsecond must be provided to the flash controller for it to accomplish this timing. It is software's responsibility to keep the flash controller updated with this information via the **USec Reload (USECRL)** register.

On reset, the **USECRL** register is loaded with a value that configures the flash timing so that it works with the maximum clock rate of the part. If software changes the system operating frequency, the new operating frequency minus 1 (in MHz) must be loaded into **USECRL** before any flash modifications are attempted. For example, if the device is operating at a speed of 20 MHz, a value of 0x13 (20-1) must be written to the **USECRL** register.

7.2.2.2 Flash Memory Protection

The user is provided two forms of flash protection per 2-KB flash blocks in two pairs of 32-bit wide registers. The protection policy for each form is controlled by individual bits (per policy per block) in the **FMPPEn** and **FMPREn** registers.

- Flash Memory Protection Program Enable (FMPPEn): If set, the block may be programmed (written) or erased. If cleared, the block may not be changed.
- Flash Memory Protection Read Enable (FMPREn): If a bit is set, the corresponding block may be executed or read by software or debuggers. If a bit is cleared, the corresponding block may only be executed, and contents of the memory block are prohibited from being read as data.

The policies may be combined as shown in Table 7-1 on page 117.

FMPPEn	FMPREn	Protection
0	0	Execute-only protection. The block may only be executed and may not be written or erased. This mode is used to protect code.
1	0	The block may be written, erased or executed, but not read. This combination is unlikely to be used.

Table 7-1. Flash Protection Policy Combinations

FMPPEn	FMPREn	Protection
0	1	Read-only protection. The block may be read or executed but may not be written or erased. This mode is used to lock the block from further modification while allowing any read or execute access.
1	1	No protection. The block may be written, erased, executed or read.

Table 7-1. Flash Protection Policy Combinations (continued)

A Flash memory access that attempts to read a read-protected block (**FMPREn** bit is set) is prohibited and generates a bus fault. A Flash memory access that attempts to program or erase a program-protected block (**FMPPEn** bit is set) is prohibited and can optionally generate an interrupt (by setting the AMASK bit in the **Flash Controller Interrupt Mask (FCIM)** register) to alert software developers of poorly behaving software during the development and debug phases.

The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. These settings create a policy of open access and programmability. The register bits may be changed by clearing the specific register bit. The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The changes are committed using the **Flash Memory Control (FMC)** register. Details on programming these bits are discussed in "Nonvolatile Register Programming" on page 119.

7.2.2.3 Interrupts

The Flash memory controller can generate interrupts when the following conditions are observed:

- Programming Interrupt signals when a program or erase action is complete.
- Access Interrupt signals when a program or erase action has been attempted on a 2-kB block of memory that is protected by its corresponding FMPPEn bit.

The interrupt events that can trigger a controller-level interrupt are defined in the **Flash Controller Masked Interrupt Status (FCMIS)** register (see page 126) by setting the corresponding MASK bits. If interrupts are not used, the raw interrupt status is always visible via the **Flash Controller Raw Interrupt Status (FCRIS)** register (see page 125).

Interrupts are always cleared (for both the FCMIS and FCRIS registers) by writing a 1 to the corresponding bit in the Flash Controller Masked Interrupt Status and Clear (FCMISC) register (see page 127).

7.3 Flash Memory Initialization and Configuration

7.3.1 Flash Programming

The Stellaris[®] devices provide a user-friendly interface for flash programming. All erase/program operations are handled via three registers: **FMA**, **FMD**, and **FMC**.

7.3.1.1 To program a 32-bit word

- 1. Write source data to the FMD register.
- 2. Write the target address to the FMA register.
- 3. Write the flash write key and the WRITE bit (a value of 0xA442.0001) to the FMC register.
- 4. Poll the FMC register until the WRITE bit is cleared.

7.3.1.2 To perform an erase of a 1-KB page

- 1. Write the page address to the **FMA** register.
- 2. Write the flash write key and the ERASE bit (a value of 0xA442.0002) to the FMC register.
- 3. Poll the FMC register until the ERASE bit is cleared.

7.3.1.3 To perform a mass erase of the flash

- 1. Write the flash write key and the MERASE bit (a value of 0xA442.0004) to the **FMC** register.
- 2. Poll the FMC register until the MERASE bit is cleared.

7.3.2 Nonvolatile Register Programming

This section discusses how to update registers that are resident within the Flash memory itself. These registers exist in a separate space from the main Flash memory array and are not affected by an ERASE or MASS ERASE operation. The bits in these registers can be changed from 1 to 0 with a write operation. Prior to being committed, the register contents are unaffected by any reset condition except power-on reset, which returns the register contents to the original value. By committing the register values using the COMT bit in the **FMC** register, the register contents become nonvolatile and are therefore retained following power cycling. Once the register contents are committed, the contents are permanent, and they cannot be restored to their factory default values.

With the exception of the USER_DBG register, the settings in these registers can be tested before committing them to Flash memory. For the USER_DBG register, the data to be written is loaded into the FMD register before it is committed. The FMD register is read only and does not allow the USER_DBG operation to be tried before committing it to nonvolatile memory.

Important: These registers can only have bits changed from 1 to 0 by user programming. Once committed, these registers cannot be restored to their factory default values.

In addition, the USER_REG0, USER_REG1, USER_REG2, USER_REG3, and USER_DBG registers each use bit 31 (NW) to indicate that they have not been committed and bits in the register may be changed from 1 to 0. These five registers can only be committed once whereas the Flash memory protection registers may be committed multiple times. Table 7-2 on page 119 provides the FMA address required for commitment of each of the registers and the source of the data to be written when the FMC register is written with a value of 0xA442.0008. After writing the COMT bit, the user may poll the FMC register to wait for the commit operation to complete.

Register to be Committed	FMA Value	Data Source
FMPRE0	0x0000.0000	FMPRE0
FMPRE1	0x0000.0002	FMPRE1
FMPPE0	0x0000.0001	FMPPE0
FMPPE1	0x0000.0003	FMPPE1
USER_REG0	0x8000.0000	USER_REG0
USER_REG1	0x8000.0001	USER_REG1
USER_REG2	0x8000.0002	USER_REG2
USER_REG3	0x8000.0003	USER_REG3
USER_DBG	0x7510.0000	FMD

Table 7-2	User-Programmable	Flash Memory	y Resident Registers

7.4 Register Map

Table 7-3 on page 120 lists the Flash memory and control registers. The offset listed is a hexadecimal increment to the register's address. The **FMA**, **FMD**, **FMC**, **FCRIS**, **FCIM**, and **FCMISC** register offsets are relative to the Flash memory control base address of 0x400F.D000. The Flash memory protection register offsets are relative to the System Control base address of 0x400F.E000.

Table 7-3	. Flash	Register	Мар
-----------	---------	----------	-----

Offset	Name	Туре	Reset	Description	See page
Flash Me	mory Control Registers	s (Flash Con	trol Offset)		
0x000	FMA	R/W	0x0000.0000	Flash Memory Address	121
0x004	FMD	R/W	0x0000.0000	Flash Memory Data	122
0x008	FMC	R/W	0x0000.0000	Flash Memory Control	123
0x00C	FCRIS	RO	0x0000.0000	Flash Controller Raw Interrupt Status	125
0x010	FCIM	R/W	0x0000.0000	Flash Controller Interrupt Mask	126
0x014	FCMISC	R/W1C	0x0000.0000	Flash Controller Masked Interrupt Status and Clear	127
Flash Me	mory Protection Regis	ters (System	Control Offset)		
0x130	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	130
0x200	FMPRE0	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 0	130
0x134	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	131
0x400	FMPPE0	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 0	131
0x140	USECRL	R/W	0x31	USec Reload	129
0x1D0	USER_DBG	R/W	0xFFFF.FFFE	User Debug	132
0x1E0	USER_REG0	R/W	0xFFFF.FFFF	User Register 0	133
0x1E4	USER_REG1	R/W	0xFFFF.FFFF	User Register 1	134
0x204	FMPRE1	R/W	0xFFFF.FFFF	Flash Memory Protection Read Enable 1	135
0x208	FMPRE2	R/W	0x0000.0000	Flash Memory Protection Read Enable 2	136
0x20C	FMPRE3	R/W	0x0000.0000	Flash Memory Protection Read Enable 3	137
0x404	FMPPE1	R/W	0xFFFF.FFFF	Flash Memory Protection Program Enable 1	138
0x408	FMPPE2	R/W	0x0000.0000	Flash Memory Protection Program Enable 2	139
0x40C	FMPPE3	R/W	0x0000.0000	Flash Memory Protection Program Enable 3	140

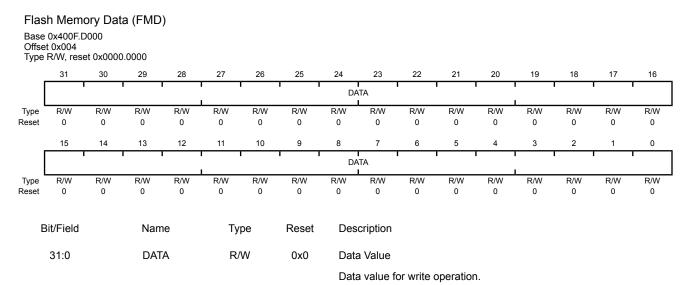
7.5 Flash Register Descriptions (Flash Control Offset)

This section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the Flash control base address of 0x400F.D000.

Register 1: Flash Memory Address (FMA), offset 0x000

During a write operation, this register contains a 4-byte-aligned address and specifies where the data is written. During erase operations, this register contains a 1 KB-aligned address and specifies which page is erased. Note that the alignment requirements must be met by software or the results of the operation are unpredictable.

	t 0x000 R/W, res	et 0x0000	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	r	1		1	r r	reserved		I	1	1	1	1	1	OFFSET
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1		1	1 1	OFF	SET	1	1	1	ı	1	1	1
Туре L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:17		reser	ved	R	0	0x0	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	16:0		OFFS	SET	R/	W	0x0	Add	ress Off	set						
												operatio	•	-	•	


119 for details on values for this field).

Flash Memory Address (FMA)

Base 0x400F.D000 Offset 0x000

Register 2: Flash Memory Data (FMD), offset 0x004

This register contains the data to be written during the programming cycle or read during the read cycle. Note that the contents of this register are undefined for a read access of an execute-only block. This register is not used during the erase cycles.

April 04, 2010

Register 3: Flash Memory Control (FMC), offset 0x008

When this register is written, the flash controller initiates the appropriate access cycle for the location specified by the **Flash Memory Address (FMA)** register (see page 121). If the access is a write access, the data contained in the **Flash Memory Data (FMD)** register (see page 122) is written.

This is the final register written and initiates the memory operation. There are four control bits in the lower byte of this register that, when set, initiate the memory operation. The most used of these register bits are the ERASE and WRITE bits.

It is a programming error to write multiple control bits and the results of such an operation are unpredictable.

		-	ntrol (FN	AC)												
Offse	0x400F.E t 0x008 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1	ſ	I	1		ſ	1 1	WR	KEY	1	T	1	1	1	1	
Type Reset	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0	WO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	1		res	erved				1	1	СОМТ	MERASE	ERASE	WRITE
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		WRK	EY	W	O	0x0	Flas	sh Write	Kev						
	15:4		reser	ved	R	0	0x0	field valu Soft com	l for a wr ie are igr ware sho	ite to oco nored. A ould not with fut	cur. Write read of t rely on t ure prode	es to the this field he value ucts, the	FMC re returns of a res value of	must be v gister wit the value served bit f a reserv on.	thout this 0. To prov	WRKEY
	3		CON	ΛT	R/	W	0	Con	nmit Reg	ister Val	ue					
									nmit (wri effect on				nvolatile	storage.	A write	of 0 has
								prev	-	nmit acc	ess is co	omplete,	a 0 is re	ss is prov eturned; c ed.		
								This	s can tak	e up to 5	50 µs.					
	2		MERA	ASE	R	W	0	Mas	s Erase	Flash M	emory					
									is bit is s e of 0 ha					device is	all eras	ed. A
								prev	ious ma	ss erase	e access	is comp	lete, a 0	access is is returne ete, a 1 is	ed; othe	rwise, if
								This	s can tak	e up to 2	250 ms.					

Bit/Field	Name	Туре	Reset	Description
1	ERASE	R/W	0	Erase a Page of Flash Memory
				If this bit is set, the page of flash main memory as specified by the contents of FMA is erased. A write of 0 has no effect on the state of this bit.
				If read, the state of the previous erase access is provided. If the previous erase access is complete, a 0 is returned; otherwise, if the previous erase access is not complete, a 1 is returned.
				This can take up to 25 ms.
0	WRITE	R/W	0	Write a Word into Flash Memory
				If this bit is set, the data stored in FMD is written into the location as specified by the contents of FMA . A write of 0 has no effect on the state of this bit.
				If read, the state of the previous write update is provided. If the previous write access is complete, a 0 is returned; otherwise, if the write access is not complete, a 1 is returned.
				This can take up to 50 up

This can take up to 50 µs.

Register 4: Flash Controller Raw Interrupt Status (FCRIS), offset 0x00C

This register indicates that the flash controller has an interrupt condition. An interrupt is only signaled if the corresponding **FCIM** register bit is set.

Flash Controller Raw Interrupt Status (FCRIS)

Base 0x400F.D000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved	1	1				1	
/pe	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
set	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		-	•	-				rved	I		-	•	1		PRIS	ARIS
pe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
B	it/Field		Nar	mo	Tv	no	Reset	Des	cription							
D			Indi		Ту	þe	Reset	Des	cription							
	31:2		reser	ved	R	0	0x0	com	patibility	with fut	ure prod	lucts, the	of a resolution of a resolutio	a reserv		
	1		PR	IS	R	0	0	Prog	grammin	ng Raw li	nterrupt	Status				
													ng cycles egister b			
								Val	ue Deso	cription						
								1	The	program	ming cy	cle has c	ompleted	d.		
								0	The	program	ming cy	cle has r	ot compl	eted.		
										is sent to er is set.	the inte	errupt cor	ntroller w	hen the	pmask b	it in t
								This	bit is cle	eared by	writing a	a 1 to the	PMISC b	it in the I	CMISC	regis
	0		AR	IS	R	0	0	Acc	ess Raw	v Interrup	ot Status					
								Val	ue Deso	cription						
								1	merr		contrad	icts the p	s attemp protection			
								0	No a men		as tried	to improp	erly prog	gram or	erase the	e Flas
										is sent to er is set.	the inte	errupt cor	ntroller w	hen the	amask b	it in t

This bit is cleared by writing a 1 to the $\tt AMISC$ bit in the FCMISC register.

Register 5: Flash Controller Interrupt Mask (FCIM), offset 0x010

This register controls whether the flash controller generates interrupts to the controller.

Flash Controller Interrupt Mask (FCIM) Base 0x400F.D000 Offset 0x010 Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved					•	'	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•						rese	rved						•	PMASK	AMASK
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field 31:2		Nam		Ty R		Reset 0x0		cription	auld not	roly on t		of a roa	on rod bi	t. To prov	rido
	31.2		reserv	leu	ĸ	0	0.00	com		with futu	ure produ	ucts, the	value of	a reser	ved bit sł	
	1		PMA	SK	R/	W	0	Prog	grammin	g Interru	pt Mask					
									bit conti ie interru			of the p	rogramn	ning raw	interrup	t status
								Val	ue Desc	ription						
								1	An in is set		s sent to	the inter	rupt cont	troller w	hen the I	PRIS bit
								0	The I contr		errupt is	suppres	sed and	not sen	t to the ir	nterrupt
	0		AMAS	SK	R/	W	0	Acc	ess Inter	rupt Mas	sk					
									bit conti rrupt con		reporting	of the a	ccess ra	w interr	upt statu	s to the
								Val	ue Desc	ription						
								1		terrupt is	s sent to	the inter	rupt cont	troller w	hen the 🛛	ARIS bit
								0	The z		errupt is	suppres	sed and	not sen	t to the ir	nterrupt

Register 6: Flash Controller Masked Interrupt Status and Clear (FCMISC), offset 0x014

Flash Controller Masked Interrupt Status and Clear (FCMISC)

This register provides two functions. First, it reports the cause of an interrupt by indicating which interrupt source or sources are signalling the interrupt. Second, it serves as the method to clear the interrupt reporting.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ	1		1	1	r	I	т т	rese	rved	I	1	1	1	1	1	1
rpe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	•	I	•	reserv	ved	1		•				PMISC	AMIS
rpe set	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W1C 0	R/W1 0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:2		reser	ved	R	0	0x0	com	patibility	with fut	ure prod	ucts, the		a reser	t. To prov ved bit sł	
	1		PMIS	SC	R/V	V1C	0	Prog	grammin	g Maske	ed Interru	upt Statu	is and Cl	ear		
								Valu	ue Desc	ription						
								1					an unmaning cycl		terrupt w eted.	as
										ng a 1 to IS regist				l also th	e pris b	oit in th
								0		n read, a rupt has			a progra	amming	cycle cor	nplete
									A wr	ite of 0 h	as no ef	fect on t	he state	of this b	it.	
	0		AMIS	SC	R/W	V1C	0	Acce	ess Mas	ked Inter	rrupt Sta	itus and	Clear			
								Valu	ue Desc	ription						
								1	signa a blo	aled beca ck of Fla	ause a p ash mem	rogram o lory that	or erase a	action w	terrupt w as attem protectior	pted o
										ng a 1 to IS regist				l also th	e aris b	oit in th
								0	Whe occu		a 0 indica	ates that	no impro	oper acc	cesses ha	ave
									A			x	he state	- 6 41- 1 - 1-		

7.6 Flash Register Descriptions (System Control Offset)

The remainder of this section lists and describes the Flash Memory registers, in numerical order by address offset. Registers in this section are relative to the System Control base address of 0x400F.E000.

0x31 (50 MHz) whenever the flash is being erased or programmed.

Register 7: USec Reload (USECRL), offset 0x140

Note: Offset is relative to System Control base address of 0x400F.E000

This register is provided as a means of creating a 1-µs tick divider reload value for the flash controller. The internal flash has specific minimum and maximum requirements on the length of time the high voltage write pulse can be applied. It is required that this register contain the operating frequency (in MHz -1) whenever the flash is being erased or programmed. The user is required to change this value if the clocking conditions are changed for a flash erase/program operation.

Base Offse	ec Reloa 0x400F.I t 0x140 R/W, res	E000	ECRL)													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	T	1	1 1 1		1 1	rese	erved	ſ		1	1 1	ſ	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		Î	1	rese	n n erved		1 1			I		US	EC	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	1
B	Bit/Field		Nan	ne	Тур	be	Reset	Des	scription							
	31:8		reser	ved	R	C	0x0	com	npatibility	with futu	ure prod	ucts, the	of a resolution of a resolutio	a reserv	•	
	7:0		USE	EC	R/	N	0x31	Mic	rosecono	l Reload	Value					
									z -1 of th grammed		ller clocł	k when th	he flash i	s being (erased o	r
								If th	e maxim	um syste	em frequ	ency is t	being use	d, USEC	should b	be set to

Register 8: Flash Memory Protection Read Enable 0 (FMPRE0), offset 0x130 and 0x200

Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other **FMPREn** registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. For additional information, see the "Flash Memory Protection" section.

Base 0x400F.E000 Offset 0x130 and 0x200 Type R/W, reset 0xFFFF.FFFF 30 28 25 31 29 27 26 24 23 22 21 20 19 18 17 16 READ ENABLE Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 3 2 0 READ ENABLE R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bit/Field Name Туре Reset Description READ_ENABLE 0xFFFFFFFF Flash Read Enable. Enables 2-KB Flash memory blocks to be executed 31:0 R/W or read. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Flash Memory Protection Read Enable 0 (FMPRE0)

Value Description

0xFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory up to the total of 64 KB.

Register 9: Flash Memory Protection Program Enable 0 (FMPPE0), offset 0x134 and 0x400

Note: This register is aliased for backwards compatability.

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other **FMPPEn** registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. For additional information, see the "Flash Memory Protection" section.

Offset 0x134 and 0x400 Type R/W, reset 0xFFFF.FFFF 30 25 24 31 29 28 27 26 23 22 21 20 19 18 17 16 PROG ENABLE Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8 15 14 13 12 11 10 9 7 6 5 3 2 0 PROG_ ENABLE R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Bit/Field Name Туре Reset Description PROG_ENABLE 0xFFFFFFF Flash Programming Enable 31:0 R/W Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Value

Description

0xFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory up to the total of 64 KB.

Flash Memory Protection Program Enable 0 (FMPPE0) Base 0x400F.E000

April 04, 2010

Register 10: User Debug (USER_DBG), offset 0x1D0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides a write-once mechanism to disable external debugger access to the device in addition to 27 additional bits of user-defined data. The DBG0 bit (bit 0) is set to 0 from the factory and the DBG1 bit (bit 1) is set to 1, which enables external debuggers. Changing the DBG1 bit to 0 disables any external debugger access to the device permanently, starting with the next power-up cycle of the device. The NW bit (bit 31) indicates that the register has not yet been committed and is controlled through hardware to ensure that the register is only committed once. Prior to being committed, bits can only be changed from 1 to 0. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. Once committed, this register cannot be restored to the factory default value.

Base Offse	0x400F.E t 0x1D0		R_DBG F.FFFE	i)												
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NW					•	• •		DATA		•			•		'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
ı	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				•		•	DAT	A			•				DBG1	DBG0
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	scription							
	31		NV	V	R/	W	1	Use	er Debug	Not Writ	tten					
								com	en set, th nmitted. \ nmitted a	When cle	ear, this	bit speci	fies that			
	30:2		DAT	ΓA	R/	w	x1FFFFF	F Use	er Data							
									ntains the / be com			. This fie	eld is initi	alized to	all 1s ar	nd can
	1		DBC	G1	R/	W	1	Deb	oug Cont	rol 1						
								The	e DBG1 bi	t must b	e 1 and 1	DBG0 ml	ust be 0 f	or debug	g to be a	vailable.
	0		DBC	G0	R/	W	0	Deb	oug Cont	rol 0						
								The	e DBG1 bi	t must be	e 1 and 1	DBG0 mi	ust be 0 f	or debug	g to be a	vailable.
															-	

Register 11: User Register 0 (USER_REG0), offset 0x1E0

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be committed once. Bit 31 indicates that the register is available to be committed and is controlled through hardware to ensure that the register is only committed once. Prior to being committed, bits can only be changed from 1 to 0. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device. Once committed, this register cannot be restored to the factory default value.

Use	r Regis	ter 0 (U	SER_R	REG0)												
Offse	0x400F.E t 0x1E0 R/W, rese	E000 et 0xFFFF	F.FFFF													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NW		I	1	r	[1 1		DATA		I	1	1	1	1	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		I	1	I I		т т	DA	TA		1	1	1	1		'
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
E	8it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31		NV	V	R/	W	1	Not	Written							
								com	en set, th imitted. V imitted ai	Vhen cle	ear, this l	bit specif	fies that i			
	30:0		DAT	Ā	R/	W 0	x7FFFFFF	F Use	r Data							
									tains the			. This fie	ld is initi	alized to	all 1s ai	nd can

Register 12: User Register 1 (USER_REG1), offset 0x1E4

Note: Offset is relative to System Control base address of 0x400FE000.

This register provides 31 bits of user-defined data that is non-volatile and can only be committed once. Bit 31 indicates that the register is available to be committed and is controlled through hardware to ensure that the register is only committed once. Prior to being committed, bits can only be changed from 1 to 0. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. The write-once characteristics of this register are useful for keeping static information like communication addresses that need to be unique per part and would otherwise require an external EEPROM or other non-volatile device. Once committed, this register cannot be restored to the factory default value.

Base Offse	0x400F.E t 0x1E4	•	SER_R	EG1)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	NW		1				1 1		DATA		1	1	, , , , , , , , , , , , , , , , , , ,			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	1	i		1 I	DA	ATA		Î	1	, i			
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
E	8it/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31		NV	/	R/	W	1	Not	Written							
								com	en set, th nmitted. V nmitted ar	Vhen cle	ear, this l	oit specif	ies that t			
	30:0		DAT	A	R/	W 02	x7FFFFFF	F Use	er Data							
									tains the			. This fie	ld is initia	alized to	all 1s a	nd can

Register 13: Flash Memory Protection Read Enable 1 (FMPRE1), offset 0x204

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other **FMPREn** registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. If the Flash memory size on the device is less than 64 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section.

Base 0x400F.E000 Offset 0x204 Type R/W, reset 0xFFFF.FFF 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 READ ENABLE Туре R/W Reset 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 3 2 0 4 1 READ ENABLE R/W Туре R/W R/W R/W R/W R/W R/W Reset 1 1 1 1 1 1 1 1 1 **Bit/Field** Name Type Reset Description 31:0 READ ENABLE 0xFFFFFFFF Flash Read Enable. Enables 2-KB Flash memory blocks to be executed R/W or read. The policies may be combined as shown in the table "Flash Protection Policy Combinations".

Flash Memory Protection Read Enable 1 (FMPRE1)

Value Description

0xFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in memory range from 65 to 128 KB.

Register 14: Flash Memory Protection Read Enable 2 (FMPRE2), offset 0x208

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (**FMPPEn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Read Enable 2 (FMPRE2)

Offse	0x400F.E t 0x208 R/W, res		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		, , , , , , , , , , , , , , , , , , ,		1 1	READ_	ENABLE			1	r – – – –		1	
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		, , ,			READ_	ENABLE			1			1	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:0	l	READ_EI	NABLE	R/	N (0000000x0	0 Flas	sh Read I	Enable						
									bles 2-Kl bined as							

Value Description

0x00000000 Enables 128 KB of flash.

Register 15: Flash Memory Protection Read Enable 3 (FMPRE3), offset 0x20C

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the read-only protection bits for each 2-KB flash block (FMPPEn stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

	Offset 0x20C Type R/W, reset 0x0000.0000																
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		READ_ENABLE															
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	READ_ENABLE																
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/Field		Name		Туре		Reset	Des	Description									
	31:0		READ_ENABLE			/W 0x0000000) Flas	Flash Read Enable								
Enables 2-KB flash blocks to be executed or read. The combined as shown in the table "Flash Protection Policy												•					

Value

Description 0x00000000 Enables 128 KB of flash.

Flash Memory Protection Read Enable 3 (FMPRE3)

Base 0x400F.E000

Register 16: Flash Memory Protection Program Enable 1 (FMPPE1), offset 0x404

Note: Offset is relative to System Control base address of 0x400FE000.

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). Flash memory up to a total of 64 KB is controlled by this register. Other **FMPPEn** registers (if any) provide protection for other 64K blocks. This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. The reset value shown only applies to power-on reset; any other type of reset does not affect this register. If the Flash memory size on the device is less than 64 KB, this register usually reads as zeroes, but software should not rely on these bits to be zero. For additional information, see the "Flash Memory Protection" section.

Flash Memory Protection Program Enable 1 (FMPPE1)

Base 0x400F.E000 Offset 0x404 Type R/W, reset 0xFFFF.FFFF 30 25 31 29 28 27 26 24 23 22 21 20 19 18 17 16 PROG_ENABLE R/W Type Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 13 12 11 10 9 8 7 6 5 3 2 1 0 PROG ENABLE R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/W R/W R/W R/W R/W R/W Туре Reset 1 1 1 1 1 1 1 1 1 1 1 1 1 **Bit/Field** Name Type Reset Description 31:0 PROG_ENABLE R/W Flash Programming Enable 0xFFFFFFFF

Value Description

0xFFFFFFF Bits [31:0] each enable protection on a 2-KB block of Flash memory in memory range from 65 to 128 KB.

Register 17: Flash Memory Protection Program Enable 2 (FMPPE2), offset 0x408

Note: Offset is relative to System Control base address of 0x400FE000.

Flash Memory Protection Program Enable 2 (FMPPE2)

Base 0x400F.E000

This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Offset 0x408 Type R/W, reset 0x0000.0000 31 25 30 29 28 27 26 24 23 22 21 20 19 18 17 16 PROG ENABLE R/W Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 1 PROG ENABLE R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/M R/W R/W R/W Туре R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type PROG_ENABLE Flash Programming Enable 31:0 R/W 0x00000000 Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations". Value Description

0x00000000 Enables 128 KB of flash.

Flash Memory Protection Program Enable 3 (FMPPE3)

Register 18: Flash Memory Protection Program Enable 3 (FMPPE3), offset 0x40C

Note: Offset is relative to System Control base address of 0x400FE000.

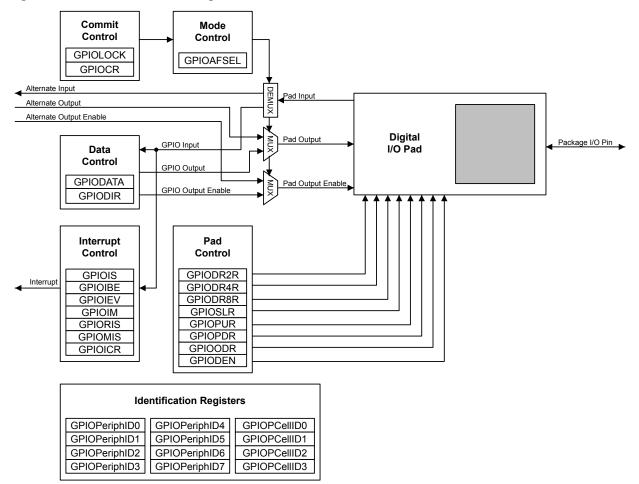
This register stores the execute-only protection bits for each 2-KB flash block (**FMPREn** stores the execute-only bits). This register is loaded during the power-on reset sequence. The factory settings for the **FMPREn** and **FMPPEn** registers are a value of 1 for all implemented banks. This achieves a policy of open access and programmability. The register bits may be changed by writing the specific register bit. However, this register is R/W0; the user can only change the protection bit from a 1 to a 0 (and may NOT change a 0 to a 1). The changes are not permanent until the register is committed (saved), at which point the bit change is permanent. If a bit is changed from a 1 to a 0 and not committed, it may be restored by executing a power-on reset sequence. For additional information, see the "Flash Memory Protection" section.

Base 0x400F.E000 Offset 0x40C Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 PROG ENABLE R/W Туре 0 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 3 2 0 PROG ENABLE R/W R/W R/W R/W R/W R/W R/W R/M R/W R/W R/M R/W R/W R/W Туре R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type PROG_ENABLE 0x00000000 Flash Programming Enable 31:0 R/W Configures 2-KB flash blocks to be execute only. The policies may be combined as shown in the table "Flash Protection Policy Combinations". Value Description

0x00000000 Enables 128 KB of flash.

8 General-Purpose Input/Outputs (GPIOs)

The GPIO module is composed of seven physical GPIO blocks, each corresponding to an individual GPIO port (Port A, Port B, Port C, Port D, Port E, Port F, Port G). The GPIO module supports 23-46 programmable input/output pins, depending on the peripherals being used.


The GPIO module has the following features:

- 23-46 GPIOs, depending on configuration
- 5-V-tolerant input/outputs
- Programmable control for GPIO interrupts
 - Interrupt generation masking
 - Edge-triggered on rising, falling, or both
 - Level-sensitive on High or Low values
- Bit masking in both read and write operations through address lines
- Pins configured as digital inputs are Schmitt-triggered.
- Programmable control for GPIO pad configuration
 - Weak pull-up or pull-down resistors
 - 2-mA, 4-mA, and 8-mA pad drive for digital communication; up to four pads can be configured with an 18-mA pad drive for high-current applications
 - Slew rate control for the 8-mA drive
 - Open drain enables
 - Digital input enables

8.1 Functional Description

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and GPIOPUR=0), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (GPIOAFSEL=1, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Each GPIO port is a separate hardware instantiation of the same physical block (see Figure 8-1 on page 142). The LM3S6730 microcontroller contains seven ports and thus seven of these physical GPIO blocks.

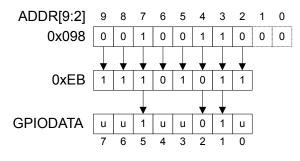
Figure 8-1. GPIO Port Block Diagram

8.1.1 Data Control

The data control registers allow software to configure the operational modes of the GPIOs. The data direction register configures the GPIO as an input or an output while the data register either captures incoming data or drives it out to the pads.

8.1.1.1 Data Direction Operation

The **GPIO Direction (GPIODIR)** register (see page 149) is used to configure each individual pin as an input or output. When the data direction bit is set to 0, the GPIO is configured as an input and the corresponding data register bit will capture and store the value on the GPIO port. When the data direction bit is set to 1, the GPIO is configured as an output and the corresponding data register bit will be driven out on the GPIO port.


8.1.1.2 Data Register Operation

To aid in the efficiency of software, the GPIO ports allow for the modification of individual bits in the **GPIO Data (GPIODATA)** register (see page 148) by using bits [9:2] of the address bus as a mask. This allows software drivers to modify individual GPIO pins in a single instruction, without affecting the state of the other pins. This is in contrast to the "typical" method of doing a read-modify-write operation to set or clear an individual GPIO pin. To accommodate this feature, the **GPIODATA** register covers 256 locations in the memory map.

During a write, if the address bit associated with that data bit is set to 1, the value of the **GPIODATA** register is altered. If it is cleared to 0, it is left unchanged.

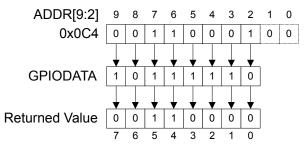

For example, writing a value of 0xEB to the address GPIODATA + 0x098 would yield as shown in Figure 8-2 on page 143, where u is data unchanged by the write.

Figure 8-2. GPIODATA Write Example

During a read, if the address bit associated with the data bit is set to 1, the value is read. If the address bit associated with the data bit is set to 0, it is read as a zero, regardless of its actual value. For example, reading address GPIODATA + 0x0C4 yields as shown in Figure 8-3 on page 143.

Figure 8-3. GPIODATA Read Example

8.1.2 Interrupt Control

The interrupt capabilities of each GPIO port are controlled by a set of seven registers. With these registers, it is possible to select the source of the interrupt, its polarity, and the edge properties. When one or more GPIO inputs cause an interrupt, a single interrupt output is sent to the interrupt controller for the entire GPIO port. For edge-triggered interrupts, software must clear the interrupt to enable any further interrupts. For a level-sensitive interrupt, it is assumed that the external source holds the level constant for the interrupt to be recognized by the controller.

Three registers are required to define the edge or sense that causes interrupts:

- GPIO Interrupt Sense (GPIOIS) register (see page 150)
- **GPIO Interrupt Both Edges (GPIOIBE)** register (see page 151)
- **GPIO Interrupt Event (GPIOIEV)** register (see page 152)

Interrupts are enabled/disabled via the GPIO Interrupt Mask (GPIOIM) register (see page 153).

When an interrupt condition occurs, the state of the interrupt signal can be viewed in two locations: the **GPIO Raw Interrupt Status (GPIORIS)** and **GPIO Masked Interrupt Status (GPIOMIS)** registers (see page 154 and page 155). As the name implies, the **GPIOMIS** register only shows interrupt

conditions that are allowed to be passed to the controller. The **GPIORIS** register indicates that a GPIO pin meets the conditions for an interrupt, but has not necessarily been sent to the controller.

Interrupts are cleared by writing a 1 to the appropriate bit of the **GPIO Interrupt Clear (GPIOICR)** register (see page 156).

When programming the following interrupt control registers, the interrupts should be masked (**GPIOIM** set to 0). Writing any value to an interrupt control register (**GPIOIS**, **GPIOIBE**, or **GPIOIEV**) can generate a spurious interrupt if the corresponding bits are enabled.

8.1.3 Mode Control

The GPIO pins can be controlled by either hardware or software. When hardware control is enabled via the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 157), the pin state is controlled by its alternate function (that is, the peripheral). Software control corresponds to GPIO mode, where the **GPIODATA** register is used to read/write the corresponding pins.

8.1.4 Commit Control

The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is currently provided for the five JTAG/SWD pins (PB7 and PC[3:0]). Writes to protected bits of the **GPIO Alternate Function Select (GPIOAFSEL)** register (see page 157) are not committed to storage unless the **GPIO Lock (GPIOLOCK)** register (see page 167) has been unlocked and the appropriate bits of the **GPIO Commit (GPIOCR)** register (see page 168) have been set to 1.

8.1.5 Pad Control

The pad control registers allow for GPIO pad configuration by software based on the application requirements. The pad control registers include the **GPIODR2R**, **GPIODR4R**, **GPIODR8R**, **GPIOODR**, **GPIOPUR**, **GPIOPDR**, **GPIOSLR**, and **GPIODEN** registers. These registers control drive strength, open-drain configuration, pull-up and pull-down resistors, slew-rate control and digital input enable.

For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the V_{OL} value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.

8.1.6 Identification

The identification registers configured at reset allow software to detect and identify the module as a GPIO block. The identification registers include the **GPIOPeriphID0-GPIOPeriphID7** registers as well as the **GPIOPCeIIID0-GPIOPCeIIID3** registers.

8.2 Initialization and Configuration

To use the GPIO, the peripheral clock must be enabled by setting the appropriate GPIO Port bit field (GPIOn) in the **RCGC2** register.

On reset, all GPIO pins (except for the five JTAG pins) are configured out of reset to be undriven (tristate): **GPIOAFSEL**=0, **GPIODEN**=0, **GPIOPDR**=0, and **GPIOPUR**=0. Table 8-1 on page 145 shows all possible configurations of the GPIO pads and the control register settings required to achieve them. Table 8-2 on page 145 shows how a rising edge interrupt would be configured for pin 2 of a GPIO port.

Configuration	GPIO Reg	GPIO Register Bit Value ^a													
	AFSEL	DIR	ODR	DEN PUR PDI		PDR	DR2R	DR4R	DR8R	SLR					
Digital Input (GPIO)	0	0	0	1	?	?	Х	Х	Х	X					
Digital Output (GPIO)	0	1	0	1	?	?	?	?	?	?					
Open Drain Output (GPIO)	0	1	1	1	X	X	?	?	?	?					
Digital Input (Timer CCP)	1	X	0	1	?	?	X	X	X	X					
Digital Output (Timer PWM)	1	X	0	1	?	?	?	?	?	?					
Digital Input/Output (SSI)	1	X	0	1	?	?	?	?	?	?					
Digital Input/Output (UART)	1	X	0	1	?	?	?	?	?	?					
Analog Input (Comparator)	0	0	0	0	0	0	X	X	X	X					
Digital Output (Comparator)	1	X	0	1	?	?	?	?	?	?					

Table 8-1. GPIO Pad Configuration Examples

a. X=Ignored (don't care bit)

?=Can be either 0 or 1, depending on the configuration

Table 8-2. GPIO Interrupt	Configuration Example
---------------------------	-----------------------

Register		Pin 2 Bit Va	llue ^a						
	Interrupt Event Trigger	7	6	5	4	3	2	1	0
GPIOIS	0=edge 1=level	X	X	X	x	X	0	X	X
GPIOIBE	0=single edge 1=both edges	X	X	X	X	X	0	Х	X
GPIOIEV	0=Low level, or negative edge 1=High level, or positive edge		X	x	X	X	1	X	X
GPIOIM	0=masked 1=not masked	0	0	0	0	0	1	0	0

a. X=Ignored (don't care bit)

8.3 Register Map

Table 8-3 on page 146 lists the GPIO registers. The offset listed is a hexadecimal increment to the register's address, relative to that GPIO port's base address:

■ GPIO Port A: 0x4000.4000

- GPIO Port B: 0x4000.5000
- GPIO Port C: 0x4000.6000
- GPIO Port D: 0x4000.7000
- GPIO Port E: 0x4002.4000
- GPIO Port F: 0x4002.5000
- GPIO Port G: 0x4002.6000
- **Important:** The GPIO registers in this chapter are duplicated in each GPIO block; however, depending on the block, all eight bits may not be connected to a GPIO pad. In those cases, writing to those unconnected bits has no effect, and reading those unconnected bits returns no meaningful data.
- Note: The default reset value for the GPIOAFSEL, GPIOPUR, and GPIODEN registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

The default register type for the **GPIOCR** register is RO for all GPIO pins with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the **GPIOCR** register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.

The default reset value for the **GPIOCR** register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-committable. Because of this, the default reset value of **GPIOCR** for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0.

Offset	Name	Туре	Reset	Description	See page
0x000	GPIODATA	R/W	0x0000.0000	GPIO Data	148
0x400	GPIODIR	R/W	0x0000.0000	GPIO Direction	149
0x404	GPIOIS	R/W	0x0000.0000	GPIO Interrupt Sense	150
0x408	GPIOIBE	R/W	0x0000.0000	GPIO Interrupt Both Edges	151
0x40C	GPIOIEV	R/W	0x0000.0000	GPIO Interrupt Event	152
0x410	GPIOIM	R/W	0x0000.0000	GPIO Interrupt Mask	153
0x414	GPIORIS	RO	0x0000.0000	GPIO Raw Interrupt Status	154
0x418	GPIOMIS	RO	0x0000.0000	GPIO Masked Interrupt Status	155
0x41C	GPIOICR	W1C	0x0000.0000	GPIO Interrupt Clear	156
0x420	GPIOAFSEL	R/W	-	GPIO Alternate Function Select	157
0x500	GPIODR2R	R/W	0x0000.00FF	GPIO 2-mA Drive Select	159
0x504	GPIODR4R	R/W	0x0000.0000	GPIO 4-mA Drive Select	160
0x508	GPIODR8R	R/W	0x0000.0000	GPIO 8-mA Drive Select	161

Table 8-3. GPIO Register Map

Offset	Name	Туре	Reset	Description	See page
0x50C	GPIOODR	R/W	0x0000.0000	GPIO Open Drain Select	162
0x510	GPIOPUR	R/W	-	GPIO Pull-Up Select	163
0x514	GPIOPDR	R/W	0x0000.0000	GPIO Pull-Down Select	164
0x518	GPIOSLR	R/W	0x0000.0000	GPIO Slew Rate Control Select	165
0x51C	GPIODEN	R/W	-	GPIO Digital Enable	166
0x520	GPIOLOCK	R/W	0x0000.0001	GPIO Lock	167
0x524	GPIOCR	-	-	GPIO Commit	168
0xFD0	GPIOPeriphID4	RO	0x0000.0000	GPIO Peripheral Identification 4	170
0xFD4	GPIOPeriphID5	RO	0x0000.0000	GPIO Peripheral Identification 5	171
0xFD8	GPIOPeriphID6	RO	0x0000.0000	GPIO Peripheral Identification 6	172
0xFDC	GPIOPeriphID7	RO	0x0000.0000	GPIO Peripheral Identification 7	173
0xFE0	GPIOPeriphID0	RO	0x0000.0061	GPIO Peripheral Identification 0	174
0xFE4	GPIOPeriphID1	RO	0x0000.0000	GPIO Peripheral Identification 1	175
0xFE8	GPIOPeriphID2	RO	0x0000.0018	GPIO Peripheral Identification 2	176
0xFEC	GPIOPeriphID3	RO	0x0000.0001	GPIO Peripheral Identification 3	177
0xFF0	GPIOPCellID0	RO	0x0000.000D	GPIO PrimeCell Identification 0	178
0xFF4	GPIOPCellID1	RO	0x0000.00F0	GPIO PrimeCell Identification 1	179
0xFF8	GPIOPCellID2	RO	0x0000.0005	GPIO PrimeCell Identification 2	180
0xFFC	GPIOPCellID3	RO	0x0000.00B1	GPIO PrimeCell Identification 3	181

Table 8-3. GPIO Register Map (continued)

8.4 Register Descriptions

The remainder of this section lists and describes the GPIO registers, in numerical order by address offset.

Register 1: GPIO Data (GPIODATA), offset 0x000

The **GPIODATA** register is the data register. In software control mode, values written in the **GPIODATA** register are transferred onto the GPIO port pins if the respective pins have been configured as outputs through the **GPIO Direction (GPIODIR)** register (see page 149).

In order to write to **GPIODATA**, the corresponding bits in the mask, resulting from the address bus bits [9:2], must be High. Otherwise, the bit values remain unchanged by the write.

Similarly, the values read from this register are determined for each bit by the mask bit derived from the address used to access the data register, bits [9:2]. Bits that are 1 in the address mask cause the corresponding bits in **GPIODATA** to be read, and bits that are 0 in the address mask cause the corresponding bits in **GPIODATA** to be read as 0, regardless of their value.

A read from **GPIODATA** returns the last bit value written if the respective pins are configured as outputs, or it returns the value on the corresponding input pin when these are configured as inputs. All bits are cleared by a reset.

GPIO Data (GPIODATA)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.7000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port G base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x000 Type R/W, reset 0x0000.0000

31 30 29 28 24 22 27 26 25 23 21 20 19 18 17 16 reserved Туре RO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 1 0 DATA reserved R/W RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W Type RO RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Type Reset 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 DATA R/W 0x00 **GPIO** Data

This register is virtually mapped to 256 locations in the address space. To facilitate the reading and writing of data to these registers by independent drivers, the data read from and the data written to the registers are masked by the eight address lines ipaddr[9:2]. Reads from this register return its current state. Writes to this register only affect bits that are not masked by ipaddr[9:2] and are configured as outputs. See "Data Register Operation" on page 142 for examples of reads and writes.

Register 2: GPIO Direction (GPIODIR), offset 0x400

The **GPIODIR** register is the data direction register. Bits set to 1 in the **GPIODIR** register configure the corresponding pin to be an output, while bits set to 0 configure the pins to be inputs. All bits are cleared by a reset, meaning all GPIO pins are inputs by default.

GPIO Direction (GPIODIR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.5000 GPIO Port F base: 0x4002.6000 GPIO Port G base: 0x4002.6000 Offset 0x400 Type R/W, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре RO 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 DIR reserved Туре RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit/Field	Name	Туре	Reset	Desc
31:8	reserved	RO	0x00	Softw comp prese
7:0	DIR	R/W	0x00	GPIC

Description

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPIO Data Direction

The DIR values are defined as follows:

- 0 Pins are inputs.
- 1 Pins are outputs.

Register 3: GPIO Interrupt Sense (GPIOIS), offset 0x404

The **GPIOIS** register is the interrupt sense register. Bits set to 1 in **GPIOIS** configure the corresponding pins to detect levels, while bits set to 0 configure the pins to detect edges. All bits are cleared by a reset.

GPIO Interrupt Sense (GPIOIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.7000 GPIO Port D base: 0x4002.4000 GPIO Port E base: 0x4002.5000 GPIO Port F base: 0x4002.6000 GPIO Port G base: 0x4002.6000 Offset 0x404 Type R/W, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 12 15 13 11 10 9 8 7 6 5 4 3 2 0 14 1 IS reserved Туре RO RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit/Field	Name	Туре	Reset	Des
31:8	reserved	RO	0x00	Soft corr pres
7:0	IS	R/W	0x00	GPI

Description

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPIO Interrupt Sense

The IS values are defined as follows:

Value Description

0 Edge on corresponding pin is detected (edge-sensitive).

1 Level on corresponding pin is detected (level-sensitive).

Register 4: GPIO Interrupt Both Edges (GPIOIBE), offset 0x408

The **GPIOIBE** register is the interrupt both-edges register. When the corresponding bit in the **GPIO Interrupt Sense (GPIOIS)** register (see page 150) is set to detect edges, bits set to High in **GPIOIBE** configure the corresponding pin to detect both rising and falling edges, regardless of the corresponding bit in the **GPIO Interrupt Event (GPIOIEV)** register (see page 152). Clearing a bit configures the pin to be controlled by **GPIOIEV**. All bits are cleared by a reset.

GPIO Interrupt Both Edges (GPIOIBE)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x408 Type R/W, reset 0x0000.0000

	,															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	I	1	1	I	1	rese	rved	I	1	1	ı 1	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I	rese	rved	I		ſ		I	1	I IE	BE	1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IBE	R/W	0x00	GPIO Interrupt Both Edges

The IBE values are defined as follows:

- 0 Interrupt generation is controlled by the **GPIO Interrupt Event** (**GPIOIEV**) register (see page 152).
- 1 Both edges on the corresponding pin trigger an interrupt.
 - Note: Single edge is determined by the corresponding bit in **GPIOIEV**.

Register 5: GPIO Interrupt Event (GPIOIEV), offset 0x40C

The **GPIOIEV** register is the interrupt event register. Bits set to High in **GPIOIEV** configure the corresponding pin to detect rising edges or high levels, depending on the corresponding bit value in the **GPIO Interrupt Sense (GPIOIS)** register (see page 150). Clearing a bit configures the pin to detect falling edges or low levels, depending on the corresponding bit value in **GPIOIS**. All bits are cleared by a reset.

GPIO Interrupt Event (GPIOIEV)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x40C Type R/W, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
				1		1		rese	rved	1	1		1	1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	1		1		1	1	IE	V	1	1	'
Type Reset	RO 0	R/W 0														

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	IEV	R/W	0x00	GPIO Interrupt Event

The IEV values are defined as follows:

- 0 Falling edge or Low levels on corresponding pins trigger interrupts.
- 1 Rising edge or High levels on corresponding pins trigger interrupts.

Register 6: GPIO Interrupt Mask (GPIOIM), offset 0x410

The **GPIOIM** register is the interrupt mask register. Bits set to High in **GPIOIM** allow the corresponding pins to trigger their individual interrupts and the combined **GPIOINTR** line. Clearing a bit disables interrupt triggering on that pin. All bits are cleared by a reset.

GPIO Interrupt Mask (GPIOIM)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.5000 GPIO Port F base: 0x4002.6000 GPIO Port G base: 0x4002.6000 Offset 0x410 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved						I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							IN	IE			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Des
31:8	reserved	RO	0x00	Soft com pres
7:0	IME	R/W	0x00	GPI

Description

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPIO Interrupt Mask Enable

The IME values are defined as follows:

- 0 Corresponding pin interrupt is masked.
- 1 Corresponding pin interrupt is not masked.

Register 7: GPIO Raw Interrupt Status (GPIORIS), offset 0x414

The **GPIORIS** register is the raw interrupt status register. Bits read High in **GPIORIS** reflect the status of interrupt trigger conditions detected (raw, prior to masking), indicating that all the requirements have been met, before they are finally allowed to trigger by the **GPIO Interrupt Mask** (**GPIOIM**) register (see page 153). Bits read as zero indicate that corresponding input pins have not initiated an interrupt. All bits are cleared by a reset.

GPIO Raw Interrupt Status (GPIORIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x414 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	1	1		rese	rved	1	1			1	1	
Type Reset	RO 0															
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved	•		•		•	•	R	is	•	•	
Туре	RO															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	RIS	RO	0x00	GPIO Interrupt Raw Status

Reflects the status of interrupt trigger condition detection on pins (raw, prior to masking).

The RIS values are defined as follows:

- 0 Corresponding pin interrupt requirements not met.
- 1 Corresponding pin interrupt has met requirements.

Register 8: GPIO Masked Interrupt Status (GPIOMIS), offset 0x418

The GPIOMIS register is the masked interrupt status register. Bits read High in GPIOMIS reflect the status of input lines triggering an interrupt. Bits read as Low indicate that either no interrupt has been generated, or the interrupt is masked.

GPIOMIS is the state of the interrupt after masking.

GPIO Masked Interrupt Status (GPIOMIS)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x418 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	I		I	1 1	rese	erved		I			1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset									0							
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved										î -		1	1	1	<u> </u>
		1	1	rese	rved	1	1 1			I	1	M	I IS	1	1	
Туре	RO	RO	RO	rese RO	rved RO	RO	RO	RO	RO	RO	RO	M RO	IS RO	RO	RO	RO
Type Reset	RO 0	RO 0	RO 0			RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		L	RO 0	RO 0	RO 0
				RO	RO							RO	RO			

Divi leiu	Name	Type	Reset	
31:8	reserved	RO	0x00	
7:0	MIS	RO	0x00	

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

GPIO Masked Interrupt Status

Masked value of interrupt due to corresponding pin.

The MIS values are defined as follows:

- 0 Corresponding GPIO line interrupt not active.
- 1 Corresponding GPIO line asserting interrupt.

Register 9: GPIO Interrupt Clear (GPIOICR), offset 0x41C

The **GPIOICR** register is the interrupt clear register. Writing a 1 to a bit in this register clears the corresponding interrupt edge detection logic register. Writing a 0 has no effect.

GPIO Interrupt Clear (GPIOICR)

GPIO GPIO GPIO GPIO GPIO GPIO Offse	Port A b Port B b Port C b Port D b Port E b Port F b	ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40 ase: 0x40	000.4000 000.5000 000.6000 000.7000 002.4000 002.5000 002.6000 0.0000	,																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
		l	1 1				1 1	rese	rved						1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0				
[1	1 1	rese	rved		1 Г					1			1					
Туре	RO	RO	RO	RO	RO	RO	RO	RO	W1C	W1C	W1C	W1C	W1C	W1C	W1C	W1C				
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
В	it/Field		Nam	e	Ту	ре	Reset	Des	cription											
	31:8 reserved RO 0x00 Sof										Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	7:0		IC		W	1C	0x00	GPI	O Interru	ipt Clear										
								The	IC valu	es are de	efined as	s follows:								
								Val	ue Desc	ription										
								0	0											

- 0 Corresponding interrupt is unaffected.
- 1 Corresponding interrupt is cleared.

Register 10: GPIO Alternate Function Select (GPIOAFSEL), offset 0x420

The **GPIOAFSEL** register is the mode control select register. Writing a 1 to any bit in this register selects the hardware control for the corresponding GPIO line. All bits are cleared by a reset, therefore no GPIO line is set to hardware control by default.

The GPIO commit control registers provide a layer of protection against accidental programming of critical hardware peripherals. Protection is currently provided for the five JTAG/SWD pins (PB7 and PC[3:0]). Writes to protected bits of the GPIO Alternate Function Select (GPIOAFSEL) register (see page 157) are not committed to storage unless the GPIO Lock (GPIOLOCK) register (see page 167) has been unlocked and the appropriate bits of the GPIO Commit (GPIOCR) register (see page 168) have been set to 1.

Important: All GPIO pins are tri-stated by default (GPIOAFSEL=0, GPIODEN=0, GPIOPDR=0, and **GPIOPUR=0**), with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). The JTAG/SWD pins default to their JTAG/SWD functionality (**GPIOAFSEL=1**, GPIODEN=1 and GPIOPUR=1). A Power-On-Reset (POR) or asserting RST puts both groups of pins back to their default state.

Caution – It is possible to create a software sequence that prevents the debugger from connecting to the Stellaris® microcontroller. If the program code loaded into flash immediately changes the JTAG pins to their GPIO functionality, the debugger may not have enough time to connect and halt the controller before the JTAG pin functionality switches. This may lock the debugger out of the part. This can be avoided with a software routine that restores JTAG functionality based on an external or software trigger.

GPIO Alternate Function Select (GPIOAFSEL)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x420 Type R/W, reset -

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1	1		r	r	rese	rved	1		1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	reserved									1		AFS	i SEL I		I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-

Bit/Field	Name	Туре	Reset	Descriptio
31:8	reserved	RO	0x00	Software s

on

should not rely on the value of a reserved bit. To provide ility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description						
7:0	AFSEL	R/W	-	GPIO Alternate Function Select						
				Value Description						
				0 Software control of corresponding GPIO line (GPIO mode).						
				 Hardware control of corresponding GPIO line (alternate hardware function). 						
				Note: The default reset value for the GPIOAFSEL , GPIOPUR , and GPIODEN registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.						

Register 11: GPIO 2-mA Drive Select (GPIODR2R), offset 0x500

The **GPIODR2R** register is the 2-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing a DRV2 bit for a GPIO signal, the corresponding DRV4 bit in the **GPIODR4R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 2-mA Drive Select (GPIODR2R)

GPIO Port A base: 0x4000.4000

GPIC GPIC GPIC GPIC GPIC Offse) Port C b) Port D b) Port E b) Port E b) Port G b et 0x500	base: 0x4 base: 0x4 base: 0x4	000.6000 000.7000 002.4000 002.5000 002.6000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		1	1	r			т т	rese	rved		1	1	1		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[Î	1	rese	rved		1 1				i	DF	RV2		1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription								
	31:8		reserv	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	7:0		DRV	/2	R/	W	0xFF	Out	out Pad 2	2-mA Dr	ive Enat	ole					
									rite of 1 t espondir							second	

clock cycle after the write.

Register 12: GPIO 4-mA Drive Select (GPIODR4R), offset 0x504

The **GPIODR4R** register is the 4-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV4 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV8 bit in the **GPIODR8R** register are automatically cleared by hardware.

GPIO 4-mA Drive Select (GPIODR4R)

GPIO Port A base: 0x4000.4000

GPIC GPIC GPIC GPIC GPIC Offse) Port C b) Port D b) Port E b) Port F b	ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4 ase: 0x4	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		r	1		1		i i	rese	rved		1		, , , , , , , , , , , , , , , , , , ,		I	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
[I	1 1	rese	rved	·	1 1	DRV4									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
B	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription								
	31:8		reserv	ved	R	0	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	7:0		DRV	/4	R/	W	0x00	Out	put Pad 4	1-mA Dr	ive Enab	ole					
													GPIODR change is			second	

clock cycle after the write.

Register 13: GPIO 8-mA Drive Select (GPIODR8R), offset 0x508

The **GPIODR8R** register is the 8-mA drive control register. It allows for each GPIO signal in the port to be individually configured without affecting the other pads. When writing the DRV8 bit for a GPIO signal, the corresponding DRV2 bit in the **GPIODR2R** register and the DRV4 bit in the **GPIODR4R** register are automatically cleared by hardware.

GPIO 8-mA Drive Select (GPIODR8R)

GPIC GPIC GPIC GPIC GPIC Offse	 Port B b Port C b Port D b Port E b Port F b Port G b Port G b 	ase: 0x40 ase: 0x40 pase: 0x40 pase: 0x40 ase: 0x40 ase: 0x40 pase: 0x40 pase: 0x40 pase: 0x40	000.5000 000.6000 000.7000 002.4000 002.5000 002.6000		,													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
[i	I	ì	1	1	i i	rese	rved	ſ	i .	I	1	r	i	1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		1	1	rese	rved	•					•	DF	V8	1	I	•		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
B	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription									
	31:8 reserved RO 0x00								Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	7:0		DR\	/8	R/	W	0x00	Out	put Pad	8-mA Dr	ive Enab	le						
									rite of 1 f							second		

clock cycle after the write.

Register 14: GPIO Open Drain Select (GPIOODR), offset 0x50C

The **GPIOODR** register is the open drain control register. Setting a bit in this register enables the open drain configuration of the corresponding GPIO pad. When open drain mode is enabled, the corresponding bit should also be set in the **GPIO Digital Input Enable (GPIODEN)** register (see page 166). Corresponding bits in the drive strength registers (**GPIODR2R**, **GPIODR4R**, **GPIODR8R**, and **GPIOSLR**) can be set to achieve the desired rise and fall times. The GPIO acts as an open-drain input if the corresponding bit in the **GPIODIR** register is cleared. If open drain is selected while the GPIO is configured as an input, the GPIO will remain an input and the open-drain selection has no effect until the GPIO is changed to an output.

GPIO Open Drain Select (GPIOODR) GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x50C Type R/W, reset 0x0000.0000 31 30 29 28 27 25 24 23 22 21 20 19 16 26 18 17 reserved RO Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 12 8 6 0 14 11 10 9 7 5 4 3 2 1 ODE reserved RO R/W RO RO RO RO RO RO RO R/W R/W R/W R/W R/W R/W R/W Type 0 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Type Reset 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. ODE R/W 0x00 7:0 Output Pad Open Drain Enable The ODE values are defined as follows: Value Description

0 Open drain configuration is disabled.

1 Open drain configuration is enabled.

Register 15: GPIO Pull-Up Select (GPIOPUR), offset 0x510

The **GPIOPUR** register is the pull-up control register. When a bit is set to 1, it enables a weak pull-up resistor on the corresponding GPIO signal. Setting a bit in **GPIOPUR** automatically clears the corresponding bit in the **GPIO Pull-Down Select (GPIOPDR)** register (see page 164).

GPIO Pull-Up Select (GPIOPUR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x510 Type R/W, reset -

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved							·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	r 1		1		r	r	PL	JE	r	r	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	PUE	R/W	-	Pad Weak Pull-Up Enable

A write of 1 to **GPIOPDR[n]** clears the corresponding **GPIOPUR[n]** enables. The change is effective on the second clock cycle after the write.

Note: The default reset value for the GPIOAFSEL, GPIOPUR, and GPIODEN registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 16: GPIO Pull-Down Select (GPIOPDR), offset 0x514

The **GPIOPDR** register is the pull-down control register. When a bit is set to 1, it enables a weak pull-down resistor on the corresponding GPIO signal. Setting a bit in **GPIOPDR** automatically clears the corresponding bit in the **GPIO Pull-Up Select (GPIOPUR)** register (see page 163).

GPIO Pull-Down Select (GPIOPDR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x514 Type R/W, reset 0x0000.0000

7:0

PDE

R/W

0x00

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
									_		_					
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	rese	rved							PE	DE			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E						Reset	Des	Description								
	31:8 reserved					0	0x00	Soft	ware sho	ould not i	rely on th	ne value	of a rese	erved bit	. To prov	ride

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Pad Weak Pull-Down Enable

A write of 1 to **GPIOPUR[n]** clears the corresponding **GPIOPDR[n]** enables. The change is effective on the second clock cycle after the write.

Register 17: GPIO Slew Rate Control Select (GPIOSLR), offset 0x518

The **GPIOSLR** register is the slew rate control register. Slew rate control is only available when using the 8-mA drive strength option via the **GPIO 8-mA Drive Select (GPIODR8R)** register (see page 161).

GPIO Slew Rate Control Select (GPIOSLR)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x518 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				rese	rved	1 1					[
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	1	rese	rved			1		1 1		SF	RL			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	D
31:8	reserved	RO	0x00	So co pr
7:0	SRL	R/W	0x00	S

Description

Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Slew Rate Limit Enable (8-mA drive only)

The SRL values are defined as follows:

- 0 Slew rate control disabled.
- 1 Slew rate control enabled.

Register 18: GPIO Digital Enable (GPIODEN), offset 0x51C

Note: Pins configured as digital inputs are Schmitt-triggered.

The **GPIODEN** register is the digital enable register. By default, with the exception of the GPIO signals used for JTAG/SWD function, all other GPIO signals are configured out of reset to be undriven (tristate). Their digital function is disabled; they do not drive a logic value on the pin and they do not allow the pin voltage into the GPIO receiver. To use the pin in a digital function (either GPIO or alternate function), the corresponding GPIODEN bit must be set.

GPIO Digital Enable (GPIODEN)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x51C Type R/W, reset -

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
							rese	rved							
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	rved							DE	N			
RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	RO 0 15 RO	RO RO 0 0 15 14 RO RO	RO RO RO 0 0 0 15 14 13 RO RO	RO RO RO RO 0 0 0 0 15 14 13 12 rese RO RO RO RO	RO RO<	RO RO<	RO RO<	RO RO<	RO RO<	RO RO<	RO <	RO RO<	RO <	RO RO <th< td=""><td>RO RO <th< td=""></th<></td></th<>	RO RO <th< td=""></th<>

Bit/Field	Name	Туре	Reset	Description
31:8	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
7:0	DEN	R/W	-	Digital Enable

The DEN values are defined as follows:

- 0 Digital functions disabled.
- 1 Digital functions enabled.
 - Note: The default reset value for the **GPIOAFSEL**, **GPIOPUR**, and **GPIODEN** registers are 0x0000.0000 for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins default to JTAG/SWD functionality. Because of this, the default reset value of these registers for GPIO Port B is 0x0000.0080 while the default reset value for Port C is 0x0000.000F.

Register 19: GPIO Lock (GPIOLOCK), offset 0x520

The **GPIOLOCK** register enables write access to the **GPIOCR** register (see page 168). Writing 0x1ACC.E551 to the **GPIOLOCK** register will unlock the **GPIOCR** register. Writing any other value to the **GPIOLOCK** register re-enables the locked state. Reading the **GPIOLOCK** register returns the lock status rather than the 32-bit value that was previously written. Therefore, when write accesses are disabled, or locked, reading the **GPIOLOCK** register returns 0x00000001. When write accesses are enabled, or unlocked, reading the **GPIOLOCK** register returns 0x00000000.

GPIO Lock (GPIOLOCK)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port G base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0x520 Type R/W, reset 0x0000.0001

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 LOCK Туре R/W Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 0 1 LOCK R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Bit/Field	Name	Туре	Reset	Description	
31:0	LOCK	R/W	0x0000.0001	GPIO Lock	

A write of the value 0x1ACC.E551 unlocks the **GPIO Commit (GPIOCR)** register for write access.

A write of any other value or a write to the **GPIOCR** register reapplies the lock, preventing any register updates. A read of this register returns the following values:

Value Description 0x0000.0001 locked 0x0000.0000 unlocked

Register 20: GPIO Commit (GPIOCR), offset 0x524

The **GPIOCR** register is the commit register. The value of the **GPIOCR** register determines which bits of the **GPIOAFSEL** register are committed when a write to the **GPIOAFSEL** register is performed. If a bit in the **GPIOCR** register is a zero, the data being written to the corresponding bit in the **GPIOAFSEL** register will not be committed and will retain its previous value. If a bit in the **GPIOCR** register is a one, the data being written to the corresponding bit of the **GPIOAFSEL** register will be committed to the register and will reflect the new value.

The contents of the **GPIOCR** register can only be modified if the **GPIOLOCK** register is unlocked. Writes to the **GPIOCR** register are ignored if the **GPIOLOCK** register is locked.

Important: This register is designed to prevent accidental programming of the registers that control connectivity to the JTAG/SWD debug hardware. By initializing the bits of the **GPIOCR** register to 0 for PB7 and PC[3:0], the JTAG/SWD debug port can only be converted to GPIOs through a deliberate set of writes to the **GPIOLOCK**, **GPIOCR**, and the corresponding registers.

Because this protection is currently only implemented on the JTAG/SWD pins on PB7 and PC[3:0], all of the other bits in the **GPIOCR** registers cannot be written with 0x0. These bits are hardwired to 0x1, ensuring that it is always possible to commit new values to the **GPIOAFSEL** register bits of these other pins.

preserved across a read-modify-write operation.

GPIC GPIC GPIC GPIC GPIC GPIC Offse) Port A ba) Port B ba) Port C ba) Port D ba) Port E ba) Port F ba	ase: 0x ase: 0x ase: 0x ase: 0x ase: 0x ase: 0x	PIOCR) 4000.4000 4000.5000 4000.6000 4000.7000 4002.4000 4002.6000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	ľ		ľ	1		ï	1 1	rese	erved		1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		T	rese	rved	1	1 1				1	1	CR	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	-	-	-	-	-	-	-	-
Reset	0	0	0	0	0	0	0	0	-	-	-	-	-	-	-	-
E	Bit/Field		Nan	ne	Ту	/pe	Reset	Des	scription							
	31:8		reserv	ved	F	0	0x00						e of a res e value of		•	vide hould be

Bit/Field	Name	Туре	Reset	Description	
7:0	CR	-	-	GPIO Commit	
				On a bit-wise basis, any bit set allows the corresponding GPIOAFSEL bit to be set to its alternate function.	
				Note: The default register type for the GPIOCR register is RO for all GPIO pins with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). These five pins are currently the only GPIOs that are protected by the GPIOCR register. Because of this, the register type for GPIO Port B7 and GPIO Port C[3:0] is R/W.	
				The default reset value for the GPIOCR register is 0x0000.00FF for all GPIO pins, with the exception of the five JTAG/SWD pins (PB7 and PC[3:0]). To ensure that the JTAG port is not accidentally programmed as a GPIO, these five pins default to non-committable. Because of this, the default reset value of GPIOCR for GPIO Port B is 0x0000.007F while the default reset value of GPIOCR for Port C is 0x0000.00F0.	

Register 21: GPIO Peripheral Identification 4 (GPIOPeriphID4), offset 0xFD0

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 4 (GPIOPeriphID4)

PID4

RO

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFD0 Type RO, reset 0x0000.0000

7:0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved		1	•				1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1				I	PI	D4			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	3it/Field 31:8		Nan reser		Tyj R(Reset 0x00	Soft com	cription ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		

0x00 GPIO Peripheral ID Register[7:0]

Register 22: GPIO Peripheral Identification 5 (GPIOPeriphID5), offset 0xFD4

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 5 (GPIOPeriphID5)

PID5

RO

0x00

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFD4 Type RO, reset 0x0000.0000

7:0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved							PI	D5			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ire prodi	ucts, the	value of	a reserv		

GPIO Peripheral ID Register[15:8]

April 04, 2010

Register 23: GPIO Peripheral Identification 6 (GPIOPeriphID6), offset 0xFD8

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 6 (GPIOPeriphID6)

PID6

RO

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port C base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFD8 Type RO, reset 0x0000.0000

7:0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				•	rese	rved		1		1		I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	ſ	1	ſ			I	PI	D6	ſ	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
31:8			reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	

0x00 GPIO Peripheral ID Register[23:16]

Register 24: GPIO Peripheral Identification 7 (GPIOPeriphID7), offset 0xFDC

The **GPIOPeriphID4**, **GPIOPeriphID5**, **GPIOPeriphID6**, and **GPIOPeriphID7** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 7 (GPIOPeriphID7)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			[1	rese	rved		[1		1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1					PI	D7	I	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0 0 0 0 0 0						0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:8			reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		vide nould be
	7:0		PID	7	R	0	0x00	GPI	O Periph	eral ID F	Register	[31:24]				

Register 25: GPIO Peripheral Identification 0 (GPIOPeriphID0), offset 0xFE0

The GPIOPeriphID0, GPIOPeriphID1, GPIOPeriphID2, and GPIOPeriphID3 registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 0 (GPIOPeriphID0)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFE0 Type RO, reset 0x0000.0061

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved			1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved							PI	D0	I	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	1
F	Bit/Field		Nam		Tv	ре	Reset	Des	cription							
L			Indii		iy	pe	Reset	Des	cription							
31:8			reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	vide nould be
	7:0		PID	0	R	0	0x61	GPI	O Periph	eral ID F	Register	[7:0]				

Register 26: GPIO Peripheral Identification 1 (GPIOPeriphID1), offset 0xFE4

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 1 (GPIOPeriphID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port C base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1	ſ	T	rese	erved		ſ	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1					PI	D1	I	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
31:8			reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv		
7:0			PID	1	R	0	0x00	GPI	O Periph	eral ID F	Register	[15:8]				

Register 27: GPIO Peripheral Identification 2 (GPIOPeriphID2), offset 0xFE8

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 2 (GPIOPeriphID2)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				1	rese	rved			1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	ſ		ſ	ſ	I Pl	D2	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0 0 0 0 0 0							0	0	0	0	1	1	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:8			reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv		
	7:0		PID	2	R	0	0x18	GPI	O Periph	eral ID F	Register	[23:16]				

Register 28: GPIO Peripheral Identification 3 (GPIOPeriphID3), offset 0xFEC

The **GPIOPeriphID0**, **GPIOPeriphID1**, **GPIOPeriphID2**, and **GPIOPeriphID3** registers can conceptually be treated as one 32-bit register; each register contains eight bits of the 32-bit register, used by software to identify the peripheral.

GPIO Peripheral Identification 3 (GPIOPeriphID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port C base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		Γ	1				1	rese	erved	I	ſ	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved							PI	D3	I	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ne	Ту	pe	Reset	Des	cription							
31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv			
7:0			PID	3	R	0	0x01	GPI	O Periph	neral ID F	Register	[31:24]				

Register 29: GPIO PrimeCell Identification 0 (GPIOPCellID0), offset 0xFF0

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 0 (GPIOPCellID0)

CID0

RO

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFF0 Type RO, reset 0x0000.000D

7:0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	1					rese	rved			1	1			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	•	rese	rved							CI	D0			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
31:8			reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		

0x0D GPIO PrimeCell ID Register[7:0]

Provides software a standard cross-peripheral identification system.

Register 30: GPIO PrimeCell Identification 1 (GPIOPCellID1), offset 0xFF4

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 1 (GPIOPCellID1)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved			•		I	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1	rese	rved		1 1				ſ	CI	D1	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ne	Ty	pe	Reset	Des	cription							
	31:8	reserv	/ed	R	0	0x00		ware sho						•		
									patibility served ac		•				ed bit sr	ioula be
7:0			CID	1	R	0	0xF0	GPI	O Prime	Cell ID F	Register[15:8]				

Provides software a standard cross-peripheral identification system.

Register 31: GPIO PrimeCell Identification 2 (GPIOPCellID2), offset 0xFF8

The **GPIOPCeIIID0**, **GPIOPCeIIID1**, **GPIOPCeIIID2**, and **GPIOPCeIIID3** registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 2 (GPIOPCellID2)

CID2

RO

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFF8 Type RO, reset 0x0000.0005

7:0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1		· ·			rese	rved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset															0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved		•					CI	D2			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ie	Ту		Reset		cription							
31:8			reserv	/ed	R	0	0x00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	

0x05 GPIO PrimeCell ID Register[23:16]

Provides software a standard cross-peripheral identification system.

Register 32: GPIO PrimeCell Identification 3 (GPIOPCellID3), offset 0xFFC

The GPIOPCeIIID0, GPIOPCeIIID1, GPIOPCeIIID2, and GPIOPCeIIID3 registers are four 8-bit wide registers, that can conceptually be treated as one 32-bit register. The register is used as a standard cross-peripheral identification system.

GPIO PrimeCell Identification 3 (GPIOPCellID3)

GPIO Port A base: 0x4000.4000 GPIO Port B base: 0x4000.5000 GPIO Port C base: 0x4000.6000 GPIO Port D base: 0x4000.7000 GPIO Port E base: 0x4002.4000 GPIO Port F base: 0x4002.5000 GPIO Port G base: 0x4002.6000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1	rese	rved			I		1	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1				CI	D3		I		
Туре	RO	RO	RO	RO	RO	RO	RO	RO RO RO RO RO							RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	Туре		Reset	Des	cription								
	31:8		reserved		R	0	com		Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.							
	7:0		CID3			0	0xB1	GPI	O Prime	Cell ID F	Register[31:24]				

Provides software a standard cross-peripheral identification system.

9 General-Purpose Timers

Programmable timers can be used to count or time external events that drive the Timer input pins. The Stellaris[®] General-Purpose Timer Module (GPTM) contains three GPTM blocks (Timer0, Timer1, and Timer 2). Each GPTM block provides two 16-bit timers/counters (referred to as TimerA and TimerB) that can be configured to operate independently as timers or event counters, or configured to operate as one 32-bit timer or one 32-bit Real-Time Clock (RTC).

The GPT Module is one timing resource available on the Stellaris[®] microcontrollers. Other timer resources include the System Timer (SysTick) (see "System Timer (SysTick)" on page 39).

The General-Purpose Timers provide the following features:

- Three General-Purpose Timer Modules (GPTM), each of which provides two 16-bit timers/counters. Each GPTM can be configured to operate independently:
 - As a single 32-bit timer
 - As one 32-bit Real-Time Clock (RTC) to event capture
 - For Pulse Width Modulation (PWM)
- 32-bit Timer modes
 - Programmable one-shot timer
 - Programmable periodic timer
 - Real-Time Clock when using an external 32.768-KHz clock as the input
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
- 16-bit Timer modes
 - General-purpose timer function with an 8-bit prescaler (for one-shot and periodic modes only)
 - Programmable one-shot timer
 - Programmable periodic timer
 - User-enabled stalling when the controller asserts CPU Halt flag during debug
- 16-bit Input Capture modes
 - Input edge count capture
 - Input edge time capture
- 16-bit PWM mode
 - Simple PWM mode with software-programmable output inversion of the PWM signal

9.1 Block Diagram

Note: In Figure 9-1 on page 183, the specific CCP pins available depend on the Stellaris[®] device. See Table 9-1 on page 183 for the available CCPs.

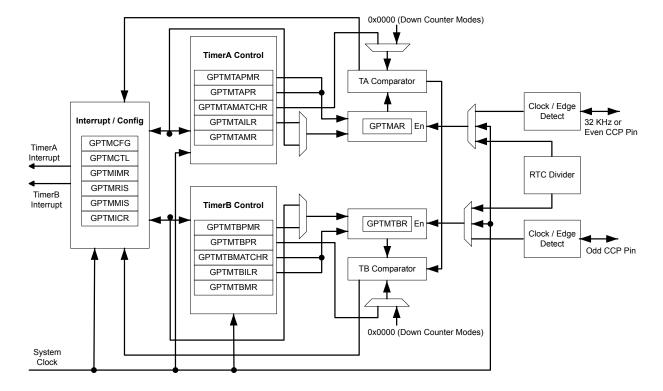


Figure 9-1. GPTM Module Block Diagram

Table 9-1. Available CCP Pins

Timer	16-Bit Up/Down Counter	Even CCP Pin	Odd CCP Pin
Timer 0	TimerA	CCP0	-
	TimerB	-	CCP1
Timer 1	TimerA	CCP2	-
	TimerB	-	CCP3
Timer 2	TimerA	-	-
	TimerB	-	-

9.2 Functional Description

The main components of each GPTM block are two free-running 16-bit up/down counters (referred to as TimerA and TimerB), two 16-bit match registers, two prescaler match registers, and two 16-bit load/initialization registers and their associated control functions. The exact functionality of each GPTM is controlled by software and configured through the register interface.

Software configures the GPTM using the **GPTM Configuration (GPTMCFG)** register (see page 194), the **GPTM TimerA Mode (GPTMTAMR)** register (see page 195), and the **GPTM TimerB Mode (GPTMTBMR)** register (see page 197). When in one of the 32-bit modes, the timer can only act as a 32-bit timer. However, when configured in 16-bit mode, the GPTM can have its two 16-bit timers configured in any combination of the 16-bit modes.

9.2.1 GPTM Reset Conditions

After reset has been applied to the GPTM module, the module is in an inactive state, and all control registers are cleared and in their default states. Counters TimerA and TimerB are initialized to 0xFFFF, along with their corresponding load registers: the GPTM TimerA Interval Load (GPTMTAILR) register (see page 208) and the GPTM TimerB Interval Load (GPTMTBILR) register (see page 209). The prescale counters are initialized to 0x00: the GPTM TimerA Prescale (GPTMTAPR) register (see page 212) and the GPTM TimerB Prescale (GPTMTBPR) register (see page 213).

9.2.2 32-Bit Timer Operating Modes

This section describes the three GPTM 32-bit timer modes (One-Shot, Periodic, and RTC) and their configuration.

The GPTM is placed into 32-bit mode by writing a 0 (One-Shot/Periodic 32-bit timer mode) or a 1 (RTC mode) to the **GPTM Configuration (GPTMCFG)** register. In both configurations, certain GPTM registers are concatenated to form pseudo 32-bit registers. These registers include:

- GPTM TimerA Interval Load (GPTMTAILR) register [15:0], see page 208
- GPTM TimerB Interval Load (GPTMTBILR) register [15:0], see page 209
- GPTM TimerA (GPTMTAR) register [15:0], see page 216
- GPTM TimerB (GPTMTBR) register [15:0], see page 217

In the 32-bit modes, the GPTM translates a 32-bit write access to **GPTMTAILR** into a write access to both **GPTMTAILR** and **GPTMTBILR**. The resulting word ordering for such a write operation is:

GPTMTBILR[15:0]:GPTMTAILR[15:0]

Likewise, a read access to GPTMTAR returns the value:

GPTMTBR[15:0]:GPTMTAR[15:0]

9.2.2.1 32-Bit One-Shot/Periodic Timer Mode

In 32-bit one-shot and periodic timer modes, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit down-counter. The selection of one-shot or periodic mode is determined by the value written to the TAMR field of the **GPTM TimerA Mode (GPTMTAMR)** register (see page 195), and there is no need to write to the **GPTM TimerB Mode (GPTMTBMR)** register.

When software writes the TAEN bit in the **GPTM Control (GPTMCTL)** register (see page 199), the timer begins counting down from its preloaded value. Once the 0x0000.0000 state is reached, the timer reloads its start value from the concatenated **GPTMTAILR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TAEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the GPTM generates interrupts and triggers when it reaches the 0x000.0000 state. The GPTM sets the TATORIS bit in the **GPTM Raw Interrupt Status** (GPTMRIS) register (see page 204), and holds it until it is cleared by writing the GPTM Interrupt Clear (GPTMICR) register (see page 206). If the time-out interrupt is enabled in the GPTM Interrupt Mask (GPTIMR) register (see page 202), the GPTM also sets the TATOMIS bit in the GPTM Masked Interrupt Status (GPTMMIS) register (see page 205).

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TASTALL bit in the **GPTMCTL** register is set, the timer freezes counting while the processor is halted by the debugger. The timer resumes counting when the processor resumes execution.

9.2.2.2 32-Bit Real-Time Clock Timer Mode

In Real-Time Clock (RTC) mode, the concatenated versions of the TimerA and TimerB registers are configured as a 32-bit up-counter. When RTC mode is selected for the first time, the counter is loaded with a value of 0x0000.0001. All subsequent load values must be written to the **GPTM TimerA Match (GPTMTAMATCHR)** register (see page 210) by the controller.

The input clock on an even CCP input is required to be 32.768 KHz in RTC mode. The clock signal is then divided down to a 1 Hz rate and is passed along to the input of the 32-bit counter.

When software writes the TAEN bit in the **GPTMCTL** register, the counter starts counting up from its preloaded value of 0x0000.0001. When the current count value matches the preloaded value in the **GPTMTAMATCHR** register, it rolls over to a value of 0x0000.0000 and continues counting until either a hardware reset, or it is disabled by software (clearing the TAEN bit). When a match occurs, the GPTM asserts the RTCRIS bit in **GPTMRIS**. If the RTC interrupt is enabled in **GPTIMR**, the GPTM also sets the RTCMIS bit in **GPTMISR** and generates a controller interrupt. The status flags are cleared by writing the RTCCINT bit in **GPTMICR**.

If the TASTALL and/or TBSTALL bits in the **GPTMCTL** register are set, the timer does not freeze if the RTCEN bit is set in **GPTMCTL**.

9.2.3 16-Bit Timer Operating Modes

The GPTM is placed into global 16-bit mode by writing a value of 0x4 to the **GPTM Configuration** (**GPTMCFG**) register (see page 194). This section describes each of the GPTM 16-bit modes of operation. TimerA and TimerB have identical modes, so a single description is given using an **n** to reference both.

9.2.3.1 16-Bit One-Shot/Periodic Timer Mode

In 16-bit one-shot and periodic timer modes, the timer is configured as a 16-bit down-counter with an optional 8-bit prescaler that effectively extends the counting range of the timer to 24 bits. The selection of one-shot or periodic mode is determined by the value written to the TnMR field of the **GPTMTnMR** register. The optional prescaler is loaded into the **GPTM Timern Prescale (GPTMTnPR)** register.

When software writes the TnEN bit in the **GPTMCTL** register, the timer begins counting down from its preloaded value. Once the 0x0000 state is reached, the timer reloads its start value from **GPTMTNILR** and **GPTMTNPR** on the next cycle. If configured to be a one-shot timer, the timer stops counting and clears the TnEN bit in the **GPTMCTL** register. If configured as a periodic timer, it continues counting.

In addition to reloading the count value, the timer generates interrupts and triggers when it reaches the 0x0000 state. The GPTM sets the TnTORIS bit in the **GPTMRIS** register, and holds it until it is cleared by writing the **GPTMICR** register. If the time-out interrupt is enabled in **GPTIMR**, the GPTM also sets the TnTOMIS bit in **GPTMISR** and generates a controller interrupt.

If software reloads the **GPTMTAILR** register while the counter is running, the counter loads the new value on the next clock cycle and continues counting from the new value.

If the TnSTALL bit in the **GPTMCTL** register is set, the timer freezes counting while the processor is halted by the debugger. The timer resumes counting when the processor resumes execution.

The following example shows a variety of configurations for a 16-bit free running timer while using the prescaler. All values assume a 50-MHz clock with Tc=20 ns (clock period).

Prescale	#Clock (T c) ^a	Max Time	Units
0000000	1	1.3107	mS
0000001	2	2.6214	mS
00000010	3	3.9322	mS
1111101	254	332.9229	mS
1111110	255	334.2336	mS
1111111	256	335.5443	mS

a. Tc is the clock period.

9.2.3.2 16-Bit Input Edge Count Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling-edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- Note: The prescaler is not available in 16-Bit Input Edge Count mode.

In Edge Count mode, the timer is configured as a down-counter capable of capturing three types of events: rising edge, falling edge, or both. To place the timer in Edge Count mode, the TnCMR bit of the **GPTMTnMR** register must be set to 0. The type of edge that the timer counts is determined by the TnEVENT fields of the **GPTMCTL** register. During initialization, the **GPTM Timern Match** (**GPTMTnMATCHR**) register is configured so that the difference between the value in the **GPTMTnILR** register and the **GPTMTnMATCHR** register equals the number of edge events that must be counted.

When software writes the TnEN bit in the **GPTM Control (GPTMCTL)** register, the timer is enabled for event capture. Each input event on the CCP pin decrements the counter by 1 until the event count matches **GPTMTnMATCHR**. When the counts match, the GPTM asserts the CnMRIS bit in the **GPTMRIS** register (and the CnMMIS bit, if the interrupt is not masked).

The counter is then reloaded using the value in **GPTMTnILR**, and stopped since the GPTM automatically clears the TnEN bit in the **GPTMCTL** register. Once the event count has been reached, all further events are ignored until TnEN is re-enabled by software.

Figure 9-2 on page 187 shows how input edge count mode works. In this case, the timer start value is set to **GPTMnILR** =0x000A and the match value is set to **GPTMnMATCHR** =0x0006 so that four edge events are counted. The counter is configured to detect both edges of the input signal.

Note that the last two edges are not counted since the timer automatically clears the TnEN bit after the current count matches the value in the **GPTMnMR** register.

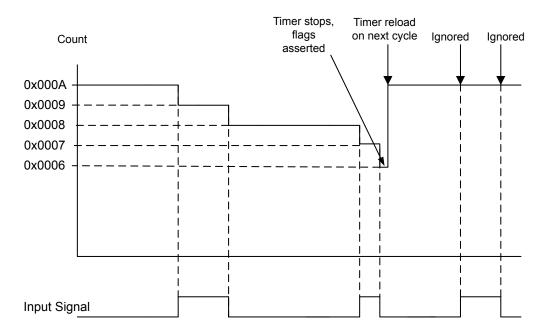
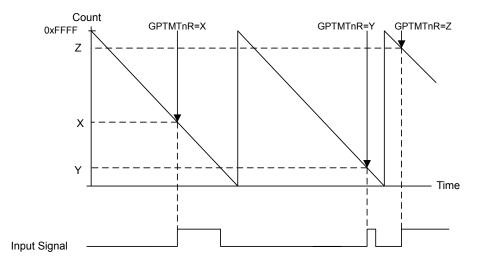
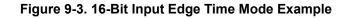


Figure 9-2. 16-Bit Input Edge Count Mode Example

9.2.3.3 16-Bit Input Edge Time Mode

- **Note:** For rising-edge detection, the input signal must be High for at least two system clock periods following the rising edge. Similarly, for falling edge detection, the input signal must be Low for at least two system clock periods following the falling edge. Based on this criteria, the maximum input frequency for edge detection is 1/4 of the system frequency.
- **Note:** The prescaler is not available in 16-Bit Input Edge Time mode.


In Edge Time mode, the timer is configured as a free-running down-counter initialized to the value loaded in the **GPTMTnILR** register (or 0xFFFF at reset). This mode allows for event capture of either rising or falling edges, but not both. The timer is placed into Edge Time mode by setting the TnCMR bit in the **GPTMTnMR** register, and the type of event that the timer captures is determined by the TnEVENT fields of the **GPTMCnTL** register.


When software writes the TnEN bit in the **GPTMCTL** register, the timer is enabled for event capture. When the selected input event is detected, the current Tn counter value is captured in the **GPTMTnR** register and is available to be read by the controller. The GPTM then asserts the CnERIS bit (and the CnEMIS bit, if the interrupt is not masked).

After an event has been captured, the timer does not stop counting. It continues to count until the TnEN bit is cleared. When the timer reaches the 0x0000 state, it is reloaded with the value from the **GPTMnILR** register.

Figure 9-3 on page 188 shows how input edge timing mode works. In the diagram, it is assumed that the start value of the timer is the default value of 0xFFFF, and the timer is configured to capture rising edge events.

Each time a rising edge event is detected, the current count value is loaded into the **GPTMTnR** register, and is held there until another rising edge is detected (at which point the new count value is loaded into **GPTMTnR**).

9.2.3.4 16-Bit PWM Mode

Note: The prescaler is not available in 16-Bit PWM mode.

The GPTM supports a simple PWM generation mode. In PWM mode, the timer is configured as a down-counter with a start value (and thus period) defined by **GPTMTnILR**. PWM mode is enabled with the **GPTMTnMR** register by setting the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.

When software writes the TnEN bit in the **GPTMCTL** register, the counter begins counting down until it reaches the 0x0000 state. On the next counter cycle, the counter reloads its start value from **GPTMTNILR** and continues counting until disabled by software clearing the TnEN bit in the **GPTMCTL** register. No interrupts or status bits are asserted in PWM mode.

The output PWM signal asserts when the counter is at the value of the **GPTMTnILR** register (its start state), and is deasserted when the counter value equals the value in the **GPTM Timern Match Register (GPTMnMATCHR)**. Software has the capability of inverting the output PWM signal by setting the TnPWML bit in the **GPTMCTL** register.

Figure 9-4 on page 189 shows how to generate an output PWM with a 1-ms period and a 66% duty cycle assuming a 50-MHz input clock and **TnPWML** =0 (duty cycle would be 33% for the **TnPWML** =1 configuration). For this example, the start value is **GPTMnIRL**=0xC350 and the match value is **GPTMnMR**=0x411A.

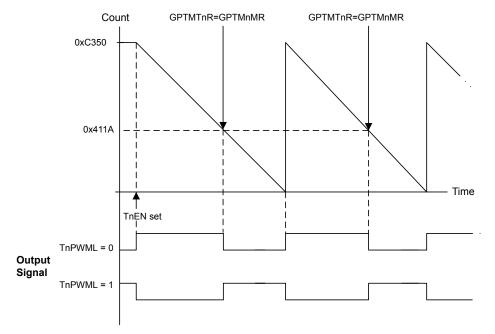


Figure 9-4. 16-Bit PWM Mode Example

9.3 Initialization and Configuration

To use the general-purpose timers, the peripheral clock must be enabled by setting the TIMERO, TIMER1, and TIMER2 bits in the **RCGC1** register.

This section shows module initialization and configuration examples for each of the supported timer modes.

9.3.1 32-Bit One-Shot/Periodic Timer Mode

The GPTM is configured for 32-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TAEN bit in the **GPTMCTL** register is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x0.
- 3. Set the TAMR field in the GPTM TimerA Mode Register (GPTMTAMR):
 - **a.** Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. Load the start value into the GPTM TimerA Interval Load Register (GPTMTAILR).
- 5. If interrupts are required, set the TATOIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

7. Poll the TATORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the TATOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 7 on page 190. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

9.3.2 32-Bit Real-Time Clock (RTC) Mode

To use the RTC mode, the timer must have a 32.768-KHz input signal on an even CCP input. To enable the RTC feature, follow these steps:

- **1.** Ensure the timer is disabled (the TAEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x1.
- 3. Write the desired match value to the GPTM TimerA Match Register (GPTMTAMATCHR).
- 4. Set/clear the RTCEN bit in the GPTM Control Register (GPTMCTL) as desired.
- 5. If interrupts are required, set the RTCIM bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 6. Set the TAEN bit in the GPTMCTL register to enable the timer and start counting.

When the timer count equals the value in the **GPTMTAMATCHR** register, the counter is re-loaded with 0x0000.0000 and begins counting. If an interrupt is enabled, it does not have to be cleared.

9.3.3 16-Bit One-Shot/Periodic Timer Mode

A timer is configured for 16-bit One-Shot and Periodic modes by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration Register (GPTMCFG) with a value of 0x4.
- 3. Set the TnMR field in the GPTM Timer Mode (GPTMTnMR) register:
 - **a.** Write a value of 0x1 for One-Shot mode.
 - **b.** Write a value of 0x2 for Periodic mode.
- 4. If a prescaler is to be used, write the prescale value to the GPTM Timern Prescale Register (GPTMTnPR).
- 5. Load the start value into the GPTM Timer Interval Load Register (GPTMTnILR).
- 6. If interrupts are required, set the **TnTOIM** bit in the GPTM Interrupt Mask Register (GPTMIMR).
- 7. Set the TREN bit in the GPTM Control Register (GPTMCTL) to enable the timer and start counting.
- 8. Poll the ThTORIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the ThTOCINT bit of the GPTM Interrupt Clear Register (GPTMICR).

In One-Shot mode, the timer stops counting after step 8 on page 190. To re-enable the timer, repeat the sequence. A timer configured in Periodic mode does not stop counting after it times out.

9.3.4 16-Bit Input Edge Count Mode

A timer is configured to Input Edge Count mode by the following sequence:

- 1. Ensure the timer is disabled (the TNEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x0 and the TnMR field to 0x3.
- 4. Configure the type of event(s) that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the desired event count into the GPTM Timern Match (GPTMTnMATCHR) register.
- 7. If interrupts are required, set the CnMIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 8. Set the TREN bit in the **GPTMCTL** register to enable the timer and begin waiting for edge events.
- 9. Poll the CnMRIS bit in the GPTMRIS register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnMCINT bit of the GPTM Interrupt Clear (GPTMICR) register.

In Input Edge Count Mode, the timer stops after the desired number of edge events has been detected. To re-enable the timer, ensure that the TnEN bit is cleared and repeat step 4 on page 191 through step 9 on page 191.

9.3.5 16-Bit Input Edge Timing Mode

A timer is configured to Input Edge Timing mode by the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the **GPTM Configuration (GPTMCFG)** register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, write the TnCMR field to 0x1 and the TnMR field to 0x3.
- 4. Configure the type of event that the timer captures by writing the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. If interrupts are required, set the CnEIM bit in the GPTM Interrupt Mask (GPTMIMR) register.
- 7. Set the TNEN bit in the GPTM Control (GPTMCTL) register to enable the timer and start counting.
- 8. Poll the CnERIS bit in the **GPTMRIS** register or wait for the interrupt to be generated (if enabled). In both cases, the status flags are cleared by writing a 1 to the CnECINT bit of the **GPTM**

Interrupt Clear (GPTMICR) register. The time at which the event happened can be obtained by reading the **GPTM Timern (GPTMTnR)** register.

In Input Edge Timing mode, the timer continues running after an edge event has been detected, but the timer interval can be changed at any time by writing the **GPTMTnILR** register. The change takes effect at the next cycle after the write.

9.3.6 16-Bit PWM Mode

A timer is configured to PWM mode using the following sequence:

- 1. Ensure the timer is disabled (the TnEN bit is cleared) before making any changes.
- 2. Write the GPTM Configuration (GPTMCFG) register with a value of 0x4.
- 3. In the GPTM Timer Mode (GPTMTnMR) register, set the TnAMS bit to 0x1, the TnCMR bit to 0x0, and the TnMR field to 0x2.
- 4. Configure the output state of the PWM signal (whether or not it is inverted) in the TREVENT field of the GPTM Control (GPTMCTL) register.
- 5. Load the timer start value into the GPTM Timern Interval Load (GPTMTnILR) register.
- 6. Load the GPTM Timern Match (GPTMTnMATCHR) register with the desired value.
- 7. Set the TREN bit in the GPTM Control (GPTMCTL) register to enable the timer and begin generation of the output PWM signal.

In PWM Timing mode, the timer continues running after the PWM signal has been generated. The PWM period can be adjusted at any time by writing the **GPTMTnILR** register, and the change takes effect at the next cycle after the write.

9.4 Register Map

Table 9-3 on page 192 lists the GPTM registers. The offset listed is a hexadecimal increment to the register's address, relative to that timer's base address:

- Timer0: 0x4003.0000
- Timer1: 0x4003.1000
- Timer2: 0x4003.2000

Table 9-3. Timers Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	GPTMCFG	R/W	0x0000.0000	GPTM Configuration	194
0x004	GPTMTAMR	R/W	0x0000.0000	GPTM TimerA Mode	195
0x008	GPTMTBMR	R/W	0x0000.0000	GPTM TimerB Mode	197
0x00C	GPTMCTL	R/W	0x0000.0000	GPTM Control	199
0x018	GPTMIMR	R/W	0x0000.0000	GPTM Interrupt Mask	202
0x01C	GPTMRIS	RO	0x0000.0000	GPTM Raw Interrupt Status	204

Offset	Name	Туре	Reset	Description	See page
0x020	GPTMMIS	RO	0x0000.0000	GPTM Masked Interrupt Status	205
0x024	GPTMICR	W1C	0x0000.0000	GPTM Interrupt Clear	206
0x028	GPTMTAILR	R/W	0xFFFF.FFFF	GPTM TimerA Interval Load	208
0x02C	GPTMTBILR	R/W	0x0000.FFFF	GPTM TimerB Interval Load	209
0x030	GPTMTAMATCHR	R/W	0xFFFF.FFFF	GPTM TimerA Match	210
0x034	GPTMTBMATCHR	R/W	0x0000.FFFF	GPTM TimerB Match	211
0x038	GPTMTAPR	R/W	0x0000.0000	GPTM TimerA Prescale	212
0x03C	GPTMTBPR	R/W	0x0000.0000	GPTM TimerB Prescale	213
0x040	GPTMTAPMR	R/W	0x0000.0000	GPTM TimerA Prescale Match	214
0x044	GPTMTBPMR	R/W	0x0000.0000	GPTM TimerB Prescale Match	215
0x048	GPTMTAR	RO	0xFFFF.FFFF	GPTM TimerA	216
0x04C	GPTMTBR	RO	0x0000.FFFF	GPTM TimerB	217

Table 9-3. Timers Register Map (continued)

9.5 Register Descriptions

The remainder of this section lists and describes the GPTM registers, in numerical order by address offset.

Register 1: GPTM Configuration (GPTMCFG), offset 0x000

This register configures the global operation of the GPTM module. The value written to this register determines whether the GPTM is in 32- or 16-bit mode.

GPTM Configuration (GPTMCFG)

0	
Timer0 base: 0x4003	3.0000
Timer1 base: 0x4003	8.1000
Timer2 base: 0x4003	3.2000
Offset 0x000	
Type R/W, reset 0x00	000.000

	1					22	23	24	25	26	27	28	29	30	31	
		-					rved	rese	•	1		1	1	1		
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	Туре
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Reset
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
CFG	GPTMCFG		1	I	r	1		r	reserved	1	1	1	1	1		
V R/W	R/W	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	Туре
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Reset
		2 R/W	3 RO	4 RO	5 RO	RO	7 RO	8 RO	9 reserved RO	10 RO	11 I RO	12 RO	13 RO	14 RO	15 RO	Reset

Bit/Field	Name	Туре	Reset	Description
31:3	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2:0	GPTMCFG	R/W	0x0	GPTM Configuration The GPTMCFG values are defined as follows:

Value Description

- 0x0 32-bit timer configuration.
- 0x1 32-bit real-time clock (RTC) counter configuration.
- 0x2 Reserved
- 0x3 Reserved
- 0x4-0x7 16-bit timer configuration, function is controlled by bits 1:0 of **GPTMTAMR** and **GPTMTBMR**.

Register 2: GPTM TimerA Mode (GPTMTAMR), offset 0x004

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TAAMS bit to 0x1, the TACMR bit to 0x0, and the TAMR field to 0x2.

GPTM TimerA Mode (GPTMTAMR)

Time Time Offse	0 base: 0 1 base: 0 2 base: 0 t 0x004 R/W, rese	x4003.10 x4003.20	000 000		,														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
	ï		1	1	1	r	1 1	rese	rved	1	r	1	1	1 1		1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0			
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0			
	1		1			res	erved			1	1	1	TAAMS	TACMR	TA	MR			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0			
E	it/Field		Nam	ne	Ту	ре	Reset	Des	Description										
	31:4		reserv	ved	RO 0x00		0x00	com	patibility	with fut	ure prod	ucts, the	e of a res value of e operatio	a reserv					
	3		TAAMS			R/W 0 0				GPTM TimerA Alternate Mode Select									
								The	TAAMS	values a	re define	ed as fol	lows:						
								Valu	ue Desc	scription									
								0 Capture mode is enabled.											
								1	PWN	I mode i	s enable	d.							
									Note				de, you n R field to		clear the	TACMR			
	2		TACMR		R/W		0	GPT	GPTM TimerA Capture Mode										
								The TACMR values are defined as follows:											
								Valu	ue Desc										
								0	Edge	e-Count i	node								
								1	Edge	e-Time m	ode								

Bit/Field	Name	Туре	Reset	Description
1:0	TAMR	R/W	0x0	GPTM TimerA Mode
				The TAMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The Timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register (16-or 32-bit).
				In 16-bit timer configuration, ${\tt TAMR}$ controls the 16-bit timer modes for TimerA.

In 32-bit timer configuration, this register controls the mode and the contents of $\ensuremath{\mathsf{GPTMTBMR}}$ are ignored.

Register 3: GPTM TimerB Mode (GPTMTBMR), offset 0x008

This register configures the GPTM based on the configuration selected in the **GPTMCFG** register. When in 16-bit PWM mode, set the TBAMS bit to 0x1, the TBCMR bit to 0x0, and the TBMR field to 0x2.

GPTM TimerB Mode (GPTMTBMR)

Timeı Timeı Offse	0 base: 0 1 base: 0 2 base: 0 t 0x008 R/W, rese	x4003.1 x4003.2	000															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
[- r		1	1	, , , , , , , , , , , , , , , , , , ,		г г	rese	rved			1	1 1	r r	1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	reserved TBAMS TBCMR TBMF													MR				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0		
В	it/Field		Nam	ne	Ту	be	Reset	Des	cription									
	31:4		reserv	R	С	0x00	0x00 Software s compatibil preserved			ire prod	ucts, the	value of	a reserv					
	3		TBA	MS	R/	W	0	GPT	M Time	TimerB Alternate Mode Select								
								The	TBAMS	alues ar	e define	ed as foll	ows:					
								Valu	ue Desc	ription								
								0	Capt	ure mod	e is enal	bled.						
								1	PWN	1 mode is	s enable	d.						
									Note				de, you n R field to	nust also 0x2.	clear the	TBCMR		
	2		TBC	TBCMR R/W			0	GPTM TimerB Capture Mode										
								The	TBCMR	alues ar	e define	ed as foll	ows:					
								Valu	ue Desc	ription								
								0	Edge	-Count r	node							
								1	Edge	e-Time m	ode							

Bit/Field	Name	Туре	Reset	Description
1:0	TBMR	R/W	0x0	GPTM TimerB Mode
				The TBMR values are defined as follows:
				Value Description
				0x0 Reserved
				0x1 One-Shot Timer mode
				0x2 Periodic Timer mode
				0x3 Capture mode
				The timer mode is based on the timer configuration defined by bits 2:0 in the GPTMCFG register.
				In 16-bit timer configuration, these bits control the 16-bit timer modes for TimerB.
				In 32-bit timer configuration, this register's contents are ignored and GPTMTAMR is used.

April 04, 2010

Register 4: GPTM Control (GPTMCTL), offset 0x00C

This register is used alongside the **GPTMCFG** and **GMTMTnMR** registers to fine-tune the timer configuration, and to enable other features such as timer stall.

Timer Timer Timer Offse	r0 base: r1 base: r2 base: t 0x00C	ntrol (GF 0x4003.00 0x4003.10 0x4003.20 set 0x0000	000 000 000	_)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reber	15	14	13	12	11	10	9	8	7	6	5	4	3	2		0
[reserved	TBPWML	rese		тве\		TBSTALL	TBEN	reserved	TAPWML	reserved	RTCEN		/ENT	1 TASTALL	TAEN
Туре	RO	R/W	RO	RO	R/W	R/W	R/W	R/W	RO	R/W	RO	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:15 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.															
14 TBPWML R/W 0 GPTM TimerB PWM Output Level																
								The	TBPWMI	values a	are defin	ied as fo	llows:			
								Val	ue Desc	ription						
								C		ut is una	ffected.					
								1		ut is inve						
	13:12		reserv	/ed	R	0	0	com	npatibility		ire prodi	ucts, the	value of	a reser	t. To prov ved bit sh	
	11:10		TBEVE	ENT	R/	W	0x0	GP	TM Time	rB Event	Mode					
								The	TBEVEN	T values	are def	ined as f	ollows:			
								Val	ue Desc	ription						
								0x		ive edge						
								0x		ative edg						
								0x	2 Rese	erved						
								0x	3 Both	edges						

Bit/Field	Name	Туре	Reset	Description
9	TBSTALL	R/W	0	GPTM Timer B Stall Enable
				The TBSTALL values are defined as follows:
				Value Description
				0 Timer B continues counting while the processor is halted by the debugger.
				1 Timer B freezes counting while the processor is halted by the debugger.
				If the processor is executing normally, the TBSTALL bit is ignored.
8	TBEN	R/W	0	GPTM TimerB Enable
				The TBEN values are defined as follows:
				Value Description
				0 TimerB is disabled.
				1 TimerB is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.
7	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	TAPWML	R/W	0	GPTM TimerA PWM Output Level
				The TAPWML values are defined as follows:
				Value Description
				0 Output is unaffected.
				1 Output is inverted.
5	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
4	RTCEN	R/W	0	GPTM RTC Enable
				The RTCEN values are defined as follows:
				Value Description
				0 RTC counting is disabled.
				1 RTC counting is enabled.
3:2	TAEVENT	R/W	0x0	GPTM TimerA Event Mode
				The TAEVENT values are defined as follows:
				Value Description
				0x0 Positive edge
				0x1 Negative edge
				0x2 Reserved
				0x3 Both edges

Bit/Field	Name	Туре	Reset	Description
1	TASTALL	R/W	0	GPTM Timer A Stall Enable
				The TASTALL values are defined as follows:
				Value Description
				0 Timer A continues counting while the processor is halted by the debugger.
				1 Timer A freezes counting while the processor is halted by the debugger.
				If the processor is executing normally, the TASTALL bit is ignored.
0	TAEN	R/W	0	GPTM TimerA Enable
				The TAEN values are defined as follows:
				Value Description
				0 TimerA is disabled.
				1 TimerA is enabled and begins counting or the capture logic is enabled based on the GPTMCFG register.

Register 5: GPTM Interrupt Mask (GPTMIMR), offset 0x018

This register allows software to enable/disable GPTM controller-level interrupts. Writing a 1 enables the interrupt, while writing a 0 disables it.

GPTM Interrupt Mask (GPTMIMR) Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x018 Type R/W, reset 0x0000.0000 31 30 29 28 24 22 16 27 26 25 23 21 20 19 18 17 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 RTCIM reserved CBEIM CBMIM твтоім CAEIM CAMIM TATOIM reserved R/W R/W R/W RO RO RO RO RO R/W R/M RO RO RO RO R/W R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 **Bit/Field** Name Reset Description Type RO 0x00 Software should not rely on the value of a reserved bit. To provide 31:11 reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 10 CBEIM R/W GPTM CaptureB Event Interrupt Mask 0 The CBEIM values are defined as follows: Value Description 0 Interrupt is disabled. Interrupt is enabled. 1 CBMIM R/W 9 0 GPTM CaptureB Match Interrupt Mask The CBMIM values are defined as follows: Value Description Interrupt is disabled. 0 1 Interrupt is enabled. 8 TBTOIM R/W 0 GPTM TimerB Time-Out Interrupt Mask The TBTOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled. 7:4 reserved RO 0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Bit/Field	Name	Туре	Reset	Description
3	RTCIM	R/W	0	 GPTM RTC Interrupt Mask The RTCIM values are defined as follows: Value Description Interrupt is disabled. Interrupt is enabled.
2	CAEIM	R/W	0	 GPTM CaptureA Event Interrupt Mask The CAEIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.
1	CAMIM	R/W	0	 GPTM CaptureA Match Interrupt Mask The CAMIM values are defined as follows: Value Description Interrupt is disabled. Interrupt is enabled.
0	ΤΑΤΟΙΜ	R/W	0	GPTM TimerA Time-Out Interrupt Mask The TATOIM values are defined as follows: Value Description 0 Interrupt is disabled. 1 Interrupt is enabled.

Register 6: GPTM Raw Interrupt Status (GPTMRIS), offset 0x01C

This register shows the state of the GPTM's internal interrupt signal. These bits are set whether or not the interrupt is masked in the **GPTMIMR** register. Each bit can be cleared by writing a 1 to its corresponding bit in **GPTMICR**.

GPTM Raw Interrupt Status (GPTMRIS)

Timer0 base: 0x4003.0000
Timer1 base: 0x4003.1000
Timer2 base: 0x4003.2000
Offset 0x01C
Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16				
	I		1 1					rese												
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
	15	14	13	12	11	10	9	8	7	6	2	1	0							
[r		reserved			CBERIS	CBMRIS	TBTORIS		rese	rved		RTCRIS	CAERIS	CAMRIS	TATORIS				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0				
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription											
	31:11		reserv	/ed	R	0	0x00	Soft	ware she	ould not i	ely on th	ne value	of a res	erved bit	. To prov	vide				
									compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											
	10				П	0	0													
	10		CBER	KIS	R	0	0		GPTM CaptureB Event Raw Interrupt This is the CaptureB Event interrupt status prior to masking.											
														sking.						
	9		CBMF	RIS	R	0	0		•	ureB Mat		•								
								This	is the C	aptureB	Match ir	iterrupt	status pr	ior to ma	isking.					
	8		TBTO	RIS	R	0	0	GP1	M Time	rB Time-	Out Raw	Interru	pt							
								This	This is the TimerB time-out interrupt status prior to masking.											
	7:4		reserv	/ed	R	0	0x0						of a res		•					
									• •		•		value of operation		ed bit si					
	3		RTCR	RIS	R	0	0	GP1	M RTC	Raw Inte	errupt									
												ot status	s prior to	masking	I.					
	2		CAEF	สเร	R	0	0	GP1	M Capt	ureA Eve	nt Raw	nterrup	ł							
	-		O, LEI	u.o		0	Ū							or to ma	skina.					
	1		CAMF		R	0	0	This is the CaptureA Event interrupt status prior to masking. GPTM CaptureA Match Raw Interrupt												
	I		CAIVIE	10	ĸ	0	U	This is the CaptureA Match interrupt status prior to masking.												
					_	~							·		isining.					
	0		TATOF	RIS	R	U	0			rA Time-					·					
								This	the lim	erA time	-out inte	rrupt sta	itus prior	to mask	ing.					

Register 7: GPTM Masked Interrupt Status (GPTMMIS), offset 0x020

This register show the state of the GPTM's controller-level interrupt. If an interrupt is unmasked in **GPTMIMR**, and there is an event that causes the interrupt to be asserted, the corresponding bit is set in this register. All bits are cleared by writing a 1 to the corresponding bit in **GPTMICR**.

Timer Timer Offset	1 base: 0) 2 base: 0) 2 base: 0) t 0x020 RO, reset	(4003.10 (4003.20	000															
туре	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
ſ	- I		1 1				1	resei	rved		ľ		r		r			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	I		reserved			CBEMIS	CBMMIS	TBTOMIS		rese	rved		RTCMIS	CAEMIS	CAMMIS	TATOMIS		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
В	it/Field		Nam	e	Ту	ре	Reset	Dese	cription									
	31:11	compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.																
	10	CBEMIS RO 0 GPTM CaptureB Event Masked Interrupt																
		This is the CaptureB event interrupt status after masking.																
	9		CBMN	/IS	R	0	0	GPT	M Capt	ureB Mat	ch Mask	ed Inter	rupt					
								This	is the C	aptureB	match ir	nterrupt	status af	ter mask	ing.			
	8		TBTO	MIS	R	0	0	GPT	M Time	rB Time-	Out Mas	ked Inte	rrupt					
								This	is the T	imerB tin	ne-out in	terrupt s	status aft	er maski	ing.			
	7 <u>:</u> 4		reserv	ved	R	0	0x0	com	patibility	ould not i with futu cross a re	ire produ	ucts, the	value of	a reserv	•			
	3		RTCM	1IS	R	0	0	GPT	MRTC	Masked	Interrupt	I						
								This	is the R	TC even	t interrup	ot status	after ma	asking.				
	2		CAEM	1IS	R	0	0	GPT	M Capt	ureA Eve	nt Mask	ed Inter	rupt					
								This	is the C	aptureA	event in	terrupt s	tatus aft	er maski	ng.			
	1		CAMN	/IS	R	0	0	0 GPTM CaptureA Match Masked Interrupt										
								This	is the C	aptureA	match ir	nterrupt	status af	ter mask	ing.			
	0		TATO	MIS	R	0	0	GPT	M Time	rA Time-	Out Mas	ked Inte	rrupt					
	0 TATOMIS RO 0 GPTM TimerA Time-Out Masked Interrupt This is the TimerA time-out interrupt status after masking.																	

GPTM Masked Interrupt Status (GPTMMIS) Timer0 base: 0x4003.0000

Register 8: GPTM Interrupt Clear (GPTMICR), offset 0x024

This register is used to clear the status bits in the **GPTMRIS** and **GPTMMIS** registers. Writing a 1 to a bit clears the corresponding bit in the **GPTMRIS** and **GPTMMIS** registers.

Timer Timer Timer	M Inter 0 base: 0 1 base: 0 2 base: 0 t 0x024	x4003.00 x4003.10	000	TMICR	2)														
	W1C, res						05						10	10	47	10			
Г	31	30	29	28	27	26	25	24 rese	23 rved	22	21	20	19	18	17	16			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Г	15	14	13	12	11 1		9	8 TBTOCINT	7	6	5	4				0 TATOCINT			
Туре	RO	RO	reserved RO	RO	RO	CBECINT W1C	CBMCINT W1C	W1C	RO	RO	RO	RO	RTCCINT W1C	W1C	CAMCINT W1C	W1C			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
В	it/Field		Nam	e	Ту	pe	Reset	Des	cription										
	31:11	compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.																	
	10		CBEC	INT	W	1C	0	0 GPTM CaptureB Event Interrupt Clear											
								The	CBECIN	T values	s are defi	ined as	follows:						
								Valu	ue Desc	ription									
								0			is unaffe	ected.							
								1	The i	nterrupt	is cleare	ed.							
	9		CBMC	INT	W	1C	0	GPT	M Capt	ureB Ma	tch Interr	rupt Cle	ar						
								The	CBMCIN	T values	s are defi	ined as	follows:						
								Valu	ue Desc	ription									
								0	The i	nterrupt	is unaffe	ected.							
								1	The i	nterrupt	is cleare	ed.							
	8		твтос	INT	W	1C	0	GPT	M Time	rB Time-	Out Inter	rrupt Cle	ear						
								The	TBTOCI	NT value	es are de	efined a	s follows:	:					
								Valu	ue Desc	ription									
								0	The i	nterrupt	is unaffe	ected.							
								1	The i	nterrupt	is cleare	ed.							
	7:4		reserv	ved	R	0	0x0	0x0 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.											

Bit/Field	Name	Туре	Reset	Description
3	RTCCINT	W1C	0	GPTM RTC Interrupt Clear The RTCCINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.
2	CAECINT	W1C	0	 GPTM CaptureA Event Interrupt Clear The CAECINT values are defined as follows: Value Description 0 The interrupt is unaffected. 1 The interrupt is cleared.
1	CAMCINT	W1C	0	GPTM CaptureA Match Raw Interrupt This is the CaptureA match interrupt status after masking.
0	TATOCINT	W1C	0	GPTM TimerA Time-Out Raw Interrupt The TATOCINT values are defined as follows:
				Value Description0 The interrupt is unaffected.1 The interrupt is cleared.

GPTM TimerA Interval Load (GPTMTAILR)

Register 9: GPTM TimerA Interval Load (GPTMTAILR), offset 0x028

This register is used to load the starting count value into the timer. When GPTM is configured to one of the 32-bit modes, **GPTMTAILR** appears as a 32-bit register (the upper 16-bits correspond to the contents of the **GPTM TimerB Interval Load (GPTMTBILR)** register). In 16-bit mode, the upper 16 bits of this register read as 0s and have no effect on the state of **GPTMTBILR**.

Timer Timer Offse	r0 base: (r1 base: (r2 base: (t 0x028	0x4003.00 0x4003.10 0x4003.20 et 0xFFFI	000			,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	I	1		1 1	TAII	RH			1	1	I	I	
І Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r	I	1	1	r	т т	TAI	LRL	1	r	1	1	1	1	
І Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
B	8it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		TAILI	RH	R/	W	0xFFFF	GPT	M Time	A Interv	al Load	Register	High			
								Tim	en config erB Inte e. A read	rval Loa	d (GPT	MTBILR) register	r loads th	nis value	
									6-bit moo e of GPT	,		s as 0 a	nd does	not have	an effec	ct on the
	15:0		TAIL	RL	R/	W	0xFFFF	GPT	M Time	A Interv	al Load	Register	Low			
									both 16- erA. A re							iter for

April 04, 2010

Register 10: GPTM TimerB Interval Load (GPTMTBILR), offset 0x02C

This register is used to load the starting count value into TimerB. When the GPTM is configured to a 32-bit mode, **GPTMTBILR** returns the current value of TimerB and ignores writes.

GPTM TimerB Interval Load (GPTMTBILR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x02C Type R/W, reset 0x0000.FFFF

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	T				r r	rese	erved	1	r	1			1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei			-	-	-	-		U	0	U	U	0	U	U	U	U
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	I					TBI	LRL		I		l			•
Type Reset	R/W	R/W 1	R/W	R/W	R/W 1	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
	Bit/Field	·	Nam	ie	Tyj	be	Reset	Des	cription	I	I	I	I	I	I	·
	31:16		, ,				0x0000	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	vide nould be
	15:0		TBIL	RL	R/	W	0xFFFF	GPT	TM Time	rB Interv	al Load	Register				
								When the GPTM is not configured as a 32-bit timer, a write t								

When the GPTM is not configured as a 32-bit timer, a write to this fiel updates **GPTMTBILR**. In 32-bit mode, writes are ignored, and reads return the current value of **GPTMTBILR**.

Register 11: GPTM TimerA Match (GPTMTAMATCHR), offset 0x030

This register is used in 32-bit Real-Time Clock mode and 16-bit PWM and Input Edge Count modes.

GPT	M Tim	erA Ma	tch (GP	TMTAN	IATCHF	R)										
Timer Timer Offse	r1 base: (r2 base: (t 0x030	0x4003.00 0x4003.10 0x4003.20 et 0xFFF	000 000													
-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1		TAN	MRH		I	1		1	1	•
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1		1	т т	TAN	MRL		1	1		1	1	1
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
В	Bit/Field		Nam	ne	Туре		Reset	Des	cription							
	31:16		TAM	RH	R/	W	0xFFFF	GP 1	TM Time	A Match	n Registe	er High				
								GP 1	en config TMCFG I TMTAR,	egister,	this valu	e is com	pared to	,		
									6-bit moo e of GPT			s as 0 a	nd does	not have	an effec	ct on the
	15:0		TAM	RL	R/	W	0xFFFF	GP 1	TM Time	A Match	n Registe	er Low				
								GP1	en config TMCFG I TMTAR,	egister,	this valu	e is com	pared to			
When configured for PWM mode, this of determines the duty cycle of the output													•	n GPTM	TAILR,	
								GP1 num	en config FMTAILF nber of en us this va	t , determ dge ever	nines how	v many e	edge eve	nts are c	ounted.	

Register 12: GPTM TimerB Match (GPTMTBMATCHR), offset 0x034

This register is used in 16-bit PWM and Input Edge Count modes.

Timer Timer Timer Offsel	0 base: (1 base: (2 base: (t 0x034	erB Mat 0x4003.00 0x4003.10 0x4003.20 0x4003.20 et 0x0000	000 000 000	ТМТВМ	1ATCHF	R)										
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ſ			1			[1 1	rese	erved	1	1	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	TBMRL															
Type Reset	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1	R/W 1
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x0000	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit shoul preserved across a read-modify-write operation.							
	15:0		TBM	RL	R/	W	0xFFFF	GP ⁻	TM Time	rB Match	n Registe	er Low				
When configured for determines the duty of														0	GPTM	TBILR,
When configured for Edge Count mode, this GPTMTBILR , determines how many edge ev number of edge events counted is equal to minus this value.											edge eve	nts are c	ounted.			

Register 13: GPTM TimerA Prescale (GPTMTAPR), offset 0x038

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerA Prescale (GPTMTAPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x038 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			1 1				1 1	rese	reserved									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		[т т	rese	rved	ſ	1 1		TAPSR									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
E	Bit/Field		Nam	е	Ту	ре	Reset	Des	cription									
	31:8		reserv	red	R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	7:0		TAPS	R	R/	W	0x00	GPT	TM Time	rA Presc	ale							
									register ne registe		s value o	on a write	e. A read	returns t	he curre	nt value		

Refer to Table 9-2 on page 186 for more details and an example.

Register 14: GPTM TimerB Prescale (GPTMTBPR), offset 0x03C

This register allows software to extend the range of the 16-bit timers when operating in one-shot or periodic mode.

GPTM TimerB Prescale (GPTMTBPR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x03C Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	I		1 1				1	rese	reserved									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	I			rese	rved				TBPSR									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription									
	31:8		reserv	/ed	RO 0x00			com	Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.									
	7:0		TBPS	SR	R/	W	0x00	GP1	rM Time	B Presc	ale							
									register nis registe		s value c	on a write	e. A read	returns t	the curre	nt value		

Refer to Table 9-2 on page 186 for more details and an example.

Register 15: GPTM TimerA Prescale Match (GPTMTAPMR), offset 0x040

This register effectively extends the range of **GPTMTAMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerA Prescale Match (GPTMTAPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x040 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			1		· · · · ·		1	rese	rved			1	r I	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			1	rese	rved		•		TAPSMR									
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription									
	31:8		reser	RO 0.		0x00	com	Software should not rely on the value of a reserved bit. To pro compatibility with future products, the value of a reserved bit s preserved across a read-modify-write operation.										
	7:0		TAPSMR		R/W		0x00	GP1	PTM TimerA Prescale Match									
								This	value is	used al	ongside	GPTMT/	AMATCH	IR to de	tect time	r match		

events while using a prescaler.

Register 16: GPTM TimerB Prescale Match (GPTMTBPMR), offset 0x044

This register effectively extends the range of **GPTMTBMATCHR** to 24 bits when operating in 16-bit one-shot or periodic mode.

GPTM TimerB Prescale Match (GPTMTBPMR)

Timer0 base: 0x4003.0000 Timer1 base: 0x4003.1000 Timer2 base: 0x4003.2000 Offset 0x044 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		1 1	rese	rved		1					TBP	SMR	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	Software should not rely on the value of a reserved bit. To pro- compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.							
	7:0		TBPS	MR	R/W		0x00	GP1	GPTM TimerB Prescale Match							
									s value is nts while		-		BMATCI	HR to de	tect time	er match

Register 17: GPTM TimerA (GPTMTAR), offset 0x048

This register shows the current value of the TimerA counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

GPT	GPTM TimerA (GPTMTAR)																	
Timer Timer Offse	0 base: 0 1 base: 0 2 base: 0 t 0x048 RO, reset	x4003.10 x4003.20	000															
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
ſ	ľ						1 1	TA	RH		1	1	1		1			
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
ſ	TARL																	
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1		
В	it/Field		Nam	ie	Туре		Reset	Des	Description									
	31:16		TAR	н	R	0	0xFFFF	GP ⁻	TM Time	A Regis	ter High							
									e GPTM IMCFG i			-			ead. If tl	ne		
	15:0		TAR	L	R	0	0xFFFF	GP ⁻	TM Time	rA Regis	ter Low							
									A read returns the current value of the GPTM TimerA Count Register , except in Input Edge Count mode, when it returns the timestamp from the last edge event.									

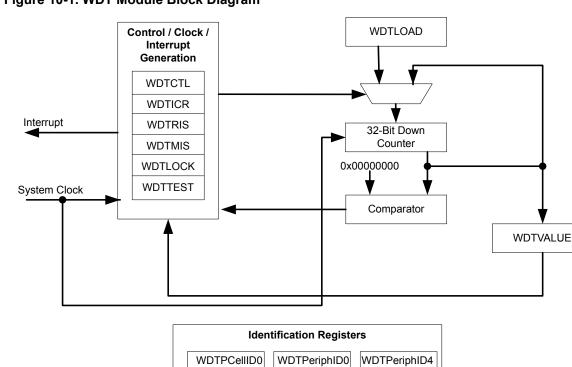
Register 18: GPTM TimerB (GPTMTBR), offset 0x04C

This register shows the current value of the TimerB counter in all cases except for Input Edge Count mode. When in this mode, this register contains the time at which the last edge event took place.

Timer Timer Timer Offse	M Time n0 base: 0 n1 base: 0 n2 base: 0 t 0x04C RO, rese)x4003.0)x4003.1)x4003.2	2000	र)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I		1 1 1		r r	rese	rved	I	Î	Ì	1	Ì	Í	1
Туре	Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ		1		, , ,		<u>і і</u>	ТВ	RL	1	1	1	1		1	
Type Reset	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1	RO 1
E	Bit/Field	·	Nan	ne	Туן	be	Reset	Des	cription	·	·	·		·	·	
	31:16		reser	ved	R	C	0x0000	com	patibility	with fut	ure produ	ucts, the	of a reso value of operatio	a reserv		vide nould be
	15:0		TBF	۲L.	R	С	0xFFFF	GP1	M Time	rB						
								exce		out Edge			e GPTM ⁻ nen it reti			-

April 04, 2010

10 Watchdog Timer


A watchdog timer can generate nonmaskable interrupts (NMIs) or a reset when a time-out value is reached. The watchdog timer is used to regain control when a system has failed due to a software error or due to the failure of an external device to respond in the expected way.

The Stellaris[®] Watchdog Timer module has the following features:

- 32-bit down counter with a programmable load register
- Separate watchdog clock with an enable
- Programmable interrupt generation logic with interrupt masking
- Lock register protection from runaway software
- Reset generation logic with an enable/disable
- User-enabled stalling when the controller asserts the CPU Halt flag during debug

The Watchdog Timer can be configured to generate an interrupt to the controller on its first time-out, and to generate a reset signal on its second time-out. Once the Watchdog Timer has been configured, the lock register can be written to prevent the timer configuration from being inadvertently altered.

10.1 Block Diagram

WDTPCellID1

WDTPCellID2

WDTPCellID3

Figure 10-1. WDT Module Block Diagram

10.2 Functional Description

The Watchdog Timer module generates the first time-out signal when the 32-bit counter reaches the zero state after being enabled; enabling the counter also enables the watchdog timer interrupt. After the first time-out event, the 32-bit counter is re-loaded with the value of the **Watchdog Timer Load (WDTLOAD)** register, and the timer resumes counting down from that value. Once the Watchdog Timer has been configured, the **Watchdog Timer Lock (WDTLOCK)** register is written, which prevents the timer configuration from being inadvertently altered by software.

WDTPeriphID1

WDTPeriphID2

WDTPeriphID3

WDTPeriphID5

WDTPeriphID6

WDTPeriphID7

If the timer counts down to its zero state again before the first time-out interrupt is cleared, and the reset signal has been enabled (via the WatchdogResetEnable function), the Watchdog timer asserts its reset signal to the system. If the interrupt is cleared before the 32-bit counter reaches its second time-out, the 32-bit counter is loaded with the value in the WDTLOAD register, and counting resumes from that value.

If **WDTLOAD** is written with a new value while the Watchdog Timer counter is counting, then the counter is loaded with the new value and continues counting.

Writing to **WDTLOAD** does not clear an active interrupt. An interrupt must be specifically cleared by writing to the **Watchdog Interrupt Clear (WDTICR)** register.

The Watchdog module interrupt and reset generation can be enabled or disabled as required. When the interrupt is re-enabled, the 32-bit counter is preloaded with the load register value and not its last state.

10.3 Initialization and Configuration

To use the WDT, its peripheral clock must be enabled by setting the WDT bit in the **RCGC0** register. The Watchdog Timer is configured using the following sequence:

- 1. Load the WDTLOAD register with the desired timer load value.
- 2. If the Watchdog is configured to trigger system resets, set the RESEN bit in the WDTCTL register.
- 3. Set the INTEN bit in the WDTCTL register to enable the Watchdog and lock the control register.

If software requires that all of the watchdog registers are locked, the Watchdog Timer module can be fully locked by writing any value to the **WDTLOCK** register. To unlock the Watchdog Timer, write a value of 0x1ACC.E551.

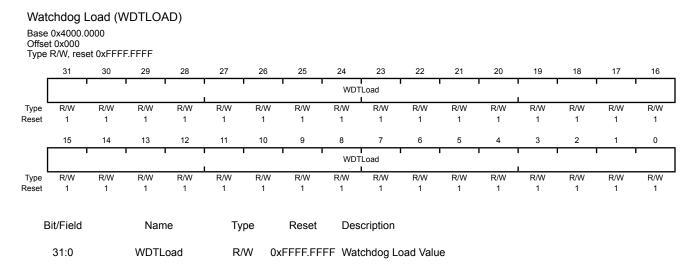
10.4 Register Map

Table 10-1 on page 220 lists the Watchdog registers. The offset listed is a hexadecimal increment to the register's address, relative to the Watchdog Timer base address of 0x4000.0000.

Offset	Name	Туре	Reset	Description	See page
0x000	WDTLOAD	R/W	0xFFFF.FFFF	Watchdog Load	222
0x004	WDTVALUE	RO	0xFFFF.FFFF	Watchdog Value	223
0x008	WDTCTL	R/W	0x0000.0000	Watchdog Control	224
0x00C	WDTICR	WO	-	Watchdog Interrupt Clear	225
0x010	WDTRIS	RO	0x0000.0000	Watchdog Raw Interrupt Status	226
0x014	WDTMIS	RO	0x0000.0000	Watchdog Masked Interrupt Status	227
0x418	WDTTEST	R/W	0x0000.0000	Watchdog Test	228
0xC00	WDTLOCK	R/W	0x0000.0000	Watchdog Lock	229
0xFD0	WDTPeriphID4	RO	0x0000.0000	Watchdog Peripheral Identification 4	230
0xFD4	WDTPeriphID5	RO	0x0000.0000	Watchdog Peripheral Identification 5	231
0xFD8	WDTPeriphID6	RO	0x0000.0000	Watchdog Peripheral Identification 6	232
0xFDC	WDTPeriphID7	RO	0x0000.0000	Watchdog Peripheral Identification 7	233
0xFE0	WDTPeriphID0	RO	0x0000.0005	Watchdog Peripheral Identification 0	234
0xFE4	WDTPeriphID1	RO	0x0000.0018	Watchdog Peripheral Identification 1	235
0xFE8	WDTPeriphID2	RO	0x0000.0018	Watchdog Peripheral Identification 2	236

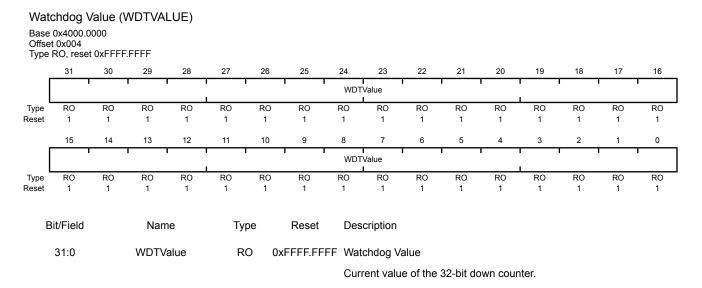
Table 10-1. Watchdog Timer Register Map

Offset	Name	Туре	Reset	Description	See page
0xFEC	WDTPeriphID3	RO	0x0000.0001	Watchdog Peripheral Identification 3	237
0xFF0	WDTPCellID0	RO	0x0000.000D	Watchdog PrimeCell Identification 0	238
0xFF4	WDTPCellID1	RO	0x0000.00F0	Watchdog PrimeCell Identification 1	239
0xFF8	WDTPCellID2	RO	0x0000.0005	Watchdog PrimeCell Identification 2	240
0xFFC	WDTPCellID3	RO	0x0000.00B1	Watchdog PrimeCell Identification 3	241


Table 10-1. Watchdog Timer Register Map (continued)

10.5 Register Descriptions

The remainder of this section lists and describes the WDT registers, in numerical order by address offset.

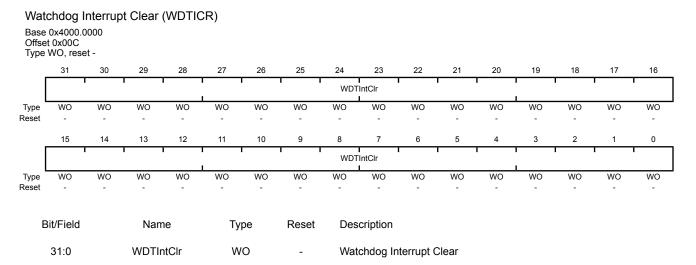

Register 1: Watchdog Load (WDTLOAD), offset 0x000

This register is the 32-bit interval value used by the 32-bit counter. When this register is written, the value is immediately loaded and the counter restarts counting down from the new value. If the **WDTLOAD** register is loaded with 0x0000.0000, an interrupt is immediately generated.

Register 2: Watchdog Value (WDTVALUE), offset 0x004

This register contains the current count value of the timer.

Register 3: Watchdog Control (WDTCTL), offset 0x008


This register is the watchdog control register. The watchdog timer can be configured to generate a reset signal (on second time-out) or an interrupt on time-out.

When the watchdog interrupt has been enabled, all subsequent writes to the control register are ignored. The only mechanism that can re-enable writes is a hardware reset.

Base Offse	chdog (0x4000.0 t 0x008 R/W, res	0000	(WDTC	TL)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		[1	1		1	т	rese	rved		[1		[1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I			1	1	1	reser	ved			1	•	· ·		RESEN	INTEN
Туре	Type RO															R/W
Reset	eset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0															0
B	Bit/Field Name Type Reset Description 31:2 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide															
	1		RES	EN	R/	W	0	Wat	chdog R	eset Ena	able					
								The	RESEN	alues ar	e define	d as foll	ows:			
								Val	ue Desc	ription						
								0	Disat	oled.						
								1	Enab	le the W	atchdog	module	reset ou	tout		
									Endo		atonaog	modulo	10001 00	iput.		
	0		INTE	EN	R	W	0	Wat	chdog In	terrupt E	Inable					
								The	INTEN N	alues ar	e define	d as foll	ows:			
								Val	ue Desc	ription						
								0			nt disable	ed (once	this bit i	s set. it	can onlv	be
								Ū		ed by a l				,		
								1	Interr	upt ever	nt enable	ed. Once	enabled	l, all writ	es are ig	nored.
															-	

Register 4: Watchdog Interrupt Clear (WDTICR), offset 0x00C

This register is the interrupt clear register. A write of any value to this register clears the Watchdog interrupt and reloads the 32-bit counter from the **WDTLOAD** register. Value for a read or reset is indeterminate.

Register 5: Watchdog Raw Interrupt Status (WDTRIS), offset 0x010

This register is the raw interrupt status register. Watchdog interrupt events can be monitored via this register if the controller interrupt is masked.

Watchdog Raw Interrupt Status (WDTRIS)

Offse	0x4000.0 et 0x010 RO, rese		0.0000	,		,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1				rese	rved		1					1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	I				reserved	 		I		l			WDTRIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:1		reserv	ved	R	C	0x00	com	patibility	with fut	ure prod	he value ucts, the lify-write	value of	a reserv	•	vide hould be
	0		WDT	RIS	R	С	0	Wat	chdog R	aw Inter	rupt Stat	us				
								Give	es the rav	w interru	pt state	(prior to	masking) of WD	FINTR.	

April 04, 2010

Register 6: Watchdog Masked Interrupt Status (WDTMIS), offset 0x014

This register is the masked interrupt status register. The value of this register is the logical AND of the raw interrupt bit and the Watchdog interrupt enable bit.

Watchdog Masked Interrupt Status (WDTMIS)

Base 0x4000.0000 Offset 0x014 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r						г г	rese	rved					1	1	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset	0	0	0	0	U	U	0	0	0	U	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I		1 1					reserved						1	I	WDTMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:1		reserv	ved	R	C	0x00	com	ware sho patibility erved ac	with futu	ire produ	ucts, the	value of	a reserv	•	vide hould be
	0		WDTN	ЛIS	R	С	0	Wate	chdog M	asked In	terrupt S	Status				
									es the ma rupt.	asked inf	errupt s	ate (afte	er maskir	ng) of the		NTR

Register 7: Watchdog Test (WDTTEST), offset 0x418

This register provides user-enabled stalling when the microcontroller asserts the CPU halt flag during debug.

Base Offse	chdog ⁻ 0x4000.0 t 0x418 R/W, res	0000	VDTTES	ST)												
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		•	1	· ·			•	rese	erved						1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	reserved			1	STALL		1		rese	rved		1	·]
Туре	RO	RO	RO	RO	RO	RO	RO	R/W	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	lit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:9		reser	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	8		STA	LL	R/	W	0	Wat	chdog S	tall Enab	le					
								deb	ugger, th	e watcho	dog time	[®] microco r stops co ner resun	ounting.	Once the		a controller
	7:0		reser	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	

Register 8: Watchdog Lock (WDTLOCK), offset 0xC00

Writing 0x1ACC.E551 to the **WDTLOCK** register enables write access to all other registers. Writing any other value to the **WDTLOCK** register re-enables the locked state for register writes to all the other registers. Reading the **WDTLOCK** register returns the lock status rather than the 32-bit value written. Therefore, when write accesses are disabled, reading the **WDTLOCK** register returns 0x0000.0001 (when locked; otherwise, the returned value is 0x0000.0000 (unlocked)).

Offset	0x4000.0 t 0xC00 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ			1		1 1		· ·	WDT	l Lock	1	I	T	1	I	1	1
ype L	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ	I		1	r	, ,		1 1	WDT	Lock	1	1	I	1	1	1	1
Гуре 🗖	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
eset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nan	ne	Тур	be	Reset	Des	cription							
	31:0		WDTL	.ock	R/	N	0x0000	Wat	chdog L	ock						
								write	e access		of any o	.E551 un other valu			0 0	
								۸				s the follo				

Value Description

0x0000.0001 Locked

0x0000.0000 Unlocked

Watchdog Lock (WDTLOCK)

Register 9: Watchdog Peripheral Identification 4 (WDTPeriphID4), offset 0xFD0

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 4 (WDTPeriphID4)

Base 0x4000.0000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	1	1	I	T	rese	erved	1	1	1	r 1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		1	I			1	PI	I D4 I	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibility	with fut	ure prod	the value lucts, the dify-write	value of	f a reserv	•	
	7:0		PID)4	R	0	0x00	WD	T Periph	eral ID F	Register	[7:0]				

Register 10: Watchdog Peripheral Identification 5 (WDTPeriphID5), offset 0xFD4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 5 (WDTPeriphID5)

Base 0x4000.0000

Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		[1	1			т т	rese	erved	1	r	1	ı 1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved					1		PI	D5	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	C	0x00	com	ware sho patibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	7:0		PID	5	R	С	0x00	WD	T Periph	eral ID F	Register[15:8]				

Register 11: Watchdog Peripheral Identification 6 (WDTPeriphID6), offset 0xFD8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 6 (WDTPeriphID6)

Base 0x4000.0000 Offset 0xFD8 Type RO, reset 0x0000.0000

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Туре 0 Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 15 14 13 11 10 9 8 7 6 5 4 3 2 0 1 PID6 reserved Туре RO Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Туре Reset 31:8 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 7:0 PID6 RO 0x00 WDT Peripheral ID Register[23:16]

Register 12: Watchdog Peripheral Identification 7 (WDTPeriphID7), offset 0xFDC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 7 (WDTPeriphID7)

Base 0x4000.0000

Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	rved	1		1	1		1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei	0	0		-		0	0	0	0	0	U	0	0	U	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved					•		PI	D7		•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	7:0		PID	7	R	0	0x00	WD	T Periph	eral ID F	Register[31:24]				

Register 13: Watchdog Peripheral Identification 0 (WDTPeriphID0), offset 0xFE0

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 0 (WDTPeriphID0)

Base 0x4000.0000

Offset 0xFE0 Type RO, reset 0x0000.0005 24 30 20

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	· ·		1	rese	erved		1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Reset			-	-		-			-	-	-			-	0	-
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved		•	•			•	Pl	D0	•	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:8 reserved RO 0x00 Software should not re compatibility with futur preserved across a re										ure prod	ucts, the	value of	a reserv			
	7:0		PID	0	R	0	0x05	Wat	chdog P	eriphera	I ID Reg	ister[7:0]				

Register 14: Watchdog Peripheral Identification 1 (WDTPeriphID1), offset 0xFE4

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 1 (WDTPeriphID1)

Base 0x4000.0000

Offset 0xFE4 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		I	1				1 1	rese	erved		ſ	1	1	I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															1	
Туре						RO			RO			RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	JI			ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	7:0		PID	1	R	0	0x18	Wat	chdog P	eripheral	ID Reg	ister[15:8	3]			

Register 15: Watchdog Peripheral Identification 2 (WDTPeriphID2), offset 0xFE8

The **WDTPeriphIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 2 (WDTPeriphID2)

Base 0x4000.0000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	ı – – – –	r	1 1	rese	rved		r	1	1	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
														1	1	
												RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nam	ne	Ty	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod		value of	f a reserv	t. To prov ved bit sh	
	7:0		PID	2	R	0	0x18	Wat	chdog P	eripheral	ID Reg	ister[23:1	[6]			

Register 16: Watchdog Peripheral Identification 3 (WDTPeriphID3), offset 0xFEC

The WDTPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog Peripheral Identification 3 (WDTPeriphID3)

Base 0x4000.0000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1				т т	rese	erved		ſ	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
															1	'
Туре															RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ie	Ту	be	Reset	Des	cription							
	31:8		reserv	ved	R	C	0x00	com	tware sho npatibility served ac	with futu	ure prod	ucts, the	value of	a reserv	•	
	7:0		PID	3	R	С	0x01	Wat	chdog P	eripheral	ID Reg	ister[31:2	24]			

Register 17: Watchdog PrimeCell Identification 0 (WDTPCellID0), offset 0xFF0

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 0 (WDTPCellID0)

Base 0x4000.0000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	T	1			1	rese	erved			1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•	1	rese	erved		1	1				CI	D0	1	1	'
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO	RO 0	RO
	Bit/Field	0	Nan		Ту	-	Reset		cription	0	Ū	0	I	I	Ū	·
	31:8		reser	ved	R	0	0x00	com	npatibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide nould be
	7:0		CID	0	R	0	0x0D	Wat	chdog P	rimeCell	ID Regi	ster[7:0]				

Register 18: Watchdog PrimeCell Identification 1 (WDTPCellID1), offset 0xFF4

The WDTPCellIDn registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 1 (WDTPCellID1)

Base 0x4000.0000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1			ſ	1 1	rese	erved	ſ	r	1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1	rese	rved						I	CI	D1	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		CID	1	R	0	0xF0	Wat	chdog P	rimeCell	ID Regi	ster[15:8]			

Register 19: Watchdog PrimeCell Identification 2 (WDTPCellID2), offset 0xFF8

The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 2 (WDTPCellID2)

Base 0x4000.0000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1	1	rese	rved	1	1	1	1	1	1	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	1	1	r			1	CI	D2	1	T	r
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nar	me	Ту	ре	Reset	Des	cription							
	31:8		reser	rved	R	0	0x00	com	npatibility	with fut	ure prod	the value lucts, the dify-write	value of	a reserv	•	
	7:0		CIE	02	R	0	0x05	Wat	chdog Pi	rimeCell	ID Reg	ister[23:1	6]			

Register 20: Watchdog PrimeCell Identification 3 (WDTPCellID3), offset 0xFFC

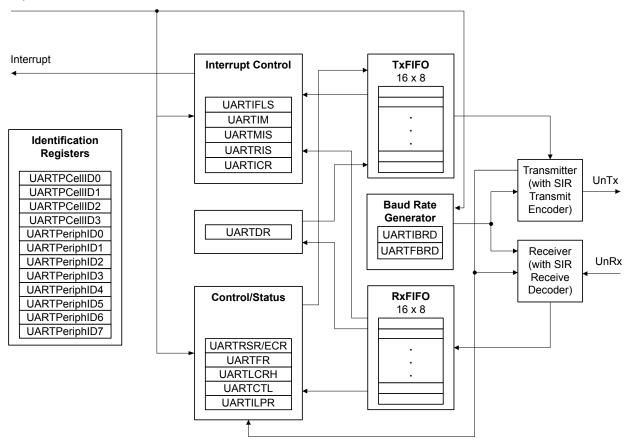
The **WDTPCellIDn** registers are hard-coded and the fields within the register determine the reset value.

Watchdog PrimeCell Identification 3 (WDTPCellID3)

Base 0x4000.0000 Offset 0xFFC Type RO, reset 0x0000.00B1

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		r	1	r	1		1 1	rese	erved	I	1	I	1	i	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Type RO													D3	r	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	npatibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		CID	3	R	0	0xB1	Wat	chdog P	rimeCell	ID Regi	ster[31:2	24]			

11 Universal Asynchronous Receivers/Transmitters (UARTs)


The Stellaris[®] Universal Asynchronous Receiver/Transmitter (UART) has the following features:

- Fully programmable 16C550-type UART with IrDA support
- Separate 16x8 transmit (TX) and receive (RX) FIFOs to reduce CPU interrupt service loading
- Programmable baud-rate generator allowing speeds up to 3.125 Mbps
- Programmable FIFO length, including 1-byte deep operation providing conventional double-buffered interface
- FIFO trigger levels of 1/8, 1/4, 1/2, 3/4, and 7/8
- Standard asynchronous communication bits for start, stop, and parity
- False-start bit detection
- Line-break generation and detection
- Fully programmable serial interface characteristics
 - 5, 6, 7, or 8 data bits
 - Even, odd, stick, or no-parity bit generation/detection
 - 1 or 2 stop bit generation
- IrDA serial-IR (SIR) encoder/decoder providing
 - Programmable use of IrDA Serial Infrared (SIR) or UART input/output
 - Support of IrDA SIR encoder/decoder functions for data rates up to 115.2 Kbps half-duplex
 - Support of normal 3/16 and low-power (1.41-2.23 µs) bit durations
 - Programmable internal clock generator enabling division of reference clock by 1 to 256 for low-power mode bit duration

11.1 Block Diagram

Figure 11-1. UART Module Block Diagram

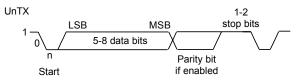
System Clock

11.2 Functional Description

Each Stellaris[®] UART performs the functions of parallel-to-serial and serial-to-parallel conversions. It is similar in functionality to a 16C550 UART, but is not register compatible.

The UART is configured for transmit and/or receive via the TXE and RXE bits of the **UART Control** (**UARTCTL**) register (see page 261). Transmit and receive are both enabled out of reset. Before any control registers are programmed, the UART must be disabled by clearing the UARTEN bit in **UARTCTL**. If the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

The UART peripheral also includes a serial IR (SIR) encoder/decoder block that can be connected to an infrared transceiver to implement an IrDA SIR physical layer. The SIR function is programmed using the UARTCTL register.


11.2.1 Transmit/Receive Logic

The transmit logic performs parallel-to-serial conversion on the data read from the transmit FIFO. The control logic outputs the serial bit stream beginning with a start bit, and followed by the data

bits (LSB first), parity bit, and the stop bits according to the programmed configuration in the control registers. See Figure 11-2 on page 244 for details.

The receive logic performs serial-to-parallel conversion on the received bit stream after a valid start pulse has been detected. Overrun, parity, frame error checking, and line-break detection are also performed, and their status accompanies the data that is written to the receive FIFO.

Figure 11-2. UART Character Frame

11.2.2 Baud-Rate Generation

The baud-rate divisor is a 22-bit number consisting of a 16-bit integer and a 6-bit fractional part. The number formed by these two values is used by the baud-rate generator to determine the bit period. Having a fractional baud-rate divider allows the UART to generate all the standard baud rates.

The 16-bit integer is loaded through the **UART Integer Baud-Rate Divisor (UARTIBRD)** register (see page 257) and the 6-bit fractional part is loaded with the **UART Fractional Baud-Rate Divisor (UARTFBRD)** register (see page 258). The baud-rate divisor (BRD) has the following relationship to the system clock (where *BRDI* is the integer part of the BRD and *BRDF* is the fractional part, separated by a decimal place.)

BRD = BRDI + BRDF = UARTSysClk / (16 * Baud Rate)

where UARTSysClk is the system clock connected to the UART.

The 6-bit fractional number (that is to be loaded into the DIVFRAC bit field in the **UARTFBRD** register) can be calculated by taking the fractional part of the baud-rate divisor, multiplying it by 64, and adding 0.5 to account for rounding errors:

```
UARTFBRD[DIVFRAC] = integer(BRDF * 64 + 0.5)
```

The UART generates an internal baud-rate reference clock at 16x the baud-rate (referred to as Baud16). This reference clock is divided by 16 to generate the transmit clock, and is used for error detection during receive operations.

Along with the **UART Line Control, High Byte (UARTLCRH)** register (see page 259), the **UARTIBRD** and **UARTFBRD** registers form an internal 30-bit register. This internal register is only updated when a write operation to **UARTLCRH** is performed, so any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register for the changes to take effect.

To update the baud-rate registers, there are four possible sequences:

- UARTIBRD write, UARTFBRD write, and UARTLCRH write
- UARTFBRD write, UARTIBRD write, and UARTLCRH write
- UARTIBRD write and UARTLCRH write
- UARTFBRD write and UARTLCRH write

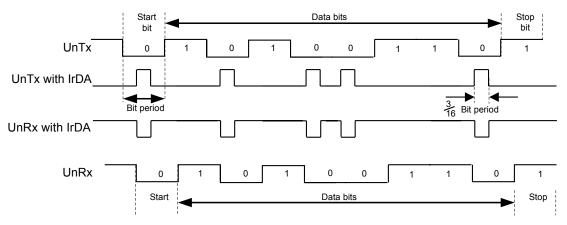
11.2.3 Data Transmission

Data received or transmitted is stored in two 16-byte FIFOs, though the receive FIFO has an extra four bits per character for status information. For transmission, data is written into the transmit FIFO. If the UART is enabled, it causes a data frame to start transmitting with the parameters indicated in the **UARTLCRH** register. Data continues to be transmitted until there is no data left in the transmit FIFO. The BUSY bit in the **UART Flag (UARTFR)** register (see page 254) is asserted as soon as data is written to the transmit FIFO (that is, if the FIFO is non-empty) and remains asserted while data is being transmitted. The BUSY bit is negated only when the transmit FIFO is empty, and the last character has been transmitted from the shift register, including the stop bits. The UART can indicate that it is busy even though the UART may no longer be enabled.

When the receiver is idle (the UnRx is continuously 1) and the data input goes Low (a start bit has been received), the receive counter begins running and data is sampled on the eighth cycle of Baud16 (described in "Transmit/Receive Logic" on page 243).

The start bit is valid if UnRx is still low on the eighth cycle of Baud16, otherwise a false start bit is detected and it is ignored. Start bit errors can be viewed in the **UART Receive Status (UARTRSR)** register (see page 252). If the start bit was valid, successive data bits are sampled on every 16th cycle of Baud16 (that is, one bit period later) according to the programmed length of the data characters. The parity bit is then checked if parity mode was enabled. Data length and parity are defined in the **UARTLCRH** register.

Lastly, a valid stop bit is confirmed if UnRx is High, otherwise a framing error has occurred. When a full word is received, the data is stored in the receive FIFO, with any error bits associated with that word.


11.2.4 Serial IR (SIR)

The UART peripheral includes an IrDA serial-IR (SIR) encoder/decoder block. The IrDA SIR block provides functionality that converts between an asynchronous UART data stream, and half-duplex serial SIR interface. No analog processing is performed on-chip. The role of the SIR block is to provide a digital encoded output and decoded input to the UART. The UART signal pins can be connected to an infrared transceiver to implement an IrDA SIR physical layer link. The SIR block has two modes of operation:

- In normal IrDA mode, a zero logic level is transmitted as high pulse of 3/16th duration of the selected baud rate bit period on the output pin, while logic one levels are transmitted as a static LOW signal. These levels control the driver of an infrared transmitter, sending a pulse of light for each zero. On the reception side, the incoming light pulses energize the photo transistor base of the receiver, pulling its output LOW. This drives the UART input pin LOW.
- In low-power IrDA mode, the width of the transmitted infrared pulse is set to three times the period of the internally generated IrLPBaud16 signal (1.63 µs, assuming a nominal 1.8432 MHz frequency) by changing the appropriate bit in the UARTCR register. See page 256 for more information on IrDA low-power pulse-duration configuration.

Figure 11-3 on page 246 shows the UART transmit and receive signals, with and without IrDA modulation.

Figure 11-3. IrDA Data Modulation

In both normal and low-power IrDA modes:

- During transmission, the UART data bit is used as the base for encoding
- During reception, the decoded bits are transferred to the UART receive logic

The IrDA SIR physical layer specifies a half-duplex communication link, with a minimum 10 ms delay between transmission and reception. This delay must be generated by software because it is not automatically supported by the UART. The delay is required because the infrared receiver electronics might become biased, or even saturated from the optical power coupled from the adjacent transmitter LED. This delay is known as latency, or receiver setup time.

If the application does not require the use of the UnRx signal, the GPIO pin that has the UnRx signal as an alternate function must be configured as the UnRx signal and pulled High.

11.2.5 FIFO Operation

The UART has two 16-entry FIFOs; one for transmit and one for receive. Both FIFOs are accessed via the **UART Data (UARTDR)** register (see page 250). Read operations of the **UARTDR** register return a 12-bit value consisting of 8 data bits and 4 error flags while write operations place 8-bit data in the transmit FIFO.

Out of reset, both FIFOs are disabled and act as 1-byte-deep holding registers. The FIFOs are enabled by setting the FEN bit in **UARTLCRH** (page 259).

FIFO status can be monitored via the **UART Flag (UARTFR)** register (see page 254) and the **UART Receive Status (UARTRSR)** register. Hardware monitors empty, full and overrun conditions. The **UARTFR** register contains empty and full flags (TXFE, TXFF, RXFE, and RXFF bits) and the **UARTRSR** register shows overrun status via the OE bit.

The trigger points at which the FIFOs generate interrupts is controlled via the **UART Interrupt FIFO Level Select (UARTIFLS)** register (see page 263). Both FIFOs can be individually configured to trigger interrupts at different levels. Available configurations include 1/8, $\frac{1}{4}$, $\frac{1}{2}$, $\frac{3}{4}$, and 7/8. For example, if the $\frac{1}{4}$ option is selected for the receive FIFO, the UART generates a receive interrupt after 4 data bytes are received. Out of reset, both FIFOs are configured to trigger an interrupt at the $\frac{1}{2}$ mark.

11.2.6 Interrupts

The UART can generate interrupts when the following conditions are observed:

- Overrun Error
- Break Error
- Parity Error
- Framing Error
- Receive Timeout
- Transmit (when condition defined in the TXIFLSEL bit in the UARTIFLS register is met)
- Receive (when condition defined in the RXIFLSEL bit in the UARTIFLS register is met)

All of the interrupt events are ORed together before being sent to the interrupt controller, so the UART can only generate a single interrupt request to the controller at any given time. Software can service multiple interrupt events in a single interrupt service routine by reading the **UART Masked Interrupt Status (UARTMIS)** register (see page 268).

The interrupt events that can trigger a controller-level interrupt are defined in the **UART Interrupt Mask (UARTIM**) register (see page 265) by setting the corresponding IM bit to 1. If interrupts are not used, the raw interrupt status is always visible via the **UART Raw Interrupt Status (UARTRIS)** register (see page 267).

Interrupts are always cleared (for both the **UARTMIS** and **UARTRIS** registers) by setting the corresponding bit in the **UART Interrupt Clear (UARTICR)** register (see page 269).

The receive timeout interrupt is asserted when the receive FIFO is not empty, and no further data is received over a 32-bit period. The receive timeout interrupt is cleared either when the FIFO becomes empty through reading all the data (or by reading the holding register), or when a 1 is written to the corresponding bit in the **UARTICR** register.

11.2.7 Loopback Operation

The UART can be placed into an internal loopback mode for diagnostic or debug work. This is accomplished by setting the LBE bit in the **UARTCTL** register (see page 261). In loopback mode, data transmitted on UnTx is received on the UnRx input.

11.2.8 IrDA SIR block

The IrDA SIR block contains an IrDA serial IR (SIR) protocol encoder/decoder. When enabled, the SIR block uses the UnTx and UnRx pins for the SIR protocol, which should be connected to an IR transceiver.

The SIR block can receive and transmit, but it is only half-duplex so it cannot do both at the same time. Transmission must be stopped before data can be received. The IrDA SIR physical layer specifies a minimum 10-ms delay between transmission and reception.

11.3 Initialization and Configuration

To use the UART, the peripheral clock must be enabled by setting the UART0 bit in the **RCGC1** register.

This section discusses the steps that are required to use a UART module. For this example, the UART clock is assumed to be 20 MHz and the desired UART configuration is:

115200 baud rate

- Data length of 8 bits
- One stop bit
- No parity
- FIFOs disabled
- No interrupts

The first thing to consider when programming the UART is the baud-rate divisor (BRD), since the **UARTIBRD** and **UARTFBRD** registers must be written before the **UARTLCRH** register. Using the equation described in "Baud-Rate Generation" on page 244, the BRD can be calculated:

BRD = 20,000,000 / (16 * 115,200) = 10.8507

which means that the DIVINT field of the **UARTIBRD** register (see page 257) should be set to 10. The value to be loaded into the **UARTFBRD** register (see page 258) is calculated by the equation:

UARTFBRD[DIVFRAC] = integer(0.8507 * 64 + 0.5) = 54

With the BRD values in hand, the UART configuration is written to the module in the following order:

- 1. Disable the UART by clearing the UARTEN bit in the UARTCTL register.
- 2. Write the integer portion of the BRD to the UARTIBRD register.
- 3. Write the fractional portion of the BRD to the UARTFBRD register.
- **4.** Write the desired serial parameters to the **UARTLCRH** register (in this case, a value of 0x0000.0060).
- 5. Enable the UART by setting the UARTEN bit in the UARTCTL register.

11.4 Register Map

Table 11-1 on page 248 lists the UART registers. The offset listed is a hexadecimal increment to the register's address, relative to that UART's base address:

- UART0: 0x4000.C000
- **Note:** The UART must be disabled (see the UARTEN bit in the **UARTCTL** register on page 261) before any of the control registers are reprogrammed. When the UART is disabled during a TX or RX operation, the current transaction is completed prior to the UART stopping.

Offset	Name	Туре	Reset	Description	See page
0x000	UARTDR	R/W	0x0000.0000	UART Data	250
0x004	UARTRSR/UARTECR	R/W	0x0000.0000	UART Receive Status/Error Clear	252
0x018	UARTFR	RO	0x0000.0090	UART Flag	254
0x020	UARTILPR	R/W	0x0000.0000	UART IrDA Low-Power Register	256

Table 11-1. UART Register Map

Offset	Name	Туре	Reset	Description	See page
0x024	UARTIBRD	R/W	0x0000.0000	UART Integer Baud-Rate Divisor	257
0x028	UARTFBRD	R/W	0x0000.0000	UART Fractional Baud-Rate Divisor	258
0x02C	UARTLCRH	R/W	0x0000.0000	UART Line Control	259
0x030	UARTCTL	R/W	0x0000.0300	UART Control	261
0x034	UARTIFLS	R/W	0x0000.0012	UART Interrupt FIFO Level Select	263
0x038	UARTIM	R/W	0x0000.0000	UART Interrupt Mask	265
0x03C	UARTRIS	RO	0x0000.000F	UART Raw Interrupt Status	267
0x040	UARTMIS	RO	0x0000.0000	UART Masked Interrupt Status	268
0x044	UARTICR	W1C	0x0000.0000	UART Interrupt Clear	269
0xFD0	UARTPeriphID4	RO	0x0000.0000	UART Peripheral Identification 4	271
0xFD4	UARTPeriphID5	RO	0x0000.0000	UART Peripheral Identification 5	272
0xFD8	UARTPeriphID6	RO	0x0000.0000	UART Peripheral Identification 6	273
0xFDC	UARTPeriphID7	RO	0x0000.0000	UART Peripheral Identification 7	274
0xFE0	UARTPeriphID0	RO	0x0000.0011	UART Peripheral Identification 0	275
0xFE4	UARTPeriphID1	RO	0x0000.0000	UART Peripheral Identification 1	276
0xFE8	UARTPeriphID2	RO	0x0000.0018	UART Peripheral Identification 2	277
0xFEC	UARTPeriphID3	RO	0x0000.0001	UART Peripheral Identification 3	278
0xFF0	UARTPCellID0	RO	0x0000.000D	UART PrimeCell Identification 0	279
0xFF4	UARTPCellID1	RO	0x0000.00F0	UART PrimeCell Identification 1	280
0xFF8	UARTPCellID2	RO	0x0000.0005	UART PrimeCell Identification 2	281
0xFFC	UARTPCellID3	RO	0x0000.00B1	UART PrimeCell Identification 3	282

Table 11-1. UART Register Map (continued)

11.5 Register Descriptions

The remainder of this section lists and describes the UART registers, in numerical order by address offset.

UART Data (UARTDR)

Register 1: UART Data (UARTDR), offset 0x000

Important: Use caution when reading this register. Performing a read may change bit status.

This register is the data register (the interface to the FIFOs).

When FIFOs are enabled, data written to this location is pushed onto the transmit FIFO. If FIFOs are disabled, data is stored in the transmitter holding register (the bottom word of the transmit FIFO). A write to this register initiates a transmission from the UART.

For received data, if the FIFO is enabled, the data byte and the 4-bit status (break, frame, parity, and overrun) is pushed onto the 12-bit wide receive FIFO. If FIFOs are disabled, the data byte and status are stored in the receiving holding register (the bottom word of the receive FIFO). The received data can be retrieved by reading this register.

Offse	Γ0 base: 0 t 0x000 R/W, rese															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r		· · · · ·			ſ	1 1	rese	erved		r	r	1	1	r	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1	rese	rved		OE	BE	PE	FE			I	DA	TA	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:12		reserv	ved	R	0	0	com		with futu	ure produ	ucts, the	value of	erved bit a reserv on.		
	11		OE	E	R	0	0	UAF	RT Overr	un Error						
								The	OE valu	es are de	efined as	s follows:				
								Val	ue Desc	ription						
								0	Ther	e has be	en no da	ata loss o	due to a	FIFO ov	errun.	
								1	New data		s receive	ed when	the FIFC) was ful	ll, resulti	ng in
	10		BE		R	0	0	UAF	RT Break	Error						
								the	receive o	lata inpu	it was he	eld Low f	or longe	etected, r than a t ty, and st	full-word	•
								the I FIF(FIFO. W O. The n	hen a bro ext chara	eak occu acter is c	irs, only only enat	one 0 ch oled afte	e charac aracter i r the rec start bit	s loaded eived da	into the ta input
								FIF	O. The n	ext chara	acter is c	only enab	oled afte	r the rec	eived da	ta

Bit/Field	Name	Туре	Reset	Description
9	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				In FIFO mode, this error is associated with the character at the top of the FIFO.
8	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
7:0	DATA	R/W	0	Data Transmitted or Received
				When written, the data that is to be transmitted via the UART. When read, the data that was received by the UART.

Register 2: UART Receive Status/Error Clear (UARTRSR/UARTECR), offset 0x004

The UARTRSR/UARTECR register is the receive status register/error clear register.

In addition to the **UARTDR** register, receive status can also be read from the **UARTRSR** register. If the status is read from this register, then the status information corresponds to the entry read from **UARTDR** prior to reading **UARTRSR**. The status information for overrun is set immediately when an overrun condition occurs.

The **UARTRSR** register cannot be written.

A write of any value to the **UARTECR** register clears the framing, parity, break, and overrun errors. All the bits are cleared to 0 on reset.

Reads

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000

Offset 0x004 Type RO, reset 0x0000.0000

_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ	1		1	1		1	1 1	rese	erved			1	1	1		1
L Type	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ſ			1	1		res	erved					1	OE	BE	PE	FE
Туре Г	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:4		reserv	he value	of a res	erved bit	. To prov	∕ide								
				ucts, the	value of	a reserv		nould be								
				dify-write	operatio	on.										
	3		OE	E	R	0	0	UAF	RT Overr	un Error						
								Whe	en this bi	t is set to	o 1. data	is recei	ved and	the FIFC) is alrea	dv full.
									s bit is cle							
								The	FIFO co	ntents re	emain va	alid since	e no furth	ier data i	s writter	when
									FIFO is f							vritten.
								The	CPU mu	ist now i	read the	data in o	order to e	empty the	e FIFO.	
	2		BE	1	R	0	0	UAF	RT Break	Error						
								This	s bit is se	t to 1 wh	ien a bre	eak cond	ition is d	etected,	indicatir	ng that
									received	•						
								tran	smission	time (de	efined as	s start, d	ata, parit	ty, and st	op bits).	
								This	s bit is cle	eared to	0 by a w	rite to U	ARTECF	२ .		
									IFO mod							•
									FIFO. W							
									O. The n s to a 1 (•
								0,10		9	,-					

Bit/Field	Name	Туре	Reset	Description
1	PE	RO	0	UART Parity Error
				This bit is set to 1 when the parity of the received data character does not match the parity defined by bits 2 and 7 of the UARTLCRH register.
				This bit is cleared to 0 by a write to UARTECR .
0	FE	RO	0	UART Framing Error
				This bit is set to 1 when the received character does not have a valid stop bit (a valid stop bit is 1).
				This bit is cleared to 0 by a write to UARTECR .
				In FIFO mode, this error is associated with the character at the top of the FIFO.

Writes

UART Receive Status/Error Clear (UARTRSR/UARTECR)

UART0 base: 0x4000.C000 Offset 0x004 Type WO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1					rese	rved						1	
Туре	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ľ			rese	rved	I						DA	ATA		1	
Туре	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo	wo
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	3it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	Bit/Field Name 31:8 reserved			/ed	W	0	0	com	ware sho patibility served ac	with futu	ire produ	ucts, the	value of	a reserv	•	
	7:0		DAT	A	W	0	0	Erro	or Clear							
									rite to this rrun flags	0	r of any	data clea	ars the fr	aming, p	arity, bre	eak, and

Register 3: UART Flag (UARTFR), offset 0x018

The **UARTFR** register is the flag register. After reset, the TXFF, RXFF, and BUSY bits are 0, and TXFE and RXFE bits are 1.

UART Offset	0 base: 0 0x018	(UART 0x4000.C t 0x0000	000													
г	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
					1				rved				1			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•	rese	rved				TXFE	RXFF	TXFF	RXFE	BUSY		reserved	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 0
В	it/Field		Nam	ne	Ту	pe	Reset	Des	cription							
	31:8		reser	ved	R	0	0	com	patibility	with futu	ire prod	ucts, the		a reser	it. To provi ved bit sh	
	7		TXF	E	R	0	1	UAF	RT Trans	mit FIFC	Empty					
		The meaning of this bit depends on the state of the FEN bit in the UARTLCRH register. If the FIFO is disabled (FEN is 0), this bit is set when the transmit holding														
-													holding			
									e FIFO is npty.	enable	d (FEN is	s 1), this	bit is set	when t	he transm	it FIFO
	6		RXF	F	R	0	0	UAF	RT Recei	ve FIFO	Full					
									meaning RTLCRH			nds on tł	ne state o	of the FI	EN bit in th	ie
								lf th is fu		disable	d, this b	it is set v	vhen the	receive	e holding r	egister
								If th	e FIFO is	enable	d, this bi	t is set w	hen the	receive	FIFO is fu	ull.
	5		TXF	F	R	0	0	UAF	RT Trans	mit FIFC	Full					
									meaning RTLCRH			nds on th	ne state o	of the FI	EN bit in th	ie
								lf th is fu		disable	d, this b	t is set v	vhen the	transmi	it holding ı	register
								If th	e FIFO is	enable	d, this bi	t is set w	hen the	transmi	t FIFO is f	ull.
	4		RXF	E	R	0	1	UAF	RT Recei	ve FIFO	Empty					
									meaning RTLCRH		•	nds on th	ne state o	of the FI	EN bit in th	ie
									e FIFO is npty.	disable	d, this b	it is set v	vhen the	receive	e holding r	egister
								lf th	e FIFO is	enable	d, this bi	t is set w	hen the	receive	FIFO is e	mpty.

Bit/Field	Name	Туре	Reset	Description
3	BUSY	RO	0	UART Busy
				When this bit is 1, the UART is busy transmitting data. This bit remains set until the complete byte, including all stop bits, has been sent from the shift register.
				This bit is set as soon as the transmit FIFO becomes non-empty (regardless of whether UART is enabled).
2:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 4: UART IrDA Low-Power Register (UARTILPR), offset 0x020

The **UARTILPR** register is an 8-bit read/write register that stores the low-power counter divisor value used to derive the low-power SIR pulse width clock by dividing down the system clock (SysClk). All the bits are cleared to 0 when reset.

The internal IrLPBaud16 clock is generated by dividing down SysClk according to the low-power divisor value written to **UARTILPR**. The duration of SIR pulses generated when low-power mode is enabled is three times the period of the IrLPBaud16 clock. The low-power divisor value is calculated as follows:

ILPDVSR = SysClk / F_{IrLPBaud16}

where F_{IrLPBaud16} is nominally 1.8432 MHz.

You must choose the divisor so that $1.42 \text{ MHz} < F_{IrLPBaud16} < 2.12 \text{ MHz}$, which results in a low-power pulse duration of $1.41-2.11 \mu s$ (three times the period of IrLPBaud16). The minimum frequency of IrLPBaud16 ensures that pulses less than one period of IrLPBaud16 are rejected, but that pulses greater than 1.4 μs are accepted as valid pulses.

Note: Zero is an illegal value. Programming a zero value results in no IrLPBaud16 pulses being generated.

UART IrDA Low-Power Register (UARTILPR)

et 0x020	0x4000.C et 0x0000															
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
	r	1		г <u>г</u>		т т	rese	rved			r			ſ		
RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
		1	rese	rved		1 1					ILPD	VSR				
RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Bit/Field		Nam	ie	Туј	ре	Reset	Des	cription								
31:8		reserv	ved	R	C	0	com	patibility	with futu	ure produ	ucts, the	value of	a reserv	•		
7:0		ILPD√	′SR	R/	W	0x00					isor valu	e.				
	et 0x020 R/W, reso 31 RO 0 15 RO 0 31:8	et 0x020 R/W, reset 0x0000 31 30 RO RO 0 0 15 14 RO RO 0 0 31:8	et 0x020 R/W, reset 0x0000.0000 31 30 29 RO RO RO 0 0 0 15 14 13 RO RO RO 0 0 0 31 Sit/Field Name 31:8 reserved	et 0x020 R/W, reset 0x0000.0000 31 30 29 28 RO RO RO RO 0 0 0 0 15 14 13 12 rese RO RO RO 0 0 0 0 31:8 reserved	at 0x020 R/W, reset 0x0000.0000 31 30 29 28 27 RO RO RO RO RO 0 15 14 13 12 11 reserved RO RO RO RO 0 0 0 0 0 315 14 13 12 11 reserved RO RO RO RO 0 0 0 0 0 31:8 reserved RO	31 30 29 28 27 26 RO RO RO RO RO RO RO 15 14 13 12 11 10 reserved RO RO RO RO RO RO 0 0 0 0 0 0 15 14 13 12 11 10 reserved RO RO RO RO RO 0 0 0 0 0 0 3it/Field Name Type 31:8 reserved RO	31 30 29 28 27 26 25 RO RO RO RO RO RO RO 0 0 15 14 13 12 11 10 9 RO RO RO RO RO RO 0 0 15 14 13 12 11 10 9 RO RO RO RO RO RO 0 0 80 RO RO RO RO 0 0 0 0 3it/Field Name Type Reset 31:8 reserved RO 0	31 30 29 28 27 26 25 24 RO RO <t< td=""><td>31 30 29 28 27 26 25 24 23 RO <t< td=""><td>at 0x020 31 30 29 28 27 26 25 24 23 22 RO <</td><td>at 0x020 R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 reserved RO <th< td=""><td>at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved RO RO</td><td>at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 RO RO</td><td>at 0x0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved RO RO</td><td>at 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved RO RO</td><td>Mt 0x020 RWV, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RO<</td></th<></td></t<></td></t<>	31 30 29 28 27 26 25 24 23 RO RO <t< td=""><td>at 0x020 31 30 29 28 27 26 25 24 23 22 RO <</td><td>at 0x020 R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 reserved RO <th< td=""><td>at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved RO RO</td><td>at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 RO RO</td><td>at 0x0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved RO RO</td><td>at 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved RO RO</td><td>Mt 0x020 RWV, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RO<</td></th<></td></t<>	at 0x020 31 30 29 28 27 26 25 24 23 22 RO <	at 0x020 R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 reserved RO RO <th< td=""><td>at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved RO RO</td><td>at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 RO RO</td><td>at 0x0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved RO RO</td><td>at 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved RO RO</td><td>Mt 0x020 RWV, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RO<</td></th<>	at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 reserved RO RO	at 0x020 RW, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 RO RO	at 0x0200 31 30 29 28 27 26 25 24 23 22 21 20 19 18 reserved RO RO	at 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 reserved RO RO	Mt 0x020 RWV, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO RO<

Register 5: UART Integer Baud-Rate Divisor (UARTIBRD), offset 0x024

The **UARTIBRD** register is the integer part of the baud-rate divisor value. All the bits are cleared on reset. The minimum possible divide ratio is 1 (when **UARTIBRD**=0), in which case the **UARTFBRD** register is ignored. When changing the **UARTIBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 244 for configuration details.

UART Integer Baud-Rate Divisor (UARTIBRD)

UART0 base: 0x4000.C000

Offset 0x024 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved	1	1	I	r I	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1	1			1	DI\	/INT	1	1	1	1	1	1	1
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E				ne	Ту	pe	Reset	Des	cription							
	31:16 reserved					0	0	com	npatibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	15:0 DIVINT			R/	W	0x0000	Inte	ger Bau	d-Rate D	ivisor						

Register 6: UART Fractional Baud-Rate Divisor (UARTFBRD), offset 0x028

The **UARTFBRD** register is the fractional part of the baud-rate divisor value. All the bits are cleared on reset. When changing the **UARTFBRD** register, the new value does not take effect until transmission/reception of the current character is complete. Any changes to the baud-rate divisor must be followed by a write to the **UARTLCRH** register. See "Baud-Rate Generation" on page 244 for configuration details.

UART Fractional Baud-Rate Divisor (UARTFBRD) UART0 base: 0x4000.C000

Offset 0x028

Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1	rese	rved					1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1		resei	rved	1 1		1			I	DIVF	RAC	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_					-		-	_								
E	Bit/Field		Nam	ie	Ty	be	Reset	Des	cription							
							0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	5:0 DIVFRAC R/W 0x0						0x000	Frac	ctional Ba	aud-Rate	e Divisor					

Register 7: UART Line Control (UARTLCRH), offset 0x02C

The **UARTLCRH** register is the line control register. Serial parameters such as data length, parity, and stop bit selection are implemented in this register.

When updating the baud-rate divisor (**UARTIBRD** and/or **UARTIFRD**), the **UARTLCRH** register must also be written. The write strobe for the baud-rate divisor registers is tied to the **UARTLCRH** register.

UART Line Control (UARTLCRH)

UART0 base: 0x4000.C000 Offset 0x02C Type R/W, reset 0x0000.0000

	,																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		•	•	•		•	•	rese	erved	•					•	•		
Type	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO		
Reset					0											0		
ſ	15	14	13 I	12	11 1	10	9	8	7	6	5	4	3	2	1			
					erved				SPS		EN	FEN	STP2	EPS	PEN	BRK		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0		
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	scription									
	31:8		reserv	ved	R	0	0	Sof	tware sh	ould not	relv on t	he value	e of a res	erved bit	t. To prov	∕ide		
								con	npatibility	with fut	ure prod	ucts, the	value of	a reserv	•			
								pres	served a	cross a r	ead-mo	dify-write	e operatio	on.				
	7		SP	S	R/	W	0	UAF	RT Stick	Parity Se	elect							
								Whe	en bits 1,	2, and 7	of UAR	TLCRH	are set, th	ne parity	bit is trai	nsmitted		
									checked				l 7 are se	et and 2 i	is cleare	d, the		
									•									
								vvne	en this b	it is cleai	red, stick	c parity is	s disable	d.				
	6:5		WLE	EN	R/	W	0	UAF	RT Word	Length								
											number	of data	bits trans	mitted o	r receive	ed in a		
								fran	ne as foll	ows:								
								Val	ue Desc	ription								
								0×	3 8 bits	6								
								0×	2 7 bit	6								
								0×	(1 6 bit	6								
								0×	0 5 bit	s (defaul	t)							
	4		FEI	Ν	R/	W	0	UAF	RT Enab	le FIFOs	;							
								lf th	is bit is s	et to 1, tra	ansmit a	nd receiv	ve FIFO b	ouffers ar	e enable	ed (FIFO		
								moo	de).									
								When cleared to 0, FIFOs are disabled (Character mode). The FIFO become 1-byte-deep holding registers.										
	2		OTO	22		^	0				-	- 3.0.01						
	3		STF	~2	R/	VV	0		RT Two S	•								
											•		transmitt two stop					
									1000170	isgis do					-9 - COON	.		

Bit/Field	Name	Туре	Reset	Description
2	EPS	R/W	0	UART Even Parity Select
				If this bit is set to 1, even parity generation and checking is performed during transmission and reception, which checks for an even number of 1s in data and parity bits.
				When cleared to 0, then odd parity is performed, which checks for an odd number of 1s.
				This bit has no effect when parity is disabled by the ${\tt PEN}$ bit.
1	PEN	R/W	0	UART Parity Enable
				If this bit is set to 1, parity checking and generation is enabled; otherwise, parity is disabled and no parity bit is added to the data frame.
0	BRK	R/W	0	UART Send Break
				If this bit is set to 1, a Low level is continually output on the UnTX output, after completing transmission of the current character. For the proper execution of the break command, the software must set this bit for at least two frames (character periods). For normal use, this bit must be

cleared to 0.

Register 8: UART Control (UARTCTL), offset 0x030

The **UARTCTL** register is the control register. All the bits are cleared on reset except for the Transmit Enable (TXE) and Receive Enable (RXE) bits, which are set to 1.

To enable the UART module, the UARTEN bit must be set to 1. If software requires a configuration change in the module, the UARTEN bit must be cleared before the configuration changes are written. If the UART is disabled during a transmit or receive operation, the current transaction is completed prior to the UART stopping.

- **Note:** The **UARTCTL** register should not be changed while the UART is enabled or else the results are unpredictable. The following sequence is recommended for making changes to the **UARTCTL** register.
 - **1.** Disable the UART.
 - 2. Wait for the end of transmission or reception of the current character.
 - 3. Flush the transmit FIFO by disabling bit 4 (FEN) in the line control register (UARTLCRH).
 - 4. Reprogram the control register.
 - 5. Enable the UART.

UART Control (UARTCTL)

UART0 base: 0x4000.C000 Offset 0x030

Type R/W, reset 0x0000.0300

Type	17/10, 1656		0.000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1				1 1	rese	rved	1	ı	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		rese	rved	ı – – – – – – – – – – – – – – – – – – –		RXE	TXE	LBE		rese	erved	1	SIRLP	SIREN	UARTEN
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W
Reset	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0
B	it/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:10		reserv	/ed	R	0	0	com	patibility	ould not y with futu cross a r	ure prod	ucts, the	value of	a reserv	•	
	9		RXI	Ξ	R/	W	1	UAF	RT Rece	ive Enab	le					
								the l	UART is	set to 1, t disabled efore stop	in the m					
								Note	e: To	o enable	receptio	n, the U2	arten b i	t must al	lso be se	et.
	8		TXE	Ξ	R/	W	1	UAF	RT Trans	smit Enal	ole					
								the	UART is	set to 1, t disabled acter bef	d in the r	niddle of				
								Note	e: To	o enable	transmis	sion, the	e uartei	N bit mus	st also b	e set.

Bit/Field	Name	Туре	Reset	Description
7	LBE	R/W	0	UART Loop Back Enable If this bit is set to 1, the UnTX path is fed through the UnRX path.
6:3	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
2	SIRLP	R/W	0	UART SIR Low Power Mode
				This bit selects the IrDA encoding mode. If this bit is cleared to 0, low-level bits are transmitted as an active High pulse with a width of 3/16th of the bit period. If this bit is set to 1, low-level bits are transmitted with a pulse width which is 3 times the period of the IrLPBaud16 input signal, regardless of the selected bit rate. Setting this bit uses less power, but might reduce transmission distances. See page 256 for more information.
1	SIREN	R/W	0	UART SIR Enable
				If this bit is set to 1, the IrDA SIR block is enabled, and the UART will transmit and receive data using SIR protocol.
0	UARTEN	R/W	0	UART Enable
				If this bit is set to 1, the UART is enabled. When the UART is disabled in the middle of transmission or reception, it completes the current character before stopping

character before stopping.

Register 9: UART Interrupt FIFO Level Select (UARTIFLS), offset 0x034

The **UARTIFLS** register is the interrupt FIFO level select register. You can use this register to define the FIFO level at which the TXRIS and RXRIS bits in the **UARTRIS** register are triggered.

The interrupts are generated based on a transition through a level rather than being based on the level. That is, the interrupts are generated when the fill level progresses through the trigger level. For example, if the receive trigger level is set to the half-way mark, the interrupt is triggered as the module is receiving the 9th character.

Out of reset, the TXIFLSEL and RXIFLSEL bits are configured so that the FIFOs trigger an interrupt at the half-way mark.

Offse	t 0x034	0x4000.C set 0x0000	000		- (-	- /										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	1	1		rese	rved	1	1			1	1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	1	1	rese	rved	т т			1		RXIFLSEL			TXIFLSEL	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 1	R/W 0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
Bit/Field Name Type Reset Description 31:6 reserved RO 0x00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should preserved across a read-modify-write operation.																
	5:3		RXIFL	SEL	R/	W	0x2	UAF	RT Rece	eive Interr	upt FIFC) Level S	Select			
								The	trigger	points for	the rece	eive inter	rupt are	as follov	WS:	
								Va	alue De	escriptior	ı					
								0	x0 R	X FIFO ≥	1/8 full					
								0	x1 R	X FIFO ≥	¼ full					
								0	x2 R	X FIFO ≥	½ full (d	efault)				
								0	x3 R	X FIFO ≥	¾ full					
								0	x4 R2	X FIFO ≥	7/8 full					
0x5-0x7 Reserved																

UART Interrupt FIFO Level Select (UARTIFLS)

Bit/Field	Name	Туре	Reset	Description
2:0	TXIFLSEL	R/W	0x2	UART Transmit Interrupt FIFO Level Select
				The trigger points for the transmit interrupt are as follows:
				Value Description
				0x0 TX FIFO ≤ 1/8 full
				0x1 TX FIFO ≤ ¼ full
				0x2 TX FIFO $\leq \frac{1}{2}$ full (default)
				0x3 TX FIFO ≤ ¾ full
				0x4 TX FIFO ≤ 7/8 full
				0x5-0x7 Reserved

Register 10: UART Interrupt Mask (UARTIM), offset 0x038

The **UARTIM** register is the interrupt mask set/clear register.

UART Interrupt Mask (UARTIM)

On a read, this register gives the current value of the mask on the relevant interrupt. Writing a 1 to a bit allows the corresponding raw interrupt signal to be routed to the interrupt controller. Writing a 0 prevents the raw interrupt signal from being sent to the interrupt controller.

UART0 base: 0x4000.C000 Offset 0x038 Type R/W, reset 0x0000.0000 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 reserved RO Type Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 13 12 10 9 8 7 6 5 3 2 0 14 11 4 1 OEIM FEIM reserved BEIM PEIM RTIM TXIM RXIM reserved R/W R/W R/W R/W R/W R/W R/W RO RO RO RO RO RO RO RO RO Туре 0 0 0 0 0 0 0 Reset 0 0 0 0 0 0 0 0 0 **Bit/Field** Reset Description Name Type 0x00 31:11 reserved RO Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 10 OEIM R/W 0 UART Overrun Error Interrupt Mask On a read, the current mask for the OEIM interrupt is returned. Setting this bit to 1 promotes the OEIM interrupt to the interrupt controller. 9 BEIM R/W 0 UART Break Error Interrupt Mask On a read, the current mask for the BEIM interrupt is returned. Setting this bit to 1 promotes the BEIM interrupt to the interrupt controller. 8 PEIM R/W 0 UART Parity Error Interrupt Mask On a read, the current mask for the PEIM interrupt is returned. Setting this bit to 1 promotes the PEIM interrupt to the interrupt controller. 7 FEIM R/W 0 UART Framing Error Interrupt Mask On a read, the current mask for the FEIM interrupt is returned. Setting this bit to 1 promotes the FEIM interrupt to the interrupt controller. 6 RTIM R/W 0 UART Receive Time-Out Interrupt Mask On a read, the current mask for the RTIM interrupt is returned. Setting this bit to 1 promotes the RTIM interrupt to the interrupt controller. 5 TXIM R/W 0 **UART Transmit Interrupt Mask** On a read, the current mask for the TXIM interrupt is returned. Setting this bit to 1 promotes the TXIM interrupt to the interrupt controller.

Bit/Field	Name	Туре	Reset	Description
4	RXIM	R/W	0	UART Receive Interrupt Mask
				On a read, the current mask for the RXIM interrupt is returned.
				Setting this bit to 1 promotes the $\ensuremath{\mathtt{RXIM}}$ interrupt to the interrupt controller.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 11: UART Raw Interrupt Status (UARTRIS), offset 0x03C

The UARTRIS register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt. A write has no effect.

UART Raw Interrupt Status (UARTRIS)

UART0 base: 0x4000.C000 Offset 0x03C Type RO, reset 0x0000.000F

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1					rese	rved						ſ	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	reserved			OERIS	BERIS	PERIS	FERIS	RTRIS	TXRIS	RXRIS		rese	rved	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1

Bit/Field	Name	Туре	Reset	Description
31:11	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
10	OERIS	RO	0	UART Overrun Error Raw Interrupt Status
				Gives the raw interrupt state (prior to masking) of this interrupt.
9	BERIS	RO	0	UART Break Error Raw Interrupt Status
				Gives the raw interrupt state (prior to masking) of this interrupt.
8	PERIS	RO	0	UART Parity Error Raw Interrupt Status
				Gives the raw interrupt state (prior to masking) of this interrupt.
7	FERIS	RO	0	UART Framing Error Raw Interrupt Status
				Gives the raw interrupt state (prior to masking) of this interrupt.
6	RTRIS	RO	0	UART Receive Time-Out Raw Interrupt Status
				Gives the raw interrupt state (prior to masking) of this interrupt.
5	TXRIS	RO	0	UART Transmit Raw Interrupt Status
				Gives the raw interrupt state (prior to masking) of this interrupt.
4	RXRIS	RO	0	UART Receive Raw Interrupt Status
				Gives the raw interrupt state (prior to masking) of this interrupt.
3:0	reserved	RO	0xF	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 12: UART Masked Interrupt Status (UARTMIS), offset 0x040

The UARTMIS register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

UART Masked Interrupt Status (UARTMIS)

UART0 base: 0x4000.C000 Offset 0x040 Type RO, reset 0x0000.0000

RO
0
0
RO
0
)

Bit/Field	Name	Туре	Reset	Description
31:11	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
10	OEMIS	RO	0	UART Overrun Error Masked Interrupt Status
				Gives the masked interrupt state of this interrupt.
9	BEMIS	RO	0	UART Break Error Masked Interrupt Status
				Gives the masked interrupt state of this interrupt.
8	PEMIS	RO	0	UART Parity Error Masked Interrupt Status
				Gives the masked interrupt state of this interrupt.
7	FEMIS	RO	0	UART Framing Error Masked Interrupt Status
				Gives the masked interrupt state of this interrupt.
6	RTMIS	RO	0	UART Receive Time-Out Masked Interrupt Status
				Gives the masked interrupt state of this interrupt.
5	TXMIS	RO	0	UART Transmit Masked Interrupt Status
				Gives the masked interrupt state of this interrupt.
4	RXMIS	RO	0	UART Receive Masked Interrupt Status
				Gives the masked interrupt state of this interrupt.
3:0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 13: UART Interrupt Clear (UARTICR), offset 0x044

The **UARTICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt (both raw interrupt and masked interrupt, if enabled) is cleared. A write of 0 has no effect.

Offset	F0 base: (t 0x044 W1C, res																	
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
	•					•	•	rese	rved		1	•		•	•	•		
ype eset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RC 0		
г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			reserved			OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC			rved			
/pe set	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	W1C 0	RO 0	RO 0	RO 0	RC 0		
В	it/Field		Nam	ie	Ту	ре	Reset	Des	cription									
	31:11		reserv	ved	R	0	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv				
	10		OEI	С	W	1C	0	Ove	rrun Erro	or Interru	pt Clear							
								The	OEIC Va	lues are	defined	as follov	WS:					
								Val	ue Desc	ription								
								0		ffect on t	he interi	upt.						
										rs interru	pt.							
	9		BEI	С	W	1C	0	Break Error Interrupt Clear										
								The BEIC values are defined as follows:										
								Val	ue Desc	ription								
								0	No e	ffect on t	he interi	upt.						
								1	Clea	rs interru	pt.							
	8		PEI	C	W	1C	0	Pari	ty Error I	nterrupt	Clear							
								The	PEIC Va	lues are	defined	as follow	WS:					
								Val	ue Desc	ription								
								0	No e	ffect on t	he interi	upt.						
								1	Clea	rs interru	pt.							
	7		FEI	C	W	1C	0	Frar	ning Erro	or Interru	ipt Clear							
								The	FEIC Va	alues are	defined	as follow	WS:					
								Val	ue Desc	ription								
								0	No e	ffect on t	he interi	upt.						
								1	Clea	rs interru	pt.							

Bit/Field	Name	Туре	Reset	Description
6	RTIC	W1C	0	Receive Time-Out Interrupt Clear The RTIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
5	TXIC	W1C	0	Transmit Interrupt Clear The TXIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
4	RXIC	W1C	0	Receive Interrupt Clear The RXIC values are defined as follows: Value Description 0 No effect on the interrupt. 1 Clears interrupt.
3:0	reserved	RO	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

Register 14: UART Peripheral Identification 4 (UARTPeriphID4), offset 0xFD0

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 4 (UARTPeriphID4)

UART0 base: 0x4000.C000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				1 1	rese	erved	1		1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved					1		PI	D4	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name				Туј	be	Reset	Des	cription							
	31:8 reserved				R	С	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	7:0		PID	4	R	С	0x0000	UAF	RT Peripl	heral ID	Register	[7:0]				
								Can	be used	d by softw	vare to i	dentify th	ne prese	nce of th	is periph	neral.

Register 15: UART Peripheral Identification 5 (UARTPeriphID5), offset 0xFD4

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 5 (UARTPeriphID5)

UART0 base: 0x4000.C000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	I	1	, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved	r	r	1		I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved I		1 1			I	I	I Pli	D5	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name Type Reset						Des	cription								
	31:8 reserved RO 0x						0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		PI	D5	R	С	0x0000	UAF	RT Peripl	heral ID	Registe	r[15:8]				
								Can	be used	d by soft	ware to i	dentify th	ie prese	nce of th	nis peripl	neral.

Register 16: UART Peripheral Identification 6 (UARTPeriphID6), offset 0xFD8

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 6 (UARTPeriphID6)

UART0 base: 0x4000.C000 Offset 0xFD8 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
		1	1 1				1 1	rese	rved					1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
		1	1 1	rese	rved		1 1					I Pli	D6	1	I			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
E	Bit/Field	Field Name Type				be	Reset	Des	Description									
	31:8 reserved				R	C	0x00	com	patibility	with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•			
	7:0		PID	6	R	С	0x0000	UAF	RT Peripl	neral ID	Register	[23:16]						
									be used	l by softw	vare to i	dentify th	e prese	nce of th	nis periph	neral.		

Register 17: UART Peripheral Identification 7 (UARTPeriphID7), offset 0xFDC

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 7 (UARTPeriphID7)

UART0 base: 0x4000.C000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	· · · · ·		<u>т г</u>	rese	rved	1	r				1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved		<u> </u>				ı	PI	77		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field Name Type Reset						Reset	Des	cription							
	31:8 reserved RO 0							Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0 PID7 RO 0x000							UAF	RT Periph	neral ID	Register	[31:24]				
								Can	be used	by soft	ware to i	dentify th	e presei	nce of t	nis peripl	neral.

Register 18: UART Peripheral Identification 0 (UARTPeriphID0), offset 0xFE0

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 0 (UARTPeriphID0)

UART0 base: 0x4000.C000 Offset 0xFE0 Type RO, reset 0x0000.0011

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved		I	1		I	I	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		<u>т</u> т					I Pli	D0		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	1
E	Bit/Field		Nar	ne	Туј	pe	Reset	Des	cription							
	31:8 reserved				R	0	0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.							
	7:0		PIE	00	R	0	0x11	UAF	RT Peripl	neral ID	Register	[7:0]				
								Can	be used	l by softw	vare to i	dentify th	ie presei	nce of th	nis peripł	neral.

Register 19: UART Peripheral Identification 1 (UARTPeriphID1), offset 0xFE4

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 1 (UARTPeriphID1)

UART0 base: 0x4000.C000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			I	1	, , , , , , , , , , , , , , , , , , ,		1 1	rese	rved	I	I	1		1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
			1	rese	rved I		1 1			I	1	I Pli	D1	1	1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
E	Bit/Field		Na	me	Ту	pe	Reset	Des	cription									
	31:8 reserved RO 0						0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.										
	7:0 PID1 RO 0x00								UART Peripheral ID Register[15:8]									
								Can	be used	by soft	ware to i	dentify th	e prese	nce of th	nis peripl	neral.		

Register 20: UART Peripheral Identification 2 (UARTPeriphID2), offset 0xFE8

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 2 (UARTPeriphID2)

UART0 base: 0x4000.C000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1	1	, , , , , , , , , , , , , , , , , , ,		1 1	rese	erved	I	l .	1			1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1			[r	I Pli	D2		T	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nar	ne	Туј	be	Reset	Des	cription							
	31:8		reser	ved	RO 0x00			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		PID2		R	С	0x18	UAF	RT Peripl	neral ID	Register	[23:16]				
								Can	be used	by soft	ware to i	dentify th	e presei	nce of th	nis peripl	neral.

Register 21: UART Peripheral Identification 3 (UARTPeriphID3), offset 0xFEC

The UARTPeriphIDn registers are hard-coded and the fields within the registers determine the reset values.

UART Peripheral Identification 3 (UARTPeriphID3)

UART0 base: 0x4000.C000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	· · · · ·	r r		r r	rese	rved		r			1	r	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved						I	PI	D3	1	I	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
E	Bit/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:8 reserved				RO 0x			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		PID3		R	C	0x01	UAF	RT Peripl	neral ID	Register	[31:24]				
								Can	be used	by soft	ware to i	dentify th	ie prese	nce of th	is peripł	neral.

Register 22: UART PrimeCell Identification 0 (UARTPCellID0), offset 0xFF0

The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 0 (UARTPCelIID0)

UART0 base: 0x4000.C000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1	· · · · ·		1 1	rese	rved	1		, , ,			1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		I	1	rese	rved		1 1			1	ſ	CII	D0	ſ	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:8		reser	ved	R	0	0x00	com	patibilit	ould not y with futu across a r	ure prod	ucts, the	value of	a reser	•	
	7:0		CID	00	R	0	0x0D	UAF	RT Prim	eCell ID F	Register	[7:0]				
								Prov	vides so	ftware a	standar	d cross-p	eriphera	l identifi	ication sy	vstem.

Register 23: UART PrimeCell Identification 1 (UARTPCellID1), offset 0xFF4

The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 1 (UARTPCellID1)

UART0 base: 0x4000.C000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			I	1	1		т т	rese	rved	I	1	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved		1 1					CII	D1		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nai	me	Ту	pe	Reset	Des	cription							
	31:8		rese	rved	RO 0x0			Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.								
	7:0		CII	D1	R	0	0xF0	UAF	RT Prime	Cell ID F	Register	[15:8]				
								Prov	vides sof	tware a	standaro	d cross-p	eriphera	l identifi	cation sy	vstem.

Register 24: UART PrimeCell Identification 2 (UARTPCellID2), offset 0xFF8

The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 2 (UARTPCelIID2)

UART0 base: 0x4000.C000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1		1		1 1	rese	erved	ſ		I		I	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei									0			0			0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved	I						CI	D2	1	1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:8 reserve			erved RO			0x00	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should b preserved across a read-modify-write operation.							
	7:0		CID	2	R	0	0x05	UAF	RT Prime	Cell ID F	Register[23:16]				
								Prov	vides sof	tware a	standard	l cross-p	eriphera	I identifio	cation sy	stem.

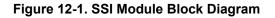
Register 25: UART PrimeCell Identification 3 (UARTPCellID3), offset 0xFFC

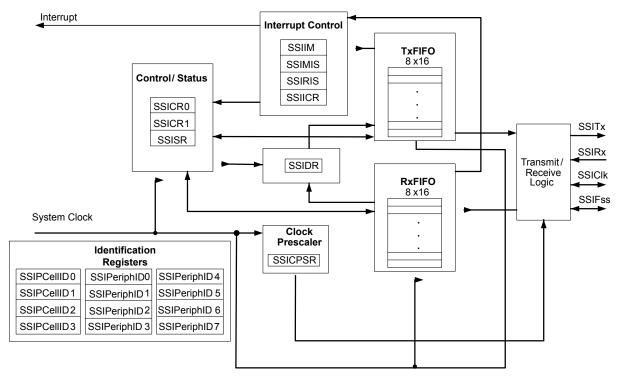
The UARTPCellIDn registers are hard-coded and the fields within the registers determine the reset values.

UART PrimeCell Identification 3 (UARTPCelIID3)

UART0 base: 0x4000.C000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1				1 1	rese	rved	1				1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1 1	rese	rved		1 1			I		CII	D3	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserved		RO		0x00	com	Software should not rely on the value of a reserved bit. To prov compatibility with future products, the value of a reserved bit sh preserved across a read-modify-write operation.							
	7:0		CID	3	R	С	0xB1			Cell ID F						
								Prov	ides sof	tware a	standard	l cross-p	eriphera	l identifi	cation sy	stem.


12 Synchronous Serial Interface (SSI)


The Stellaris[®] Synchronous Serial Interface (SSI) is a master or slave interface for synchronous serial communication with peripheral devices that have either Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces.

The Stellaris[®] SSI module has the following features:

- Master or slave operation
- Programmable clock bit rate and prescale
- Separate transmit and receive FIFOs, 16 bits wide, 8 locations deep
- Programmable interface operation for Freescale SPI, MICROWIRE, or Texas Instruments synchronous serial interfaces
- Programmable data frame size from 4 to 16 bits
- Internal loopback test mode for diagnostic/debug testing

12.1 Block Diagram

12.2 Functional Description

The SSI performs serial-to-parallel conversion on data received from a peripheral device. The CPU accesses data, control, and status information. The transmit and receive paths are buffered with

internal FIFO memories allowing up to eight 16-bit values to be stored independently in both transmit and receive modes.

12.2.1 Bit Rate Generation

The SSI includes a programmable bit rate clock divider and prescaler to generate the serial output clock. Bit rates are supported to 2 MHz and higher, although maximum bit rate is determined by peripheral devices.

The serial bit rate is derived by dividing down the input clock (FSysClk). The clock is first divided by an even prescale value CPSDVSR from 2 to 254, which is programmed in the **SSI Clock Prescale** (**SSICPSR**) register (see page 302). The clock is further divided by a value from 1 to 256, which is 1 + SCR, where SCR is the value programmed in the **SSI Control0 (SSICR0)** register (see page 295).

The frequency of the output clock SSIClk is defined by:

```
SSIClk = FSysClk / (CPSDVSR * (1 + SCR))
```

Note: For master mode, the system clock must be at least two times faster than the SSIClk. For slave mode, the system clock must be at least 12 times faster than the SSIClk.

See "Synchronous Serial Interface (SSI)" on page 411 to view SSI timing parameters.

12.2.2 FIFO Operation

12.2.2.1 Transmit FIFO

The common transmit FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. The CPU writes data to the FIFO by writing the **SSI Data (SSIDR)** register (see page 299), and data is stored in the FIFO until it is read out by the transmission logic.

When configured as a master or a slave, parallel data is written into the transmit FIFO prior to serial conversion and transmission to the attached slave or master, respectively, through the SSITx pin.

In slave mode, the SSI transmits data each time the master initiates a transaction. If the transmit FIFO is empty and the master initiates, the slave transmits the 8th most recent value in the transmit FIFO. If less than 8 values have been written to the transmit FIFO since the SSI module clock was enabled using the SSI bit in the **RGCG1** register, then 0 is transmitted. Care should be taken to ensure that valid data is in the FIFO as needed. The SSI can be configured to generate an interrupt or a μ DMA request when the FIFO is empty.

12.2.2.2 Receive FIFO

The common receive FIFO is a 16-bit wide, 8-locations deep, first-in, first-out memory buffer. Received data from the serial interface is stored in the buffer until read out by the CPU, which accesses the read FIFO by reading the **SSIDR** register.

When configured as a master or slave, serial data received through the SSIRx pin is registered prior to parallel loading into the attached slave or master receive FIFO, respectively.

12.2.3 Interrupts

The SSI can generate interrupts when the following conditions are observed:

- Transmit FIFO service
- Receive FIFO service

- Receive FIFO time-out
- Receive FIFO overrun

All of the interrupt events are ORed together before being sent to the interrupt controller, so the SSI can only generate a single interrupt request to the controller at any given time. You can mask each of the four individual maskable interrupts by setting the appropriate bits in the **SSI Interrupt Mask** (**SSIIM**) register (see page 303). Setting the appropriate mask bit to 1 enables the interrupt.

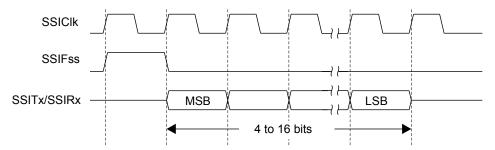
Provision of the individual outputs, as well as a combined interrupt output, allows use of either a global interrupt service routine, or modular device drivers to handle interrupts. The transmit and receive dynamic dataflow interrupts have been separated from the status interrupts so that data can be read or written in response to the FIFO trigger levels. The status of the individual interrupt sources can be read from the **SSI Raw Interrupt Status (SSIRIS)** and **SSI Masked Interrupt Status (SSIMIS)** registers (see page 305 and page 306, respectively).

12.2.4 Frame Formats

Each data frame is between 4 and 16 bits long, depending on the size of data programmed, and is transmitted starting with the MSB. There are three basic frame types that can be selected:

- Texas Instruments synchronous serial
- Freescale SPI
- MICROWIRE

For all three formats, the serial clock (SSIClk) is held inactive while the SSI is idle, and SSIClk transitions at the programmed frequency only during active transmission or reception of data. The idle state of SSIClk is utilized to provide a receive timeout indication that occurs when the receive FIFO still contains data after a timeout period.

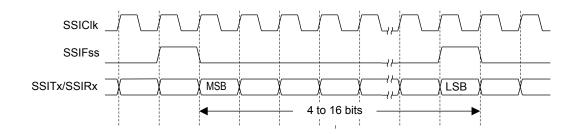

For Freescale SPI and MICROWIRE frame formats, the serial frame (SSIFSS) pin is active Low, and is asserted (pulled down) during the entire transmission of the frame.

For Texas Instruments synchronous serial frame format, the SSIFSS pin is pulsed for one serial clock period starting at its rising edge, prior to the transmission of each frame. For this frame format, both the SSI and the off-chip slave device drive their output data on the rising edge of SSIClk, and latch data from the other device on the falling edge.

Unlike the full-duplex transmission of the other two frame formats, the MICROWIRE format uses a special master-slave messaging technique, which operates at half-duplex. In this mode, when a frame begins, an 8-bit control message is transmitted to the off-chip slave. During this transmit, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the requested data. The returned data can be 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

12.2.4.1 Texas Instruments Synchronous Serial Frame Format

Figure 12-2 on page 286 shows the Texas Instruments synchronous serial frame format for a single transmitted frame.


Figure 12-2. TI Synchronous Serial Frame Format (Single Transfer)

In this mode, SSIClk and SSIFSS are forced Low, and the transmit data line SSITx is tristated whenever the SSI is idle. Once the bottom entry of the transmit FIFO contains data, SSIFSS is pulsed High for one SSIClk period. The value to be transmitted is also transferred from the transmit FIFO to the serial shift register of the transmit logic. On the next rising edge of SSIClk, the MSB of the 4 to 16-bit data frame is shifted out on the SSITx pin. Likewise, the MSB of the received data is shifted onto the SSIRx pin by the off-chip serial slave device.

Both the SSI and the off-chip serial slave device then clock each data bit into their serial shifter on the falling edge of each SSIC1k. The received data is transferred from the serial shifter to the receive FIFO on the first rising edge of SSIC1k after the LSB has been latched.

Figure 12-3 on page 286 shows the Texas Instruments synchronous serial frame format when back-to-back frames are transmitted.

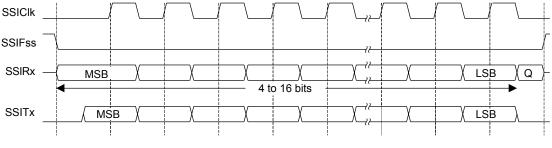
Figure 12-3. TI Synchronous Serial Frame Format (Continuous Transfer)

12.2.4.2 Freescale SPI Frame Format

The Freescale SPI interface is a four-wire interface where the SSIFSS signal behaves as a slave select. The main feature of the Freescale SPI format is that the inactive state and phase of the SSIClk signal are programmable through the SPO and SPH bits within the **SSISCR0** control register.

SPO Clock Polarity Bit

When the SPO clock polarity control bit is Low, it produces a steady state Low value on the SSIClk pin. If the SPO bit is High, a steady state High value is placed on the SSIClk pin when data is not being transferred.


SPH Phase Control Bit

The SPH phase control bit selects the clock edge that captures data and allows it to change state. It has the most impact on the first bit transmitted by either allowing or not allowing a clock transition before the first data capture edge. When the SPH phase control bit is Low, data is captured on the first clock edge transition. If the SPH bit is High, data is captured on the second clock edge transition.

12.2.4.3 Freescale SPI Frame Format with SPO=0 and SPH=0

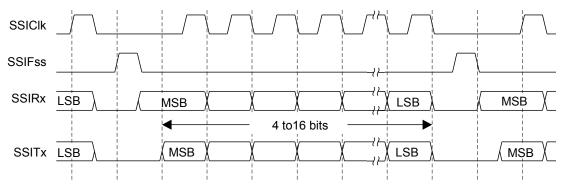

Single and continuous transmission signal sequences for Freescale SPI format with SPO=0 and SPH=0 are shown in Figure 12-4 on page 287 and Figure 12-5 on page 287.

Figure 12-4. Freescale SPI Format (Single Transfer) with SPO=0 and SPH=0

Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. This causes slave data to be enabled onto the SSIRx input line of the master. The master SSITx output pad is enabled.

One half SSIClk period later, valid master data is transferred to the SSITx pin. Now that both the master and slave data have been set, the SSIClk master clock pin goes High after one further half SSIClk period.

The data is now captured on the rising and propagated on the falling edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word have been transferred, the SSIFss line is returned to its idle High state one SSIClk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFss signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFss pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFss pin is returned to its idle state one SSICIk period after the last bit has been captured.

12.2.4.4 Freescale SPI Frame Format with SPO=0 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=0 and SPH=1 is shown in Figure 12-6 on page 288, which covers both single and continuous transfers.

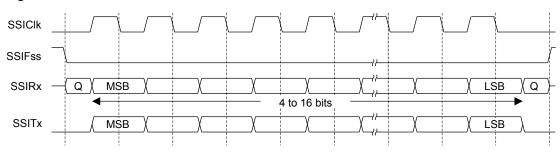


Figure 12-6. Freescale SPI Frame Format with SPO=0 and SPH=1

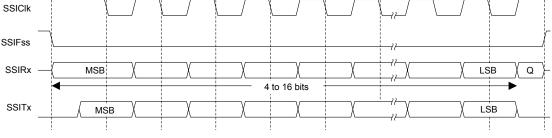
Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output is enabled. After a further one half SSIClk period, both master and slave valid data is enabled onto their respective transmission lines. At the same time, the SSIClk is enabled with a rising edge transition.

Data is then captured on the falling edges and propagated on the rising edges of the SSIClk signal.


In the case of a single word transfer, after all bits have been transferred, the SSIFSS line is returned to its idle High state one SSIClk period after the last bit has been captured.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

12.2.4.5 Freescale SPI Frame Format with SPO=1 and SPH=0

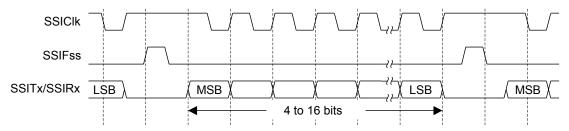

Single and continuous transmission signal sequences for Freescale SPI format with SPO=1 and SPH=0 are shown in Figure 12-7 on page 289 and Figure 12-8 on page 289.

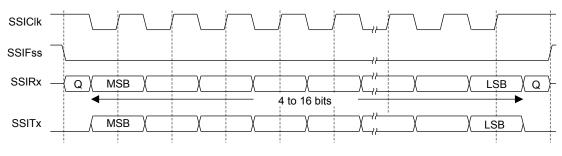
Figure 12-7. Freescale SPI Frame Format (Single Transfer) with SPO=1 and SPH=0 SSICIk

Note: Q is undefined.

In this configuration, during idle periods:

- SSIC1k is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSICIk pad
- When the SSI is configured as a slave, it disables the SSIClk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low, which causes slave data to be immediately transferred onto the SSIRX line of the master. The master SSITX output pad is enabled.


One half period later, valid master data is transferred to the SSITx line. Now that both the master and slave data have been set, the SSICIk master clock pin becomes Low after one further half SSICIk period. This means that data is captured on the falling edges and propagated on the rising edges of the SSIClk signal.

In the case of a single word transmission, after all bits of the data word are transferred, the SSIFSS line is returned to its idle High state one SSICIk period after the last bit has been captured.

However, in the case of continuous back-to-back transmissions, the SSIFSS signal must be pulsed High between each data word transfer. This is because the slave select pin freezes the data in its serial peripheral register and does not allow it to be altered if the SPH bit is logic zero. Therefore, the master device must raise the SSIFSS pin of the slave device between each data transfer to enable the serial peripheral data write. On completion of the continuous transfer, the SSIFSS pin is returned to its idle state one SSICIk period after the last bit has been captured.

12.2.4.6 Freescale SPI Frame Format with SPO=1 and SPH=1

The transfer signal sequence for Freescale SPI format with SPO=1 and SPH=1 is shown in Figure 12-9 on page 290, which covers both single and continuous transfers.

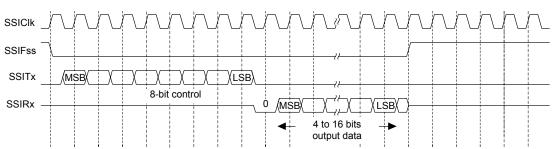
Figure 12-9. Freescale SPI Frame Format with SPO=1 and SPH=1

Note: Q is undefined.

In this configuration, during idle periods:

- SSIClk is forced High
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low
- When the SSI is configured as a master, it enables the SSIClk pad
- When the SSI is configured as a slave, it disables the SSICIk pad

If the SSI is enabled and there is valid data within the transmit FIFO, the start of transmission is signified by the SSIFss master signal being driven Low. The master SSITx output pad is enabled. After a further one-half SSIClk period, both master and slave data are enabled onto their respective transmission lines. At the same time, SSIClk is enabled with a falling edge transition. Data is then captured on the rising edges and propagated on the falling edges of the SSIClk signal.


After all bits have been transferred, in the case of a single word transmission, the SSIFSS line is returned to its idle high state one SSICIk period after the last bit has been captured.

For continuous back-to-back transmissions, the SSIFSS pin remains in its active Low state, until the final bit of the last word has been captured, and then returns to its idle state as described above.

For continuous back-to-back transfers, the SSIFSS pin is held Low between successive data words and termination is the same as that of the single word transfer.

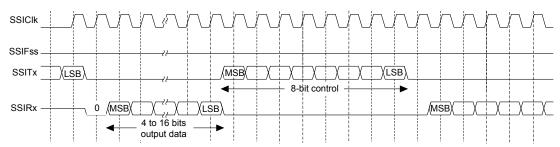
12.2.4.7 MICROWIRE Frame Format

Figure 12-10 on page 291 shows the MICROWIRE frame format, again for a single frame. Figure 12-11 on page 292 shows the same format when back-to-back frames are transmitted.

Figure 12-10. MICROWIRE Frame Format (Single Frame)

MICROWIRE format is very similar to SPI format, except that transmission is half-duplex instead of full-duplex, using a master-slave message passing technique. Each serial transmission begins with an 8-bit control word that is transmitted from the SSI to the off-chip slave device. During this transmission, no incoming data is received by the SSI. After the message has been sent, the off-chip slave decodes it and, after waiting one serial clock after the last bit of the 8-bit control message has been sent, responds with the required data. The returned data is 4 to 16 bits in length, making the total frame length anywhere from 13 to 25 bits.

In this configuration, during idle periods:


- SSIClk is forced Low
- SSIFss is forced High
- The transmit data line SSITx is arbitrarily forced Low

A transmission is triggered by writing a control byte to the transmit FIFO. The falling edge of SSIFSS causes the value contained in the bottom entry of the transmit FIFO to be transferred to the serial shift register of the transmit logic, and the MSB of the 8-bit control frame to be shifted out onto the SSITx pin. SSIFSS remains Low for the duration of the frame transmission. The SSIRx pin remains tristated during this transmission.

The off-chip serial slave device latches each control bit into its serial shifter on the rising edge of each SSIClk. After the last bit is latched by the slave device, the control byte is decoded during a one clock wait-state, and the slave responds by transmitting data back to the SSI. Each bit is driven onto the SSIRx line on the falling edge of SSIClk. The SSI in turn latches each bit on the rising edge of SSIClk. At the end of the frame, for single transfers, the SSIFss signal is pulled High one clock period after the last bit has been latched in the receive serial shifter, which causes the data to be transferred to the receive FIFO.

Note: The off-chip slave device can tristate the receive line either on the falling edge of SSIClk after the LSB has been latched by the receive shifter, or when the SSIFss pin goes High.

For continuous transfers, data transmission begins and ends in the same manner as a single transfer. However, the SSIFSS line is continuously asserted (held Low) and transmission of data occurs back-to-back. The control byte of the next frame follows directly after the LSB of the received data from the current frame. Each of the received values is transferred from the receive shifter on the falling edge of SSIC1k, after the LSB of the frame has been latched into the SSI.

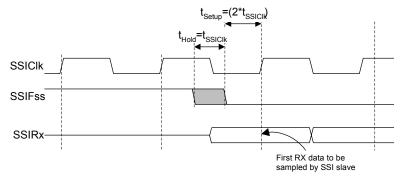


Figure 12-11. MICROWIRE Frame Format (Continuous Transfer)

In the MICROWIRE mode, the SSI slave samples the first bit of receive data on the rising edge of SSIClk after SSIFss has gone Low. Masters that drive a free-running SSIClk must ensure that the SSIFss signal has sufficient setup and hold margins with respect to the rising edge of SSIClk.

Figure 12-12 on page 292 illustrates these setup and hold time requirements. With respect to the SSIClk rising edge on which the first bit of receive data is to be sampled by the SSI slave, SSIFss must have a setup of at least two times the period of SSIClk on which the SSI operates. With respect to the SSIClk rising edge previous to this edge, SSIFss must have a hold of at least one SSIClk period.

Figure 12-12. MICROWIRE Frame Format, SSIFss Input Setup and Hold Requirements

12.3 Initialization and Configuration

To use the SSI, its peripheral clock must be enabled by setting the SSI bit in the RCGC1 register.

For each of the frame formats, the SSI is configured using the following steps:

- 1. Ensure that the SSE bit in the **SSICR1** register is disabled before making any configuration changes.
- 2. Select whether the SSI is a master or slave:
 - **a.** For master operations, set the **SSICR1** register to 0x0000.0000.
 - **b.** For slave mode (output enabled), set the **SSICR1** register to 0x0000.0004.
 - c. For slave mode (output disabled), set the SSICR1 register to 0x0000.000C.
- 3. Configure the clock prescale divisor by writing the SSICPSR register.
- 4. Write the SSICR0 register with the following configuration:

- Serial clock rate (SCR)
- Desired clock phase/polarity, if using Freescale SPI mode (SPH and SPO)
- The protocol mode: Freescale SPI, TI SSF, MICROWIRE (FRF)
- The data size (DSS)
- 5. Enable the SSI by setting the SSE bit in the SSICR1 register.

As an example, assume the SSI must be configured to operate with the following parameters:

- Master operation
- Freescale SPI mode (SPO=1, SPH=1)
- 1 Mbps bit rate
- 8 data bits

Assuming the system clock is 20 MHz, the bit rate calculation would be:

```
FSSIClk = FSysClk / (CPSDVSR * (1 + SCR))
1x106 = 20x106 / (CPSDVSR * (1 + SCR))
```

In this case, if CPSDVSR=2, SCR must be 9.

The configuration sequence would be as follows:

- 1. Ensure that the SSE bit in the SSICR1 register is disabled.
- 2. Write the SSICR1 register with a value of 0x0000.0000.
- 3. Write the **SSICPSR** register with a value of 0x0000.0002.
- 4. Write the **SSICR0** register with a value of 0x0000.09C7.
- 5. The SSI is then enabled by setting the SSE bit in the SSICR1 register to 1.

12.4 Register Map

Table 12-1 on page 293 lists the SSI registers. The offset listed is a hexadecimal increment to the register's address, relative to that SSI module's base address:

SSI0: 0x4000.8000

Note: The SSI must be disabled (see the SSE bit in the **SSICR1** register) before any of the control registers are reprogrammed.

Offset	Name	Туре	Reset	Description	See page
0x000	SSICR0	R/W	0x0000.0000	SSI Control 0	295
0x004	SSICR1	R/W	0x0000.0000	SSI Control 1	297

Offset	Name	Туре	Reset	Description	See page
0x008	SSIDR	R/W	0x0000.0000	SSI Data	299
0x00C	SSISR	RO	0x0000.0003	SSI Status	300
0x010	SSICPSR	R/W	0x0000.0000	SSI Clock Prescale	302
0x014	SSIIM	R/W	0x0000.0000	SSI Interrupt Mask	303
0x018	SSIRIS	RO	0x0000.0008	SSI Raw Interrupt Status	305
0x01C	SSIMIS	RO	0x0000.0000	SSI Masked Interrupt Status	306
0x020	SSIICR	W1C	0x0000.0000	SSI Interrupt Clear	307
0xFD0	SSIPeriphID4	RO	0x0000.0000	SSI Peripheral Identification 4	308
0xFD4	SSIPeriphID5	RO	0x0000.0000	SSI Peripheral Identification 5	309
0xFD8	SSIPeriphID6	RO	0x0000.0000	SSI Peripheral Identification 6	310
0xFDC	SSIPeriphID7	RO	0x0000.0000	SSI Peripheral Identification 7	311
0xFE0	SSIPeriphID0	RO	0x0000.0022	SSI Peripheral Identification 0	312
0xFE4	SSIPeriphID1	RO	0x0000.0000	SSI Peripheral Identification 1	313
0xFE8	SSIPeriphID2	RO	0x0000.0018	SSI Peripheral Identification 2	314
0xFEC	SSIPeriphID3	RO	0x0000.0001	SSI Peripheral Identification 3	315
0xFF0	SSIPCellID0	RO	0x0000.000D	SSI PrimeCell Identification 0	316
0xFF4	SSIPCellID1	RO	0x0000.00F0	SSI PrimeCell Identification 1	317
0xFF8	SSIPCellID2	RO	0x0000.0005	SSI PrimeCell Identification 2	318
0xFFC	SSIPCellID3	RO	0x0000.00B1	SSI PrimeCell Identification 3	319

Table 12-1. SSI Register Map (continued)

12.5 Register Descriptions

The remainder of this section lists and describes the SSI registers, in numerical order by address offset.

Register 1: SSI Control 0 (SSICR0), offset 0x000

SSICR0 is control register 0 and contains bit fields that control various functions within the SSI module. Functionality such as protocol mode, clock rate, and data size are configured in this register.

SSI	Contro	I 0 (SSI	ICR0)													
SSI0 Offse	base: 0x et 0x000 R/W, res	4000.800	0													
,	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1		1		1 1	rese	erved			1	l .	I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		8		S	CR				SPH	SPO	F	RF		D	SS	'
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:16	reserved RO 0x00 Software should not rely on the value of a reserved bit. To pr compatibility with future products, the value of a reserved bit preserved across a read-modify-write operation.												•		
	15:8	15:8 SCR R/W 0x0000 SSI Serial Clock Rate														
									value so SSI. The		-	nerate the	e transm	it and re	ceive bit	rate of
								BR=	FSSICI	k/(CPSI	DVSR *	(1 + 5	SCR))			
									ere CPSD CPSR re						med in t	he
	7		SPH	H	R/	W	0	SSI	Serial C	lock Pha	se					
								This	s bit is on	ly applic	able to t	he Frees	scale SP	I Format	t.	
								it to eith	SPH con change er allowin ture edge	state. It h ng or not	has the i	nost imp	act on th	ne first bi	it transm	itted by
					When the SPH bit is 0, data is captured on the first clock edge transition. If SPH is 1, data is captured on the second clock edge transition.											
	6		SPO	C	R/	W	0	SSI	Serial C	lock Pola	arity					
								This	s bit is on	ly applic	able to t	he Frees	cale SP	I Format	t.	
								SSI	en the SE Clk pin. Clk pin	If SPO is	s 1, a ste	eady stat	e High v	alue is p		

Bit/Field	Name	Туре	Reset	Description
5:4	FRF	R/W	0x0	SSI Frame Format Select
				The FRF values are defined as follows:
				Value Frame Format
				0x0 Freescale SPI Frame Format
				0x1 Texas Instruments Synchronous Serial Frame Format
				0x2 MICROWIRE Frame Format
				0x3 Reserved
3:0	DSS	R/W	0x00	SSI Data Size Select
				The DSS values are defined as follows:
				Value Data Size
				0x0-0x2 Reserved
				0x3 4-bit data
				0x4 5-bit data
				0x5 6-bit data
				0x6 7-bit data
				0x7 8-bit data
				0x8 9-bit data
				0x9 10-bit data
				0xA 11-bit data
				0xB 12-bit data
				0xC 13-bit data
				0xD 14-bit data
				0xE 15-bit data
				0xF 16-bit data

Register 2: SSI Control 1 (SSICR1), offset 0x004

SSICR1 is control register 1 and contains bit fields that control various functions within the SSI module. Master and slave mode functionality is controlled by this register.

t 0x004 R/W, rese		0 0.0000													
31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
•		•				• •	rese	rved						•	•
RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO 0
15	14	13	12	11		1 I	8	,	6	5	4	r		r	0 LBM
RO	RO	RO	RO	RO			RO	RO	RO	RO	RO				R/W
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
it/Field		Nam	ne	Ту	ре	Reset	Des	cription							
31:4		reser	ved	R	0	0x00	com	patibility	with futu	ure produ	ucts, the	value of	a reserv	•	
3		SO	D	R/	W	0	SSI	Slave M	ode Out	put Disa	ble				
This bit is relevant of systems, it is possible slaves in the system the serial output line could be tied togeth configured so that the The SOD values are Value Description								s possible system of put line. I togethe o that the ues are of ription	e for the while ens In such s r. To ope e SSI sla defined a	SSI mas suring th systems, erate in s ave does as follow	ster to bro at only o the TXD such a sy not driv s:	oadcast ne slave lines froi rstem, th e the SS	a messa drives d m multipl e SOD bi ITx pin.	ige to all ata onto e slaves t can be	
							1	SSI r	nust not	drive the	SSITx	output in	n Slave i	node.	
2		MS R/W 0 SSI Master/Slave Select This bit selects Master or Slave mode and can be modified only v SSI is disabled (SSE=0). The MS values are defined as follows: Value Description 0 Device configured as a master. 1 Device configured as a slave.										ly when			
	RO 0 15 it/Field 31:4	RO RO 0 0 15 14 RO RO 0 0 it/Field 31:4 3	RO RO RO 0 15 14 13 RO RO RO 0 it/Field Nan 31:4 reser	RO RO RO RO O 15 14 13 12 RO RO RO RO O 0 0 0 0 0 it/Field Name 31:4 reserved 3 SOD SOD	RO RO<	RO RO<	RO RO<	RO RO<	RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO SI Is alacis and cos andiffity with future protodicts</td><td>R0 R0 <td< td=""></td<></td></td<></td></td<></td></td<></td></td<></td></td<>	RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO SI Is alacis and cos andiffity with future protodicts</td><td>R0 R0 <td< td=""></td<></td></td<></td></td<></td></td<></td></td<>	RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO SI Is alacis and cos andiffity with future protodicts</td><td>R0 R0 <td< td=""></td<></td></td<></td></td<></td></td<>	RO RO <td< td=""><td>RO RO <td< td=""><td>RO RO SI Is alacis and cos andiffity with future protodicts</td><td>R0 R0 <td< td=""></td<></td></td<></td></td<>	RO RO <td< td=""><td>RO RO SI Is alacis and cos andiffity with future protodicts</td><td>R0 R0 <td< td=""></td<></td></td<>	RO SI Is alacis and cos andiffity with future protodicts	R0 R0 <td< td=""></td<>

Bit/Field	Name	Туре	Reset	Description
1	SSE	R/W	0	SSI Synchronous Serial Port Enable
				Setting this bit enables SSI operation.
				The SSE values are defined as follows:
				Value Description
				0 SSI operation disabled.
				1 SSI operation enabled.
				Note: This bit must be set to 0 before any control registers are reprogrammed.
0	LBM	R/W	0	SSI Loopback Mode
				Setting this bit enables Loopback Test mode.
				The LBM values are defined as follows:
				Value Description
				0 Normal serial port operation enabled.

1 Output of the transmit serial shift register is connected internally

to the input of the receive serial shift register.

Register 3: SSI Data (SSIDR), offset 0x008

Important: Use caution when reading this register. Performing a read may change bit status.

SSIDR is the data register and is 16-bits wide. When **SSIDR** is read, the entry in the receive FIFO (pointed to by the current FIFO read pointer) is accessed. As data values are removed by the SSI receive logic from the incoming data frame, they are placed into the entry in the receive FIFO (pointed to by the current FIFO write pointer).

When **SSIDR** is written to, the entry in the transmit FIFO (pointed to by the write pointer) is written to. Data values are removed from the transmit FIFO one value at a time by the transmit logic. It is loaded into the transmit serial shifter, then serially shifted out onto the SSITx pin at the programmed bit rate.

When a data size of less than 16 bits is selected, the user must right-justify data written to the transmit FIFO. The transmit logic ignores the unused bits. Received data less than 16 bits is automatically right-justified in the receive buffer.

When the SSI is programmed for MICROWIRE frame format, the default size for transmit data is eight bits (the most significant byte is ignored). The receive data size is controlled by the programmer. The transmit FIFO and the receive FIFO are not cleared even when the SSE bit in the **SSICR1** register is set to zero. This allows the software to fill the transmit FIFO before enabling the SSI.

SSI Data (SSIDR) SSI0 base: 0x4000.8000 Offset 0x008

Type R/W, reset 0x0000.0000

	,																
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	
		ſ	I	I		1	1 1	rese	erved	1	1	I	1	1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
			1	1	1	1	1 1	DA	ATA	1	1	1	1	1	1	r	
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	
E	Bit/Field		Nan	ne	Ту	pe	Reset	Des	cription								
	Bit/Field Na 31:16 res			ved	R	0	0x0000	com	patibility	with fut	ure prod	ucts, the		a reserv	t. To prov ved bit sł		
	15:0 DATA R/W					/W	0x0000	SSI	Receive	/Transm	it Data						
									ad operations and operations and operations and a second sec		ds the re	eceive F	IFO. A w	rite oper	ation wri	tes the	

Software must right-justify data when the SSI is programmed for a data size that is less than 16 bits. Unused bits at the top are ignored by the transmit logic. The receive logic automatically right-justifies the data.

Register 4: SSI Status (SSISR), offset 0x00C

SSISR is a status register that contains bits that indicate the FIFO fill status and the SSI busy status.

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16			
Γ	51		<u> </u>			20	1 1	resei			1	1	10	10					
/pe	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO			
set	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
Г	15	14	13	12	11	10 reserved	9	8	7	6	5	4 BSY	3 RFF	2 RNE	1 TNF	0 TFE			
pe L	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R0			
et	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1			
В	it/Field		Nam	ne	Ту	pe	Reset	Desc	cription										
	31:5		reserv	ved	R	0	0x00	com	patibility	with fut	ure prod		value of	erved bit f a reserv on.					
	4		BS	Y	R	0	0	SSI	Busy Bit										
								The	BSY valı	ues are (defined	as follow	s:						
								Valu	ie Desc	ription									
								0	SSI i	s idle.									
								1		s curren mit FIFC			nd/or red	ceiving a	frame, o	or the			
	3		RFI	F	R	0	0	SSI	Receive	FIFO F	ull								
								The	RFF valı	ues are (defined	as follow	s:						
								Value Description											
								0		ive FIFC		ull.							
								1	Rece	ive FIFC) is full.								
	2		RNI	E	R	0	0	SSI	Receive	FIFO N	ot Empt	/							
								The	RNE valı	ues are (defined	as follow	s:						
								Valu	ie Desc	ription									
								0	Rece	ive FIFC) is emp	ty.							
								1	Rece	ive FIFC) is not e	empty.							
	1		TN	F	R	0	1	SSI	Transmi	t FIFO N	lot Full								
								The	TNF valu	ues are (defined	as follow	s:						
								Valu	ie Desc	ription									
								0		smit FIF	O is full.								
								1	Trans										

Bit/Field	Name	Туре	Reset	Description
0	TFE	R0	1	SSI Transmit FIFO Empty
				The $\ensuremath{\mathtt{TFE}}$ values are defined as follows:
				Value Description
				0 Transmit FIFO is not empty.

1 Transmit FIFO is empty.

SSI Clock Prescale (SSICPSR)

Register 5: SSI Clock Prescale (SSICPSR), offset 0x010

SSICPSR is the clock prescale register and specifies the division factor by which the system clock must be internally divided before further use.

The value programmed into this register must be an even number between 2 and 254. The least-significant bit of the programmed number is hard-coded to zero. If an odd number is written to this register, data read back from this register has the least-significant bit as zero.

SSI0 Offse	base: 0x t 0x010 R/W, res	4000.80														
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[1	1				1 1	rese	erved	1	Î	I	1		l .	
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[r	1		rved		1 1	-		1	1	1	DVSR	r	r ·	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	be	Reset	Des	cription							
	31:8		reserv	R	C	0x00	com	patibility	with fut	ure prod	he value ucts, the dify-write	value of	a reserv	•	vide nould be	
	7:0		CPSD	VSR	R/	N	0x00	SSI	Clock P	rescale [Divisor					
												number f SB alway				on the

Register 6: SSI Interrupt Mask (SSIIM), offset 0x014

The **SSIIM** register is the interrupt mask set or clear register. It is a read/write register and all bits are cleared to 0 on reset.

On a read, this register gives the current value of the mask on the relevant interrupt. A write of 1 to the particular bit sets the mask, enabling the interrupt to be read. A write of 0 clears the corresponding mask.

SSI0 Offse	Interrup base: 0x4 tt 0x014 R/W, rese	1000.800)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved					•	•	'
Туре	RO 0	RO 0	RO 0	RO	RO	RO	RO	RO 0	RO	RO	RO	RO	RO	RO	RO	RO
Reset				0	0	0	0		0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
-					L		erved		L				TXIM	RXIM	RTIM	RORIM
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:4	reserved RO 0x00 Software should not rely on the value of a reserved bit. compatibility with future products, the value of a reserved preserved across a read-modify-write operation.												•		
	3 TXIM R/W 0 SSI Transmit FIFO Interrupt Mask															
								The	TXIM Va	alues are	defined	as follo	NS:			
								Val	ue Desc	rintion						
								0			-full or le	ss condi	tion inte	rrupt is n	nasked.	
								1			-full or le			•		ed.
	2		RXII	М	R/	W	0	SSI	Receive	FIFO In	terrupt N	lask				
								The	RXIM Va	alues are	defined	as follo	ws:			
								Val	ue Desc	rintion						
								0		•	-full or m	ore con	dition int	errupt is	masked	l.
								1			-full or m					
	1 RTIM R/W 0 SSI Receive Time-Out Interrupt Mask															
								The	RTIM Va	alues are	defined	as follo	ws:			
								\/ali	ue Desc	rintion						
								0		•	e-out inte	arrunt is	masked			
								1			e-out inte					
								1	1011			aprio				

Bit/Field	Name	Туре	Reset	Description
0	RORIM	R/W	0	SSI Receive Overrun Interrupt Mask The RORIM values are defined as follows:
				Value Description 0 RX FIFO overrun interrupt is masked.

1 RX FIFO overrun interrupt is not masked.

Register 7: SSI Raw Interrupt Status (SSIRIS), offset 0x018

The **SSIRIS** register is the raw interrupt status register. On a read, this register gives the current raw status value of the corresponding interrupt prior to masking. A write has no effect.

SSI0 Offse	base: 0x4 t 0x018	terrupt 4000.800 et 0x0000.		(SSIRIS	5)											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	rved				1	1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[10	· · ·	1		· · ·	· ·	rved		· · · · ·				TXRIS	RXRIS	RTRIS	RORRIS
І Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0
B	Bit/Field 31:4		Nam		Ty R		Reset 0x00	Soft	cription ware sho							
	3		TXR	IS	R	0	1	pres SSI	patibility served ac Transmit	cross a r t FIFO R	ead-moo law Inter	lify-write rupt Stat	operatio	on.		
	2		RXR	IS	R	0	0	SSI	cates tha Receive cates tha	FIFO R	aw Interr	upt Stat	us			
	1		RTR	IS	R	0	0		Receive cates tha			·		ed, wher	n set.	
	0		RORI	RIS	R	0	0		Receive cates that			•		d, when	set.	

Register 8: SSI Masked Interrupt Status (SSIMIS), offset 0x01C

The SSIMIS register is the masked interrupt status register. On a read, this register gives the current masked status value of the corresponding interrupt. A write has no effect.

SSI Masked Interrupt Status (SSIMIS)

SSI0 base: 0x4000.8000 Offset 0x01C Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1					rese	rved		1		1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1		1	rese	rved	1			I		TXMIS	RXMIS	RTMIS	RORMIS
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Bit/Field	Name	Туре	Reset	Description
31:4	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
3	TXMIS	RO	0	SSI Transmit FIFO Masked Interrupt Status Indicates that the transmit FIFO is half full or less, when set.
2	RXMIS	RO	0	SSI Receive FIFO Masked Interrupt Status Indicates that the receive FIFO is half full or more, when set.
1	RTMIS	RO	0	SSI Receive Time-Out Masked Interrupt Status Indicates that the receive time-out has occurred, when set.
0	RORMIS	RO	0	SSI Receive Overrun Masked Interrupt Status Indicates that the receive FIFO has overflowed, when set.

Register 9: SSI Interrupt Clear (SSIICR), offset 0x020

The **SSIICR** register is the interrupt clear register. On a write of 1, the corresponding interrupt is cleared. A write of 0 has no effect.

SSI0 Offse	Interrup base: 0x4 t 0x020 W1C, res	4000.800		R)												
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
ĺ			1	1		1		reserv	ved	1	1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			I	1		1	reser	ved		I	1	Ì	ı	1	RTIC	RORIC
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	W1C 0	W1C 0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Desc	ription							
	31:2		reser	ved	R	0	0x00	comp	oatibility	ould not with futu cross a r	ure prod	ucts, the	value of	a reserv		vide hould be
	1		RTI	С	W	1C	0	SSI F	Receive	e Time-O	ut Interru	upt Clear	-			
								The F	RTIC V	alues are	e defined	as follo	ws:			
								Valu	e Desc	cription						
								0	No e	ffect on i	nterrupt					
								1	Clea	rs interru	ıpt.					
	0		ROR	RIC	W	1C	0	SSI F	Receive	e Overrur	n Interru	ot Clear				
								The F	RORIC	values a	re define	d as foll	ows:			
								Valu	e Desc	cription						
								0	No e	ffect on i	nterrupt					
								1	Clea	rs interru	ıpt.					

Register 10: SSI Peripheral Identification 4 (SSIPeriphID4), offset 0xFD0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 4 (SSIPeriphID4)

SSI0 base: 0x4000.8000 Offset 0xFD0 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1		1		1	rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	rese	rved	1					I	PI	D4			1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E								Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	a reserv	•	
	7:0		PID	4	R	0	0x00	SSI	Periphe	ral ID Re	egister[7:	0]				
								Can	be used	by soft	ware to i	dentify th	ie prese	nce of th	is periph	ieral.

Register 11: SSI Peripheral Identification 5 (SSIPeriphID5), offset 0xFD4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 5 (SSIPeriphID5)

SSI0 base: 0x4000.8000 Offset 0xFD4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Í		1 1	rese	rved	Ì	i i					PI	D5			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	7:0		PID	5	R	0	0x00	SSI	Peripher	al ID Re	gister[15	5:8]				
								Can	be used	l by softw	vare to id	dentify th	e prese	nce of th	is periph	eral.

Register 12: SSI Peripheral Identification 6 (SSIPeriphID6), offset 0xFD8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 6 (SSIPeriphID6)

SSI0 base: 0x4000.8000 Offset 0xFD8 Type RO, reset 0x0000.0000

-	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1			I	1	rese	erved							
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[-	r	1	rese	rved	r	1			-		PI				
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0								
E								Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		PID	6	R	0	0x00		Peripher		•	-	e prese	nce of th	is periph	ieral.

Register 13: SSI Peripheral Identification 7 (SSIPeriphID7), offset 0xFDC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 7 (SSIPeriphID7)

SSI0 base: 0x4000.8000 Offset 0xFDC Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved					•	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	rese	rved	r	T I	[r	r	PII	D7	1	I	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	vide nould be
	7:0		PID	7	R	0	0x00		Peripher		•	-	ie prese	nce of th	is periph	ieral.

Register 14: SSI Peripheral Identification 0 (SSIPeriphID0), offset 0xFE0

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 0 (SSIPeriphID0)

SSI0 base: 0x4000.8000 Offset 0xFE0 Type RO, reset 0x0000.0022

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved					•		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1 1	rese	rved		ı ı			1		I Pl	D0	1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RO 0	RO 0	RO 1	RO 0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0	com		with futu	ure produ	ucts, the	value of	erved bit a reserv on.	•	
	7:0		PID	0	R	0	0x22		Peripher		•	-	ne prese	nce of th	is periph	ieral.

Register 15: SSI Peripheral Identification 1 (SSIPeriphID1), offset 0xFE4

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 1 (SSIPeriphID1)

SSI0 base: 0x4000.8000 Offset 0xFE4 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1			1		rese	rved	I				1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1		rved	1	1			, <u> </u>	1	PI	· · · · · ·	1	· · ·	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	patibility	with fut	rely on tl ure produ ead-mod	ucts, the	value of	a reserv	•	
	7:0		PID	1	R	0	0x00		·		egister [1 ware to id	•	ne prese	nce of th	is periph	neral.

Register 16: SSI Peripheral Identification 2 (SSIPeriphID2), offset 0xFE8

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 2 (SSIPeriphID2)

SSI0 base: 0x4000.8000 Offset 0xFE8 Type RO, reset 0x0000.0018

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
r	31	30	29	20	27	20	25	24	23	22	21	20	19	10	17	10
		-	•	-		•		rese	rved					•	•	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			1	rese	rved	I						PI	D2	1	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		PID	2	R	0	0x18	SSI	Peripher	ral ID Re	egister [2	3:16]				
								Can	be used	by soft	ware to i	dentify th	ie prese	nce of th	is periph	eral.

Register 17: SSI Peripheral Identification 3 (SSIPeriphID3), offset 0xFEC

The SSIPeriphIDn registers are hard-coded and the fields within the register determine the reset value.

SSI Peripheral Identification 3 (SSIPeriphID3)

SSI0 base: 0x4000.8000 Offset 0xFEC Type RO, reset 0x0000.0001

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
								rese	rved							·
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
10000	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Í	i	1 1	rese	rved	i	Î					PI	D3			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 1
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	7:0		PID	3	R	0	0x01	SSI	Peripher	al ID Re	gister [3	1:24]				
								Can	be used	l by softw	vare to id	dentify th	e prese	nce of th	is periph	eral.

Register 18: SSI PrimeCell Identification 0 (SSIPCellID0), offset 0xFF0

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 0 (SSIPCelIID0)

SSI0 base: 0x4000.8000 Offset 0xFF0 Type RO, reset 0x0000.000D

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1		1		1 1	rese	erved	ſ				T	I	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved							CI	D0	1	•	•
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
									•							
	31:8		reserv	ved	R	0	0x00	com	tware sho npatibility served ac	with futu	ure produ	ucts, the	value o	f a reserv	•	
	7:0		CID	0	R	0	0x0D	SSI	PrimeCe	ell ID Re	gister [7:	0]				
								Prov	vides sof	tware a	standard	l cross-p	eriphera	al identifio	cation sy	stem.

Register 19: SSI PrimeCell Identification 1 (SSIPCelIID1), offset 0xFF4

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 1 (SSIPCelIID1)

SSI0 base: 0x4000.8000 Offset 0xFF4 Type RO, reset 0x0000.00F0

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		ſ	1 1			[1 1	rese	rved					I	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
				rese	rved			l				CI	D1	1	1	·
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com		with futu	ure produ	ucts, the	value of	erved bit f a reserv on.	•	
	7:0		CID	1	R	0	0xF0		PrimeCe		• •	-				
								Prov	vides sof	tware a	standard	l cross-p	eriphera	l identifio	cation sy	stem.

Register 20: SSI PrimeCell Identification 2 (SSIPCelIID2), offset 0xFF8

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 2 (SSIPCelIID2)

SSI0 base: 0x4000.8000 Offset 0xFF8 Type RO, reset 0x0000.0005

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1		1		1 1	rese	erved	ſ		I		1	I	
Туре	RO	RO	RO 0	RO 0	RO 0	RO 0	RO 0	RO	RO 0	RO 0	RO 0	RO 0	RO	RO	RO 0	RO
Reset	0	0	U	0		U	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1		rese	rved			I				CI	D2		1	'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
E	Bit/Field		Nam	ie	Ту	ре	Reset	Des	cription							
	31:8		reserv	/ed	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	7:0		CID	2	R	0	0x05	SSI	PrimeCe	ell ID Re	gister [23	3:16]				
								Pro	vides sof	tware a	standard	l cross-p	eriphera	l identific	cation sy	stem.

Register 21: SSI PrimeCell Identification 3 (SSIPCellID3), offset 0xFFC

The SSIPCeIIIDn registers are hard-coded, and the fields within the register determine the reset value.

SSI PrimeCell Identification 3 (SSIPCelIID3)

SSI0 base: 0x4000.8000 Offset 0xFFC Type RO, reset 0x0000.00B1

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1 1				1	rese	erved							
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		•		rese	rved							CI	D3			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	1	0	1	1	0	0	0	1
E	Bit/Field		Nam	e	Ту	ре	Reset	Des	cription							
	31:8		reserv	ved	R	0	0x00	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	7:0		CID	3	RO 0		0xB1		SSI PrimeCell ID Register [31:24] Provides software a standard cross-peripheral identification s						ation sy	stem.

13 Ethernet Controller

The Stellaris[®] Ethernet Controller consists of a fully integrated media access controller (MAC) and network physical (PHY) interface. The Ethernet Controller conforms to *IEEE 802.3* specifications and fully supports 10BASE-T and 100BASE-TX standards.

The Stellaris[®] Ethernet Controller module has the following features:

- Conforms to the IEEE 802.3-2002 specification
 - 10BASE-T/100BASE-TX IEEE-802.3 compliant. Requires only a dual 1:1 isolation transformer interface to the line
 - 10BASE-T/100BASE-TX ENDEC, 100BASE-TX scrambler/descrambler
 - Full-featured auto-negotiation
- Multiple operational modes
 - Full- and half-duplex 100 Mbps
 - Full- and half-duplex 10 Mbps
 - Power-saving and power-down modes
- Highly configurable
 - Programmable MAC address
 - LED activity selection
 - Promiscuous mode support
 - CRC error-rejection control
 - User-configurable interrupts
- Physical media manipulation
 - Automatic MDI/MDI-X cross-over correction
 - Register-programmable transmit amplitude
 - Automatic polarity correction and 10BASE-T signal reception

13.1 Block Diagram

As shown in Figure 13-1 on page 321, the Ethernet Controller is functionally divided into two layers: the Media Access Controller (MAC) layer and the Network Physical (PHY) layer. These layers correspond to the OSI model layers 2 and 1. The CPU accesses the Ethernet Controller via the MAC layer. The MAC layer provides transmit and receive processing for Ethernet frames. The MAC layer also provides the interface to the PHY layer via an internal Media Independent Interface (MII). The PHY layer communicates with the Ethernet bus.

Figure 13-1. Ethernet Controller

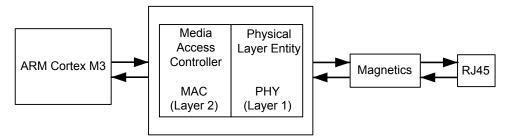
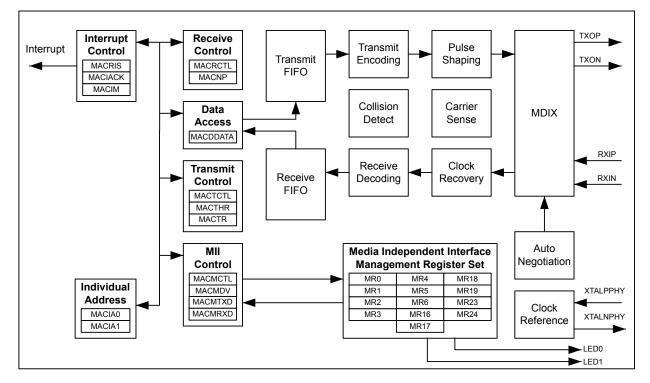



Figure 13-2 on page 321 shows more detail of the internal structure of the Ethernet Controller and how the register set relates to various functions.

Figure 13-2. Ethernet Controller Block Diagram

13.2 Functional Description

Note: A 12.4-k Ω resistor should be connected between the ERBIAS and ground. The 12.4-k Ω resistor should have a 1% tolerance and should be located in close proximity to the ERBIAS pin. Power dissipation in the resistor is low, so a chip resistor of any geometry may be used.

The functional description of the Ethernet Controller is discussed in the following sections.

13.2.1 MAC Operation

The following sections decribe the operation of the MAC unit, including an overview of the Ethernet frame format, the MAC layer FIFOs, Ethernet transmission and reception options, and LED indicators.

13.2.1.1 Ethernet Frame Format

Ethernet data is carried by Ethernet frames. The basic frame format is shown in Figure 13-3 on page 322.

Figure 13-3. Ethernet Frame

Preamble	SFD	Destination Address	Source Address	Length/ Type	Data	FCS
7	1	6	6	2	46 - 1500	4
Bytes	Byte	Bytes	Bytes	Bytes	Bytes	Bytes

The seven fields of the frame are transmitted from left to right. The bits within the frame are transmitted from least to most significant bit.

Preamble

The Preamble field is used to synchronize with the received frame's timing. The preamble is 7 octets long.

Start Frame Delimiter (SFD)

The SFD field follows the preamble pattern and indicates the start of the frame. Its value is 1010.1011.

Destination Address (DA)

This field specifies destination addresses for which the frame is intended. The LSB (bit 16 of DA oct 1 in the frame, see Table 13-1 on page 323) of the DA determines whether the address is an individual (0), or group/multicast (1) address.

Source Address (SA)

The source address field identifies the station from which the frame was initiated.

Length/Type Field

The meaning of this field depends on its numeric value. This field can be interpreted as length or type code. The maximum length of the data field is 1500 octets. If the value of the Length/Type field is less than or equal to 1500 decimal, it indicates the number of MAC client data octets. If the value of this field is greater than or equal to 1536 decimal, then it is type interpretation. The meaning of the Length/Type field when the value is between 1500 and 1536 decimal is unspecified by the IEEE 802.3 standard. However, the Ethernet Controller assumes type interpretation if the value of the Length/Type field is greater than 1500 decimal. The definition of the Type field is specified in the IEEE 802.3 standard. The first of the two octets in this field is most significant.

Data

The data field is a sequence of octets that is at least 46 in length, up to 1500 in length. Full data transparency is provided so any values can appear in this field. A minimum frame size of 46 octets is required to meet the IEEE standard. If the frame size is too small, the Ethernet Controller automatically appends extra bits (a pad), thus the pad can have a size of 0 to 46 octets. Data padding can be disabled by clearing the PADEN bit in the **Ethernet MAC Transmit Control** (MACTCTL) register.

For the Ethernet Controller, data sent/received can be larger than 1500 bytes without causing a Frame Too Long error. Instead, a FIFO overrun error is reported using the FOV bit in the

Ethernet MAC Raw Interrupt Status(MACRIS) register when the frame received is too large to fit into the Ethernet Controller's 2K RAM.

Frame Check Sequence (FCS)

The frame check sequence carries the cyclic redundancy check (CRC) value. The CRC is computed over the destination address, source address, length/type, and data (including pad) fields using the CRC-32 algorithm. The Ethernet Controller computes the FCS value one nibble at a time. For transmitted frames, this field is automatically inserted by the MAC layer, unless disabled by clearing the CRC bit in the **MACTCTL** register. For received frames, this field is automatically checked. If the FCS does not pass, the frame is not placed in the RX FIFO, unless the FCS check is disabled by clearing the BADCRC bit in the **MACRCTL** register.

13.2.1.2 MAC Layer FIFOs

The Ethernet Controller is capable of simultaneous transmission and reception. This feature is enabled by setting the DUPLEX bit in the **MACTCTL** register.

For Ethernet frame transmission, a 2 KB transmit FIFO is provided that can be used to store a single frame. While the *IEEE 802.3 specification* limits the size of an Ethernet frame's payload section to 1500 Bytes, the Ethernet Controller places no such limit. The full buffer can be used, for a payload of up to 2032 bytes (as the first 16 bytes in the FIFO are reserved for destination address, source address and length/type information).

For Ethernet frame reception, a 2-KB receive FIFO is provided that can be used to store multiple frames, up to a maximum of 31 frames. If a frame is received, and there is insufficient space in the RX FIFO, an overflow error is indicated using the FOV bit in the **MACRIS** register.

For details regarding the TX and RX FIFO layout, refer to Table 13-1 on page 323. Please note the following difference between TX and RX FIFO layout. For the TX FIFO, the Data Length field in the first FIFO word refers to the Ethernet frame data payload, as shown in the 5th to nth FIFO positions. For the RX FIFO, the Frame Length field is the total length of the received Ethernet frame, including the Length/Type bytes and the FCS bits.

If FCS generation is disabled by clearing the CRC bit in the **MACTCTL** register, the last word in the TX FIFO must contain the FCS bytes for the frame that has been written to the FIFO.

Also note that if the length of the data payload section is not a multiple of 4, the FCS field is not be aligned on a word boundary in the FIFO. However, for the RX FIFO the beginning of the next frame is always on a word boundary.

FIFO Word Read/Write Sequence	Word Bit Fields	TX FIFO (Write)	RX FIFO (Read)
1st	7:0	Data Length Least Significan Byte	t Frame Length Least Significant Byte
	15:8	Data Length Most Significant Byte	Frame Length Most Significant Byte
	23:16	DA	oct 1
	31:24	DA	oct 2
2nd	7:0	DA	oct 3
	15:8	DA	oct 4
	23:16	DA	oct 5
	31:24	DA	oct 6

Table 13-1. TX & RX FIFO Organization

FIFO Word Read/Write Sequence	Word Bit Fields	TX FIFO (Write)	RX FIFO (Read)					
3rd	7:0	SA	oct 1					
	15:8	SA	oct 2					
	23:16	SA	oct 3					
	31:24	SA	oct 4					
4th	7:0	SA	oct 5					
	15:8	SA oct 6						
	23:16	Len/Type Mos	t Significant Byte					
	31:24	Len/Type Leas	t Significant Byte					
5th to nth	7:0	data	a oct n					
	15:8	data	oct n+1					
	23:16	data oct n+2						
	31:24	data	oct n+3					
last	7:0	FC	CS 1					
	15:8	FC	FCS 2					
	23:16	FCS 3						
	31:24	FCS 4						

Table 13-1. TX & RX FIFO Organization (continued)

Note: If the CRC bit in the **MACTCTL** register is clear, the FCS bytes must be written with the correct CRC. If the CRC bit is set, the Ethernet Controller automatically writes the FCS bytes.

13.2.1.3 Ethernet Transmission Options

At the MAC layer, the transmitter can be configured for both full-duplex and half-duplex operation by using the DUPLEX bit in the **MACTCTL** register.

The Ethernet Controller automatically generates and inserts the Frame Check Sequence (FCS) at the end of the transmit frame when the CRC bit in the **MACTCTL** register is set. However, for test purposes, this feature can be disabled in order to generate a frame with an invalid CRC by clearing the CRC bit.

The *IEEE 802.3 specification* requires that the Ethernet frame payload section be a minimum of 46 bytes. The Ethernet Controller automatically pads the data section if the payload data section loaded into the FIFO is less than the minimum 46 bytes when the PADEN bit in the **MACTCTL** register is set. This feature can be disabled by clearing the PADEN bit.

The transmitter must be enabled by setting the TXEN bit in the **TCTL** register.

13.2.1.4 Ethernet Reception Options

The Ethernet Controller RX FIFO should be cleared during software initialization. The receiver should first be disabled by clearing the RXEN bit in the **Ethernet MAC Receive Control (MACRCTL)** register, then the FIFO can be cleared by setting the RSTFIFO bit in the **MACRCTL** register.

The receiver automatically rejects frames that contain bad CRC values in the FCS field. In this case, a Receive Error interrupt is generated and the receive data is lost. To accept all frames, clear the BADCRC bit in the **MACRCTL** register.

In normal operating mode, the receiver accepts only those frames that have a destination address that matches the address programmed into the **Ethernet MAC Individual Address 0 (MACIA0)**

and **Ethernet MAC Individual Address 1 (MACIA1)** registers. However, the Ethernet receiver can also be configured for Promiscuous and Multicast modes by setting the PRMS and AMUL bits in the **MACRCTL** register.

13.2.2 Internal MII Operation

For the MII management interface to function properly, the MDIO signal must be connected through a 10k Ω pull-up resistor to the +3.3 V supply. Failure to connect this pull-up resistor prevents management transactions on this internal MII to function. Note that it is possible for data transmission across the MII to still function since the PHY layer auto-negotiates the link parameters by default.

For the MII management interface to function properly, the internal clock must be divided down from the system clock to a frequency no greater than 2.5 MHz. The **Ethernet MAC Management Divider** (**MACMDV**) register contains the divider used for scaling down the system clock. See page 344 for more details about the use of this register.

13.2.3 PHY Operation

The Physical Layer (PHY) in the Ethernet Controller includes integrated ENDECs, scrambler/descrambler, dual-speed clock recovery, and full-featured auto-negotiation functions. The transmitter includes an on-chip pulse shaper and a low-power line driver. The receiver has an adaptive equalizer and a baseline restoration circuit required for accurate clock and data recovery. The transceiver interfaces to Category-5 unshielded twisted pair (Cat-5 UTP) cabling for 100BASE-TX applications, and Category-3 unshielded twisted pair (Cat-3 UTP) for 10BASE-T applications. The Ethernet Controller is connected to the line media via dual 1:1 isolation transformers. No external filter is required.

13.2.3.1 Clock Selection

The Ethernet Controller has an on-chip crystal oscillator which can also be driven by an external oscillator. In this mode of operation, a 25-MHz crystal should be connected between the XTALPPHY and XTALNPHY pins. Alternatively, an external 25-MHz clock input can be connected to the XTALPPHY pin. In this mode of operation, a crystal is not required and the XTALNPHY pin must be tied to ground.

13.2.3.2 Auto-Negotiation

The Ethernet Controller supports the auto-negotiation functions of Clause 28 of the *IEEE 802.3* standard for 10/100 Mbps operation over copper wiring. This function is controlled via register settings. The auto-negotiation function is turned on by default, and the ANEGEN bit in the **Ethernet PHY Management Register 0 - Control (MR0)** is set after reset. Software can disable the auto-negotiation function by clearing the ANEGEN bit. The contents of the **Ethernet PHY Management Register - Auto-Negotiation Advertisement (MR4)** are reflected to the Ethernet Controller's link partner during auto-negotiation via fast-link pulse coding.

Once auto-negotiation is complete, the DPLX and RATE bits in the **Ethernet PHY Management Register 18 - Diagnostic (MR18)** register reflect the actual speed and duplex condition. If auto-negotiation fails to establish a link for any reason, the ANEGF bit in the **MR18** register reflects this and auto-negotiation restarts from the beginning. Setting the RANEG bit in the **MR0** register also causes auto-negotiation to restart.

13.2.3.3 Polarity Correction

The Ethernet Controller is capable of either automatic or manual polarity reversal for 10BASE-T and auto-negotiation functions. Bits 4 and 5 (RVSPOL and APOL) in the **Ethernet PHY Management Register 16 - Vendor-Specific (MR16)** control this feature. The default is automatic mode, where

APOL is clear and RVSPOL indicates if the detection circuitry has inverted the input signal. To enter manual mode, APOL should be set. In manual mode RVSPOL controls the signal polarity.

13.2.3.4 MDI/MDI-X Configuration

The Ethernet Controller supports the MDI/MDI-X configuration as defined in *IEEE 802.3-2002 specification*. The MDI/MDI-X configuration eliminates the need for cross-over cables when connecting to another device, such as a hub. The algorithm is controlled via settings in the **Ethernet PHY Management Register 24 - MDI/MIDIX Control (MR24)**. Refer to page 366 for additional details about these settings.

13.2.3.5 Power Management

The PHY has two power-saving modes:

- Power-Down
- Receive Power Management

Power-down mode is activated by setting the PWRDN bit in the **MR0** register. When the PHY is in power-down mode, it consumes minimum power. While in the power-down state, the Ethernet Controller still responds to management transactions.

Receive power management (RXCC mode) is activated by setting the RXCC bit in the **MR16** register. In this mode of operation, the adaptive equalizer, the clock recovery phase lock loop (PLL), and all other receive circuitry are powered down. As soon as a valid signal is detected, all circuits are automatically powered up to resume normal operation. Note that the RXCC mode is not supported during 10BASE-T operation.

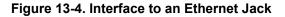
13.2.3.6 LED Indicators

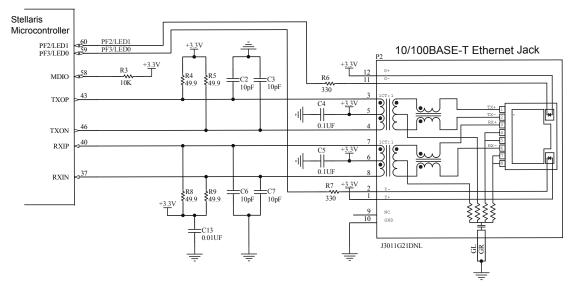
The Ethernet Controller supports two LED signals that can be used to indicate various states of operation. These signals are mapped to the LED0 and LED1 pins. By default, these pins are configured as GPIO signals (PF3 and PF2). For the PHY layer to drive these signals, they must be reconfigured to their alternate function. See "General-Purpose Input/Outputs (GPIOs)" on page 141 for additional details. The function of these pins is programmable via the PHY layer **Ethernet PHY Management Register 23 - LED Configuration (MR23)**. Refer to page 365 for additional details on how to program these LED functions.

13.2.4 Interrupts

The Ethernet Controller can generate an interrupt for one or more of the following conditions:

- A frame has been received into an empty RX FIFO
- A frame transmission error has occurred
- A frame has been transmitted successfully
- A frame has been received with inadequate room in the RX FIFO (overrun)
- A frame has been received with one or more error conditions (for example, FCS failed)
- An MII management transaction between the MAC and PHY layers has completed
- One or more of the following PHY layer conditions occurs:


- Auto-Negotiate Complete
- Remote Fault
- Link Status Change
- Link Partner Acknowledge
- Parallel Detect Fault
- Page Received
- Receive Error
- Jabber Event Detected


13.3 Initialization and Configuration

The following sections describe the hardware and software configuration required to set up the Ethernet Controller.

13.3.1 Hardware Configuration

Figure 13-4 on page 327 shows the proper method for interfacing the Ethernet Controller to a 10/100BASE-T Ethernet jack.

The following isolation transformers have been tested and are known to successfully interface to the Ethernet PHY layer.

- Isolation Transformers
 - TDK TLA-6T103
 - Bel-Fuse S558-5999-46
 - Halo TG22-3506ND
 - Pulse PE-68515
 - Valor ST6118

- YCL 20PMT04
- Isolation transformers in low profile packages (0.100 in/2.5 mm or less)
 - TDK TLA-6T118
 - Halo TG110-S050
 - PCA EPF8023G
- Isolation transformers with integrated RJ45 connector
 - TDK TLA-6T704
 - Delta RJS-1A08T089A
- Isolation transformers with integrated RJ45 connector, LEDs and termination resistors
 - Pulse J0011D21B/E
 - Pulse J3011G21DNL

13.3.2 Software Configuration

To use the Ethernet Controller, it must be enabled by setting the EPHY0 and EMAC0 bits in the **RCGC2** register (see page 106). The following steps can then be used to configure the Ethernet Controller for basic operation.

- 1. Program the **MACDIV** register to obtain a 2.5 MHz clock (or less) on the internal MII. Assuming a 20-MHz system clock, the **MACDIV** value should be 0x03 or greater.
- 2. Program the MACIA0 and MACIA1 register for address filtering.
- **3.** Program the **MACTCTL** register for Auto CRC generation, padding, and full-duplex operation using a value of 0x16.
- 4. Program the **MACRCTL** register to flush the receive FIFO and reject frames with bad FCS using a value of 0x18.
- 5. Enable both the Transmitter and Receive by setting the LSB in both the **MACTCTL** and **MACRCTL** registers.
- 6. To transmit a frame, write the frame into the TX FIFO using the Ethernet MAC Data (MACDATA) register. Then set the NEWTX bit in the Ethernet Mac Transmission Request (MACTR) register to initiate the transmit process. When the NEWTX bit has been cleared, the TX FIFO is available for the next transmit frame.
- 7. To receive a frame, wait for the NPR field in the Ethernet MAC Number of Packets (MACNP) register to be non-zero. Then begin reading the frame from the RX FIFO by using the MACDATA register. To ensure that the entire packet is received, either use the DriverLib EthernetPacketGet() API or compare the number of bytes received to the Length field from the frame to determine when the packet has been completely read.

13.4 Ethernet Register Map

Table 13-2 on page 329 lists the Ethernet MAC registers. All addresses given are relative to the Ethernet MAC base address of 0x4004.8000.

The *IEEE 802.3* standard specifies a register set for controlling and gathering status from the PHY layer. The registers are collectively known as the MII Management registers and are detailed in Section 22.2.4 of the *IEEE 802.3 specification*. Table 13-2 on page 329 also lists these MII Management registers. *All addresses given are absolute and are written directly to the REGADR field of the Ethernet MAC Management Control (MACMCTL) register*. The format of registers 0 to 15 are defined by the IEEE specification and are common to all PHY layer implementations. The only variance allowed is for features that may or may not be supported by a specific PHY implementation.

Registers 16 to 31 are vendor-specific registers, used to support features that are specific to a vendor's PHY implementation. Vendor-specific registers not listed are reserved.

Table 13-2. Ethernet Register Map

Offset	Name	Туре	Reset	Description	See page
Ethernet	MAC				
0x000	MACRIS/MACIACK	R/W1C	0x0000.0000	Ethernet MAC Raw Interrupt Status/Acknowledge	331
0x004	MACIM	R/W	0x0000.007F	Ethernet MAC Interrupt Mask	334
0x008	MACRCTL	R/W	0x0000.0008	Ethernet MAC Receive Control	335
0x00C	MACTCTL	R/W	0x0000.0000	Ethernet MAC Transmit Control	336
0x010	MACDATA	R/W	0x0000.0000	Ethernet MAC Data	337
0x014	MACIA0	R/W	0x0000.0000	Ethernet MAC Individual Address 0	339
0x018	MACIA1	R/W	0x0000.0000	Ethernet MAC Individual Address 1	340
0x01C	MACTHR	R/W	0x0000.003F	Ethernet MAC Threshold	341
0x020	MACMCTL	R/W	0x0000.0000	Ethernet MAC Management Control	343
0x024	MACMDV	R/W	0x0000.0080	Ethernet MAC Management Divider	344
0x02C	MACMTXD	R/W	0x0000.0000	Ethernet MAC Management Transmit Data	345
0x030	MACMRXD	R/W	0x0000.0000	Ethernet MAC Management Receive Data	346
0x034	MACNP	RO	0x0000.0000	Ethernet MAC Number of Packets	347
0x038	MACTR	R/W	0x0000.0000	Ethernet MAC Transmission Request	348
MII Mana	gement				
-	MR0	R/W	0x3100	Ethernet PHY Management Register 0 - Control	349
-	MR1	RO	0x7849	Ethernet PHY Management Register 1 – Status	351
-	MR2	RO	0x000E	Ethernet PHY Management Register 2 – PHY Identifier 1	353
-	MR3	RO	0x7237	Ethernet PHY Management Register 3 – PHY Identifier 2	354
-	MR4	R/W	0x01E1	Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement	355
-	MR5	RO	0x0000	Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability	357
-	MR6	RO	0x0000	Ethernet PHY Management Register 6 – Auto-Negotiation Expansion	358
-	MR16	R/W	0x0140	Ethernet PHY Management Register 16 – Vendor-Specific	359
-	MR17	R/W	0x0000	Ethernet PHY Management Register 17 – Interrupt Control/Status	361
-	MR18	RO	0x0000	Ethernet PHY Management Register 18 – Diagnostic	363

Offset	Name	Туре	Reset	Description	See page
-	MR19	R/W	0x4000	Ethernet PHY Management Register 19 – Transceiver Control	364
-	MR23	R/W	0x0010	Ethernet PHY Management Register 23 – LED Configuration	365
-	MR24	R/W	0x00C0	Ethernet PHY Management Register 24 –MDI/MDIX Control	366

Table 13-2. Ethernet Register Map (continued)

13.5 Ethernet MAC Register Descriptions

The remainder of this section lists and describes the Ethernet MAC registers, in numerical order by address offset. Also see "MII Management Register Descriptions" on page 348.

Register 1: Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK), offset 0x000

The **MACRIS/MACIACK** register is the interrupt status and acknowledge register. On a read, this register gives the current status value of the corresponding interrupt prior to masking. On a write, setting any bit clears the corresponding interrupt status bit.

Reads

Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK)

Base 0x4004.8000

Offset 0x000 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Γ	r				г г 1		т т	rese	rved					1		
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Г					reserved	10	, , ,		· · ·	PHYINT	MDINT	RXER	FOV	TXEMP	TXER	RXINT
Г уре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field		Nam	ne	Тур	be	Reset	Des	cription							
															-	
	31:7		reserv	/ed	R	5	0x0000.00	com	patibility	with futu	ure produ		value of	erved bit a reserv on.		
	6		PHYI	NT	R	С	0	PHY	' Interrup	ot						
								occi	urred. MI		e PHY m	iust be re		in the PH termine		
	5		MDI	١T	R	С	0	MIL	Transact	ion Com	plete					
										dicates the dicates the distribution of the di		saction	read or	write) on	the MII i	nterface
	4		RXE	R	R	C	0	Rec	eive Erro	or						
														ed on the it to be se		r. The
									A receiv only).	e error o	ccurs du	iring the	receptio	n of a fra	ime (100) Mb/s
									The fran alignme		an integ	er numbe	er of byte	es (dribbl	e bits) d	ue to an
									The CR	C of the f	frame do	es not p	ass the	FCS che	ck.	
										jth/type f ed as a l			nt with t	he frame	data siz	e when
	3		FO	V	R	С	0	FIF) Overru	in						
								Whe FIF	,	dicates t	that an o	verrun w	as enco	ountered	on the re	eceive

Bit/Field	Name	Туре	Reset	Description
2	TXEMP	RO	0	Transmit FIFO Empty
				When set, indicates that the packet was transmitted and that the TX FIFO is empty.
1	TXER	RO	0	Transmit Error
				When set, indicates that an error was encountered on the transmitter. The possible errors that can cause this interrupt bit to be set are:
				 The data length field stored in the TX FIFO exceeds 2032 decimal (buffer length - 16 bytes of header data). The frame is not sent when this error occurs.
				 The retransmission attempts during the backoff process have exceeded the maximum limit of 16 decimal.
0	RXINT	RO	0	Packet Received
				When set, indicates that at least one packet has been received and is stored in the receiver FIFO.

Writes

Ethernet MAC Raw Interrupt Status/Acknowledge (MACRIS/MACIACK)

Base 0x4004.8000 Offset 0x000 Type WO, reset 0x0000.0000

1,900	110,1000		.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1		· ·		т г	rese	rved	1	1			1		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	I				reserved		1 1		1	PHYINT	MDINT	RXER	FOV	TXEMP	TXER	RXINT
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	W1C	W1C	W1C	W1C	W1C	W1C	W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field		Nam	ie	Тур	e	Reset	Des	cription							
	31:7		reserv	/ed	RC)	0x0000.00	Soft	ware sh	ould not	rely on t	ne value	of a res	erved bit	. To prov	∕ide
								com	patibility	/ with fut	ure produ	ucts, the	value of	f a reserv	•	
								pres	served a	cross a r	ead-mod	lify-write	operation	on.		
	6		PHYI	NT	W1	С	0	Clea	ar PHY I	nterrupt						
								Sett	ina this	bit clears	the PHY	INT inte	errupt in	the MAC	RIS real	ster.
									J • •						5	
	5		MDI	١T	W1	С	0	Clea	ar MII Tr	ansactio	n Compl	ete				
								Sett	ing this	bit clears	the MDI	NT inter	rupt in th	ne MACF	RIS regis	ter.
	4		RXE	D	W1	c	0	Clas	ar Rocoi	ve Error						
	4		NAL.		VVI	0	0									
								Sett	ing this	bit clears	the RXE	R interru	ipt in the		S registe	er.
	3		FO	V	W1	С	0	Clea	ar FIFO	Overrun						
								Sott	ina this	hit clears	the FOU	interrun	t in the	MACRIS	register	
								Seit	ing this			menup			register	•

Bit/Field	Name	Туре	Reset	Description
2	TXEMP	W1C	0	Clear Transmit FIFO Empty Setting this bit clears the TXEMP interrupt in the MACRIS register.
1	TXER	W1C	0	Clear Transmit Error Setting this bit clears the TXER interrupt in the MACRIS register and resets the TX FIFO write pointer.
0	RXINT	W1C	0	Clear Packet Received Setting this bit clears the RXINT interrupt in the MACRIS register.

Register 2: Ethernet MAC Interrupt Mask (MACIM), offset 0x004

This register allows software to enable/disable Ethernet MAC interrupts. Clearing a bit disables the interrupt, while setting the bit enables it.

Ethernet MAC Interrupt Mask (MACIM)

Base 0x4004.8000 Offset 0x004 Type R/W, reset 0x0000.007F

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		T	1	1	1 1 1			rese	rved	T	1			1 1		1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	reserved			1	1	PHYINTM	MDINTM	RXERM	FOVM	TXEMPM	TXERM	RXINTM
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1

Bit/Field	Name	Туре	Reset	Description
31:7	reserved	RO	0x0000.00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
6	PHYINTM	R/W	1	Mask PHY Interrupt
				Clearing this bit masks the PHYINT bit in the MACRIS register from being set.
5	MDINTM	R/W	1	Mask MII Transaction Complete
				Clearing this bit masks the MDINT bit in the MACRIS register from being set.
4	RXERM	R/W	1	Mask Receive Error
				Clearing this bit masks the RXER bit in the MACRIS register from being set.
3	FOVM	R/W	1	Mask FIFO Overrun
				Clearing this bit masks the FOV bit in the MACRIS register from being set.
2	TXEMPM	R/W	1	Mask Transmit FIFO Empty
				Clearing this bit masks the TXEMP bit in the MACRIS register from being set.
1	TXERM	R/W	1	Mask Transmit Error
				Clearing this bit masks the TXER bit in the MACRIS register from being set.
0	RXINTM	R/W	1	Mask Packet Received
				Clearing this bit masks the RXINT bit in the MACRIS register from being set.

Register 3: Ethernet MAC Receive Control (MACRCTL), offset 0x008

This register configures the receiver and controls the types of frames that are received.

It is important to note that when the receiver is enabled, all valid frames with a broadcast address of FF-FF-FF-FF-FF-FF-FF in the Destination Address field are received and stored in the RX FIFO, even if the AMUL bit is not set.

Ethernet MAC Receive Control (MACRCTL)

Base Offset	0x4004.8 0x008 R/W, rese	000	0.0008			,										
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	1						1 1	rese	rved			1			1	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	•					reserve	ed					RSTFIFO	BADCRC	PRMS	AMUL	RXEN
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 0
В	it/Field		Nam	ie	Тур	be	Reset	Des	cription							
	31:5		reserv	ved	R	C	0x0000.000	com	patibility	with futu	ire proc	ducts, the	e of a rese value of operatio	a reserv		
	4		RSTF	IFO	D R/W 0 Clear Receiv					e FIFO						
						When set, this bit clears software initialization is							FIFO. Thi	s should	l be don	e when
								rese					e disable sequenc	•	,	
								This	s bit is au	tomatica	lly clea	red wher	n read.			
	3		BADC	RC	R/	W	1	Ena	ble Reje	ct Bad C	RC					
								inco	rrectly ca	alculated	CRC.	lf a bad (e rejectio CRC is en e receiver	counter	ed, the I	
	2		PRM	IS	R/	W	0	Ena	ble Prom	niscuous	Mode					
						W			When set, the PRMS bit enables Promiscuous mode, which accepts all valid frames, regardless of the specified Destination Address.							
	1		AML	JL	R/	W	0	Ena	ble Multi	cast Fra	mes					
								Whe	en set, th	e amul	bit enal	oles the r	eception	of multic	cast fram	ies.
	0		RXE	N	R/	w	0	Enable Receiver								
								When set the RXEN bit enables the Ethernet receiver. When this bit is clear, the receiver is disabled and all frames are ignored.								

Register 4: Ethernet MAC Transmit Control (MACTCTL), offset 0x00C

This register configures the transmitter and controls the frames that are transmitted.

Ethernet MAC Transmit Control (MACTCTL)

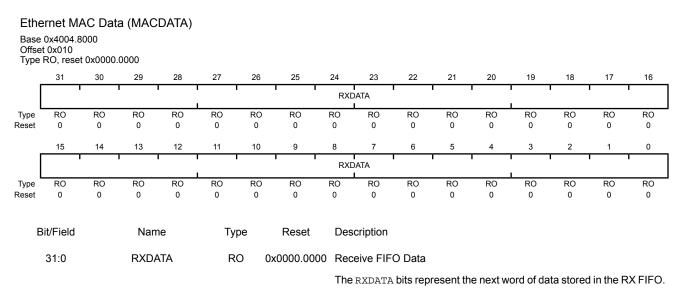
Base 0x4004.8000

Offset 0x00C Type R/W, reset 0x0000.0000

	,																	
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16		
			I				1 1	rese	erved	1	1	1			1			
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
-	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	•		•			reserve	ed			1	•	DUPLEX	reserved	CRC	PADEN	TXEN		
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	RO	R/W	R/W	R/W		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
_					-		-	-										
В	it/Field		Nam	ne	Ту	/pe	Reset	Des	scription									
	31:5		reserv	ved	R	RO	0x0000.000) Sof	tware sho	ould not	rely on	the value	of a rese	erved bi	t. To prov	vide		
												lucts, the						
								pre	served ac	cross a r	ead-mo	dify-write	operatio	n.				
	4		DUPL	.EX	R	/W	0	Ena	ble Duple	ex Mode	9							
								When set, this bit enables Duplex mode, allowing simultaneous										
									ismission			apioxino	uo, unon	ing oin	ananoou	0		
	•				_		2											
	3		reserv	ved	R	80	0					the value lucts, the						
												dify-write						
				_	_			· _		_		-						
	2		CR	С	R	/W	0	Ena	ble CRC	Genera	tion							
												e automa						
								•			•	backet. If the ctly as the				•		
												-	-			0.		
								Not	e that this	s bit sho	uld gen	erally be	set.					
	1		PADE	ΞN	R	/W	0	Ena	ble Pack	et Paddi	ing							
								Wh	en set, th	is bit ena	ables th	e automa	tic paddi	ng of pa	ickets tha	at do not		
									et the min				1	0 - 10				
								Not	e that this	s bit sho	uld gen	erally be	set.					
					_						-	-						
	0		TXE	:N	R	/W	0	Ena	ble Trans	smitter								
									,			e transm	itter. Whe	en this b	oit is clea	r, the		
					transmitter is disabled.													

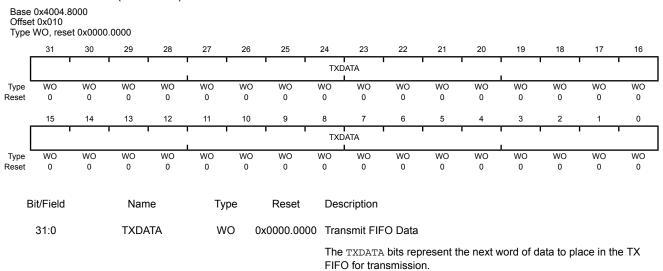
Register 5: Ethernet MAC Data (MACDATA), offset 0x010

Important: Use caution when reading this register. Performing a read may change bit status.


This register enables software to access the TX and RX FIFOs.

Reads from this register return the data stored in the RX FIFO from the location indicated by the read pointer. The read pointer is then auto incremented to the next RX FIFO location. Reading from the RX FIFO when a frame has not been received or is in the process of being received will return indeterminate data and not increment the read pointer.

Writes to this register store the data in the TX FIFO at the location indicated by the write pointer. The write pointer is the auto incremented to the next TX FIFO location. Writing more data into the TX FIFO than indicated in the length field will result in the data being lost. Writing less data into the TX FIFO than indicated in the length field will result in indeterminate data being appended to the end of the frame to achieve the indicated length. Attempting to write the next frame into the TX FIFO before transmission of the first has completed will result in the data being lost.


There is no mechanism for randomly accessing bytes in either the RX or TX FIFOs. Data must be read from the RX FIFO sequentially and stored in a buffer for further processing. Once a read has been performed, the data in the FIFO cannot be re-read. Data must be written to the TX FIFO sequentially. If an error is made in placing the frame into the TX FIFO, the write pointer can be reset to the start of the TX FIFO by writing the TXER bit of the **MACIACK** register and then the data re-written.

Reads

Writes

Ethernet MAC Data (MACDATA)

Register 6: Ethernet MAC Individual Address 0 (MACIA0), offset 0x014

This register enables software to program the first four bytes of the hardware MAC address of the Network Interface Card (NIC). (The last two bytes are in **MACIA1**). The 6-byte Individual Address is compared against the incoming Destination Address fields to determine whether the frame should be received.

Type	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r	1	MAC	I OCT4	1	1 1			1	1	MAC	I OCT3		1	1
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ĺ		r	1	MAC	OCT2	1	1 1			1	1	MAC	OCT1			1
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:24		MACO	CT4	R/	W	0x00	MAG	C Addres	s Octet	4					
											•	the fourt net Cont		of the MA	C addre	ss used
	23:16		MACO	CT3	R/	W	0x00	MAG	C Addres	ss Octet	3					
											•	the third net Cont		the MAC	addres	s used
	15:8		MACO	CT2	R	W	0x00	MAG	C Addres	ss Octet	2					
											•	the secoi net Cont		of the MA	AC addre	ess used
	7:0		MACO	CT1	R	W	0x00	MAG	C Addres	ss Octet	1					
											•	the first o t Control		he MAC	address	used to

Ethernet MAC Individual Address 0 (MACIA0)

Base 0x4004.8000

Offset 0x014 Type R/W, reset 0x0000.0000 Base 0x4004.8000

Ethernet MAC Individual Address 1 (MACIA1)

Register 7: Ethernet MAC Individual Address 1 (MACIA1), offset 0x018

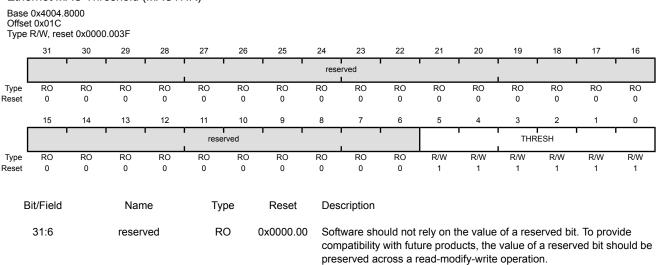
This register enables software to program the last two bytes of the hardware MAC address of the Network Interface Card (NIC). (The first four bytes are in **MACIA0**). The 6-byte IAR is compared against the incoming Destination Address fields to determine whether the frame should be received.

Offset 0x018 Type R/W, reset 0x0000.0000 31 30 25 24 29 28 27 26 23 22 21 20 19 18 17 16 reserved Туре RO 0 0 0 0 0 0 0 0 0 0 0 0 0 Reset 0 0 0 7 15 13 12 10 9 8 6 5 3 2 0 14 11 4 1 MACOCT6 MACOCT5 R/W Туре Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Bit/Field Description Name Туре Reset 31:16 RO 0x0000 Software should not rely on the value of a reserved bit. To provide reserved compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation. 15:8 MACOCT6 R/W 0x00 MAC Address Octet 6 The MACOCT6 bits represent the sixth octet of the MAC address used to uniquely identify each Ethernet Controller. 7:0 MACOCT5 R/W 0x00 MAC Address Octet 5 The MACOCT5 bits represent the fifth octet of the MAC address used to uniquely identify the Ethernet Controller.

Register 8: Ethernet MAC Threshold (MACTHR), offset 0x01C

In order to increase the transmission rate, it is possible to program the Ethernet Controller to begin transmission of the next frame prior to the completion of the transmission of the current frame. Note: Extreme care must be used when implementing this function. Software must be able to guarantee that the complete frame is able to be stored in the transmission FIFO prior to the completion of the transmission frame.

This register enables software to set the threshold level at which the transmission of the frame begins. If the THRESH bits are set to 0x3F, which is the reset value, the early transmission feature is disabled, and transmission does not start until the NEWTX bit is set in the **MACTR** register.


Writing the THRESH bits to any value besides 0x3F enables the early transmission feature. Once the byte count of data in the TX FIFO reaches the value derived from the THRESH bits as shown below, transmission of the frame begins. When THRESH is set to all 0s, transmission of the frame begins after 4 bytes (a single write) are stored in the TX FIFO. Each increment of the THRESH bit field waits for an additional 32 bytes of data (eight writes) to be stored in the TX FIFO. Therefore, a value of 0x01 causes the transmitter to wait for 36 bytes of data to be written while a value of 0x02 makes the wait equal to 68 bytes of written data. In general, early transmission starts when:

```
Number of Bytes >= 4 (THRESH x 8 + 1)
```

Reaching the threshold level has the same effect as setting the NEWTX bit in the **MACTR** register. Transmission of the frame begins and then the number of bytes indicated by the Data Length field is transmitted. Because under-run checking is not performed, if any event, such as an interrupt, delays the filling of the FIFO, the tail pointer may reach and pass the write pointer in the TX FIFO. In this event, indeterminate values are transmitted rather than the end of the frame. Therefore, sufficient bus bandwidth for writing to the TX FIFO must be guaranteed by the software.

If a frame smaller than the threshold level must be sent, the NEWTX bit in the **MACTR** register must be set with an explicit write. This initiates the transmission of the frame even though the threshold limit has not been reached.

If the threshold level is set too small, it is possible for the transmitter to underrun. If this occurs, the transmit frame is aborted, and a transmit error occurs. Note that in this case, the TXER bit in the **MACRIS** is not set meaning that the CPU receives no indication that a transmit error happened.

Ethernet MAC Threshold (MACTHR)

Bit/Field	Name	Туре	Reset	Description
5:0	THRESH	R/W	0x3F	Threshold Value
				The THRESH bits represent the early transmit threshold. Once the amount of data in the TX FIFO exceeds the value represented by the above equation, transmission of the packet begins.

Register 9: Ethernet MAC Management Control (MACMCTL), offset 0x020

This register enables software to control the transfer of data to and from the MII Management registers in the Ethernet PHY layer. The address, name, type, reset configuration, and functional description of each of these registers can be found in Table 13-2 on page 329 and in "MII Management Register Descriptions" on page 348.

In order to initiate a *read* transaction from the MII Management registers, the WRITE bit must be cleared during the same cycle that the START bit is set.

In order to initiate a *write* transaction to the MII Management registers, the WRITE bit must be set during the same cycle that the START bit is set.

	t 0x020 R/W, rese	et 0x000	0.0000													
r	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	•					I		rese	erved			•			•	•
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
Resei																
Г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	
l					rved						REGADR			reserved	WRITE	START
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RO 0	R/W 0	R/W 0
B	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:8		reserved RO REGADR R/W			0x0000.00	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	f a reserv			
	7:3		REGA	DR	R/	W	0x0	MII	Register	Address	s					
		REGADR R/W				for t	REGADR he next M le 13-2 of	/III mana	agement	interface	e transa	ction. Re	•	address		
									e that any ten to and					-	ap shoul	d not be
	2		reserv	ved	R	0	0	com	ware sho patibility served ac	with fut	ure produ	ucts, the	value of	f a reserv		
	1		WRI	ΤE	R/	W	0	MII	Register	Transad	ction Typ	e				
								inte	WRITE b rface trar TE is cle	saction	. If writ	E is set,	the next	operatio		
	0		STAF	RT	R/	W	0	MII	Register	Transad	ction Ena	ble				
								inte	START L rface trar ADR is re	saction	. When t	his bit is	set, the	MII regis		

Ethernet MAC Management Control (MACMCTL)

Base 0x4004.8000 Offset 0x020

Register 10: Ethernet MAC Management Divider (MACMDV), offset 0x024

This register enables software to set the clock divider for the Management Data Clock (MDC). This clock is used to synchronize read and write transactions between the system and the MII Management registers. The frequency of the MDC clock can be calculated from the following formula:

$$F mdc = \frac{F ipclk}{2 \times (MACDVR + 1)}$$

The clock divider must be written with a value that ensures that the MDC clock does not exceed a frequency of 2.5 MHz.

Ethernet MAC Management Divider (MACMDV)

Offse	0x4004.8 t 0x024 R/W, res	3000 et 0x0000	0.0080													
_	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	I	I	I		1 1	rese	erved	ſ	1	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		r	1	rese	rved		1 1				I	D	IV	1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0
B	lit/Field		Nam	ne	o o o o Type Reset			Des	cription							
	31:8		reserv	ved	R	0	0x0000.00	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv		
	7:0		DI	/	R/	W	0x80	Clo	ck Divide	r						
								to tr	DIV bits ansmit d							

Register 11: Ethernet MAC Management Transmit Data (MACMTXD), offset 0x02C

This register holds the next value to be written to the MII Management registers.

Ethernet MAC Management Transmit Data (MACMTXD)

Base 0x4004.8000 Offset 0x02C Type R/W, reset 0x0000.0000

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	01 0/10 0 0	0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1			1 1	rese	erved		1	1		1	1	
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[1	1	T	r 1		1 I	M	I DTX	1	1	1		1	1	r
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
В	it/Field		Nar	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	rved	R	0	0x0000	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	f a reserv	•	
	15:0		MD	тх	R/	W	0x0000	MII	Register	Transm	it Data					
									мртх bi nagemen	•		data that	will be v	written in	the nex	t MII

Register 12: Ethernet MAC Management Receive Data (MACMRXD), offset 0x030

This register holds the last value read from the MII Management registers.

Ethernet MAC Management Receive Data (MACMRXD)

Base 0x4004.8000 Offset 0x030 Type R/W, reset 0x0000.0000

	,															
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		ſ	1 1	rese	erved	[1	1			1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		1	1	1	I I		1 1	ME	DRX		1	1			l	'
Туре	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:16		reser	ved	R	0	0x0000	com	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	15:0		MDF	₹X	R/	W	0x0000	MII	Register	Receive	e Data					
									MDRX bi	•		data that	was rea	d in the	previous	s MII

Register 13: Ethernet MAC Number of Packets (MACNP), offset 0x034

This register holds the number of frames that are currently in the RX FIFO. When NPR is 0, there are no frames in the RX FIFO, and the RXINT bit is clear. When NPR is any other value, at least one frame is in the RX FIFO, and the RXINT bit in the **MACRIS** register is set.

Note: The FCS bytes are not included in the NPR value. As a result, the NPR value could be zero before the FCS bytes are read from the FIFO. In addition, a new packet could be received before the NPR value reaches zero. To ensure that the entire packet is received, either use the DriverLib EthernetPacketGet() API or compare the number of bytes received to the Length field from the frame to determine when the packet has been completely read.

Offset	0x4004.8 t 0x034 RO, rese	8000 et 0x0000	.0000		,	,										
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[Ì	1				1 1		l erved			1				1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			•		rese	rved							NF	PR		'
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
В	it/Field 31:6		Nam		Tyj R(Reset 0x0000.00	Soft			•	he value			•	
											•	ucts, the dify-write			ed bit sh	ould be
	5:0		NPI	۲	R	С	0x00	Nun	nber of F	ackets ir	n Receiv	e FIFO				
								Whi		R field is		umber of than 0, th	•			

Ethernet MAC Number of Packets (MACNP)

Register 14: Ethernet MAC Transmission Request (MACTR), offset 0x038

This register enables software to initiate the transmission of the frame currently located in the TX FIFO. Once the frame has been transmitted from the TX FIFO or a transmission error has been encountered, the NEWTX bit is automatically cleared.

Offse	0x4004.8 t 0x038 R/W, rese		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[r		1	1	1		1 1	rese	erved		1	1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	ſ		T	1	1		1 1	reserved	1	[1	1	1	1	1	NEWTX
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	lit/Field		Nan	ne	Ту	ре	Reset	Des	cription							
	31:1		reser	ved	R	0	0x0000.00	com	ware sho patibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	vide hould be
	0		NEW	TX	R/	W	0	New	v Transm	ission						
								pacl tran	en set, th ket has b smission e the MA	een pla has bee	ced in th en comp	e TX FIF leted. If e	[:] O. This early trar	bit is cle nsmissio	ared on n is beir	ce the

Ethernet MAC Transmission Request (MACTR)

13.6 MII Management Register Descriptions

The *IEEE 802.3 standard* specifies a register set for controlling and gathering status from the PHY layer. The registers are collectively known as the MII Management registers. All addresses given are absolute. Addresses not listed are reserved; these addresses should not be written to and any data read should be ignored. Also see "Ethernet MAC Register Descriptions" on page 330.

Register 15: Ethernet PHY Management Register 0 – Control (MR0), address 0x00

This register enables software to configure the operation of the PHY layer. The default settings of these registers are designed to initialize the Ethernet Controller to a normal operational mode without configuration.

Ethernet PHY Management Register 0 – Control (MR0)

Base 0x4004.8000

Address 0x00 Type R/W, reset 0x3100

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RESET	LOOPBK	SPEEDSL	ANEGEN	PWRDN	ISO	RANEG	DUPLEX	COLT	1	I		reserved	I		
Type Reset	R/W 0	R/W 0	R/W 1	R/W 1	R/W 0	R/W 0	R/W 0	R/W 1	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0
E	Bit/Field		Nam	ne	Ty	ре	Reset	Desc	cription							
	15		RES	ET	R/	W	0	Rese	et Regis	ters						
								and	reinitializ	iis bit res zes interr his bit is	nal state	machine	es. Once			
	14		LOOF	РВК	R/	W	0	Loop	back M	ode						
								igno		is bit enal rnal inpu						
	13		SPEE	DSL	R/	W	1	Spee	ed Selec	t						
								Valu 1 0		ription les the 1 les the 1			•			.).
	12		ANEG	BEN	R/	W	1	Auto	-Negotia	ation Ena	able					
								Whe	n set, th	is bit ena	ables the	e auto-ne	gotiatior	n proces	S.	
	11		PWR	DN	R/	W	0	Pow	er Dowr	ı						
										iis bit pla a on the				low-pow	er consu	ming
	10		ISC)	R/	W	0	Isola	ite							
										iis bit isol ata being					a paths a	and
	9		RAN	EG	R/	W	0	Rest	art Auto	-Negotia	tion					
										is bit rest , this bit i				process.	Once the	erestart

Bit/Field	Name	Туре	Reset	Description
8	DUPLEX	R/W	1	Set Duplex Mode
				Value Description
				Enables the Full-Duplex mode of operation. This bit can be set by software in a manual configuration process or by the auto-negotiation process.
				0 Enables the Half-Duplex mode of operation.
7	COLT	R/W	0	Collision Test
				When set, this bit enables the Collision Test mode of operation. The COLT bit is set after the initiation of a transmission and is cleared once the transmission is halted.
6:0	reserved	R/W	0x00	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

These bits should always be written as zero.

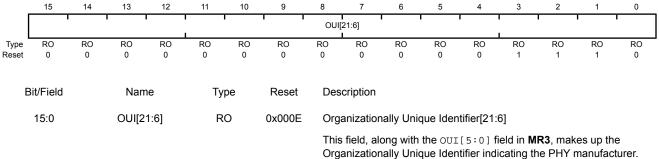
Register 16: Ethernet PHY Management Register 1 – Status (MR1), address 0x01

This register enables software to determine the capabilities of the PHY layer and perform its initialization and operation appropriately.

Ethernet PHY Management Register 1 – Status (MR1)

Base 0x4004.8000 Address 0x01 Type RO, reset 0x7849

турс	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
[reserved	100X_F	100X_H	10T_F	10T_H		reser	rved		MFPS	ANEGC	RFAULT	ANEGA	LINK	JAB	EXTD
Type Reset	RO 0	RO 1	RO 1	RO 1	RO 1	RO 0	RO 0	RO 0	RO 0	RO 1	RO 0	RC 0	RO 1	RO 0	RC 0	RO 1
E	Bit/Field		Nam	ne	Тур	ре	Reset	Des	cription							
	15		reserv	ved	R	C	0	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv	•	
	14		100X	_F	R	С	1	100	BASE-T	X Full-Du	uplex Mo	de				
										nis bit ind 00BASE				Controlle	r is capa	ble of
	13		100X	_Н	R	С	1	100	BASE-T	X Half-D	uplex Mo	ode				
										nis bit ind 00BASE				Controlle	r is capa	ble of
	12		10T_	F	R	С	1	10B	ASE-T F	ull-Duple	ex Mode					
										nis bit ind Full-Duple			thernet C	Controlle	r is capa	ble of
	11		10T_	_Н	R	С	1	10B	ASE-T H	lalf-Dupl	ex Mode	;				
									-	nis bit ind 0BASE-				Controlle	r is capa	ble of
	10:7		reserv	ved	R	С	0	com	patibility	ould not with futu cross a r	ure produ	ucts, the	value of	a reserv	•	
	6		MFP	'S	R	С	1	Man	agemer	t Frame	s with Pr	eamble	Suppres	sed		
										nis bit ind manager			-			•
	5		ANEC	GC	R	С	0	Auto	-Negoti	ation Co	mplete					
								com	pleted a	nis bit ind nd that t ntion prot	he exten	ded regi	-	•		as been
	4		RFAL	JLT	R	С	0	Rem	note Fau	lt						
								dete		nis bit ind nis bit rer 3.						

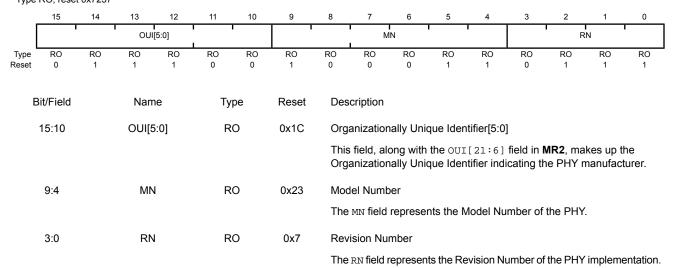

Bit/Field	Name	Туре	Reset	Description
3	ANEGA	RO	1	Auto-Negotiation
				When set, this bit indicates that the Ethernet Controller has the ability to perform auto-negotiation.
2	LINK	RO	0	Link Made
				When set, this bit indicates that a valid link has been established by the Ethernet Controller.
1	JAB	RC	0	Jabber Condition
				When set, this bit indicates that a jabber condition has been detected by the Ethernet Controller. This bit remains set until it is read, even if the jabber condition no longer exists.
0	EXTD	RO	1	Extended Capabilities
				When set, this bit indicates that the Ethernet Controller provides an extended set of capabilities that can be accessed through the extended register set.

Register 17: Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2), address 0x02

This register, along with **MR3**, provides a 32-bit value indicating the manufacturer, model, and revision information.

Ethernet PHY Management Register 2 – PHY Identifier 1 (MR2)

Base 0x4004.8000 Address 0x02 Type RO, reset 0x000E



Register 18: Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3), address 0x03

This register, along with **MR2**, provides a 32-bit value indicating the manufacturer, model, and revision information.

Ethernet PHY Management Register 3 – PHY Identifier 2 (MR3)

Base 0x4004.8000 Address 0x03 Type RO, reset 0x7237

Register 19: Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4), address 0x04

This register provides the advertised abilities of the Ethernet Controller used during auto-negotiation. Bits 8:5 represent the Technology Ability Field bits. This field can be overwritten by software to auto-negotiate to an alternate common technology. Writing to this register has no effect until auto-negotiation is re-initiated by setting the RANEG bit in the MR0 register.

	ess 0x04 R/W, res	et 0x01E1														
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NP	reserved	RF		reserv	ved		A3	A2	A1	A0			S		'
Type Reset	RO 0	RO 0	R/W 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 1	R/W 1	RO 0	RO 0	RO 0	RO 0	RO 1
В	it/Field		Nam	ne	Тур	e	Reset	Des	cription							
	15		NF)	RC	D	0	Nex	t Page							
								Pag	en set, th e exchar abilities.						•	
	14		reserved RO RF R/W			D	0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv	•	
	13		RF	:	R/V	N	0	Ren	note Fau	It						
									en set, th dition ha				partner	that a Re	emote Fa	ault
	12:9		reserv	ved	RC)	0x0	com	ware sho patibility served ac	with futu	ure produ	ucts, the	value of	a reserv		
	8		A3		R/V	N	1	Tecl	nnology	Ability Fi	eld[3]					
								100 that	en set, th Base-TX this moo nitiated w	full-dup le is not	lex signa used, th	aling prot is bit car	tocol. If s to be clea	oftware red and	wants to	ensure
	7		A2		R/V	N	1	Tecl	nnology	Ability Fi	eld[2]					
								100 that	en set, th Base-TX this moo nitiated w	half-dup le is not	olex sign used, th	aling pro is bit car	tocol. If s be clea	software red and a	wants to	ensure
	6		A1		R/V	N	1	Tecl	nnology	Ability Fi	eld[1]					
								10B that	en set, th ASE-T fu this moo hitiated w	ull-duple: le is not	x signalii used, th	ng protoo is bit can	col. If sof t be clea	tware ware tware wa	ants to e	nsure

Ethernet PHY Management Register 4 – Auto-Negotiation Advertisement (MR4)

Base 0x4004.8000

Bit/Field	Name	Туре	Reset	Description
5	A0	R/W	1	Technology Ability Field[0]
				When set, this bit indicates that the Ethernet Controller supports the 10BASE-T half-duplex signaling protocol. If software wants to ensure that this mode is not used, this bit can be cleared and auto-negotiation re-initiated with the RANEG bit in the MR0 register.
4:0	S	RO	0x1	Selector Field
				The s field encodes 32 possible messages for communicating between Ethernet Controllers. This field is hard-coded to 0x01, indicating that the Stellaris [®] Ethernet Controller is <i>IEEE 802.3</i> compliant.

Register 20: Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5), address 0x05

This register provides the advertised abilities of the link partner's Ethernet Controller that are received and stored during auto-negotiation.

Ethernet PHY Management Register 5 – Auto-Negotiation Link Partner Base Page Ability (MR5)

Base 0x4004.8000 Address 0x05 Type RO, reset 0x0000

г	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	NP	ACK	RF			-	A[7	:0]	· ·		-			S	-			
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0		
Reset	0	0	0	0	0	Ū	Ū	0	U	Ū	Ū	0	0	0	Ū	Ū		
E	Bit/Field			ne	Ту	ре	Reset	Des	Description									
	15		NF	b	RO		0	Nex	t Page									
								When set, this bit indicates that the link partner's Ethernet Controller is capable of Next page exchanges to provide more detailed information on the Ethernet Controller's capabilities.										
	14			ACK			0	Ack	Acknowledge									
												nat the Ethernet Controller has successfully dvertised abilities during auto-negotiation.						
	13		RF	:	R	0	0	Ren	note Fau	lt								
									d as a st rmation f			t mechar mer.	nism for t	transmitt	ting simp	ole fault		
	12:5		A[7:	0]	R	0	0x00	Tech	nnology /	Ability Fi	ield							
								by tl that Stel	he Etheri bits 12:9	net Conf describ	troller. S be function	ndividual ee the M ons that a r. Refer to	R4 regis are not ir	ter for de	efinitions	s. Note he		
	4:0		s		R	0	0x00	Sele	ector Fiel	d								
									୍ତ field e ernet Cor			e messag	es for co	ommunic	ating be	etween		
								Valu	ue		[Descriptio	on					
								0x0	0		F	Reserved						
								0x0)1		I	EEE Std	802.3					
								0x0	2		I	EEE Std	802.9 IS	SLAN-16	Т			
								0x0	3		I	EEE Std	802.5					
								0x0	4		I	EEE Std	1394					
								0x0	5–0x1F		F	Reserved						

Register 21: Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6), address 0x06

This register enables software to determine the auto-negotiation and next page capabilities of the Ethernet Controller and the link partner after auto-negotiation.

Ethernet PHY Management Register 6 – Auto-Negotiation Expansion (MR6)

Base 0x4004.8000 Address 0x06 Type RO, reset 0x0000

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		
	I		1			reserved					1	PDF	LPNPA	reserved	PRX	LPANEGA		
Туре	RO	RO	RO	RO 0	RO	RO	RO	RO	RO 0	RO 0	RO	RC	RO	RO 0	RC 0	RO		
Reset	0	0	0	0	0	0	0	0	0	U	0	0	0	0	U	0		
Bit/Field Name			ne	Ту	ре	Reset	Des	Description										
	15:5 reserved			ved	R	0	0x000	com	Software should not rely on the value of a reserved bit. To provic compatibility with future products, the value of a reserved bit sho preserved across a read-modify-write operation.									
4 PDF			F	R	С	0	Parallel Detection Fault											
								When set, this bit indicates that more than one technology has been detected at link up. This bit is cleared when read.										
	3 LPNPA			R	0	0	Link	Link Partner is Next Page Able										
									en set, th t page.	iis bit inc	licates th	nat the lir	nk partne	er is enat	oled to s	support		
	2	reserved			R	0	0	com	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									
	1		PR	х	R	С	0	New	v Page R	eceived								
														s been re ntil the re		from the s read.		
	0		LPANE	EGA	R	0	0	Link	Partner	is Auto-	Negotiat	ion Able						
									en set, th o-negotia		licates th	nat the lir	nk partne	er is enat	oled to s	support		

Register 22: Ethernet PHY Management Register 16 – Vendor-Specific (MR16), address 0x10

This register enables software to configure the operation of vendor-specific modes of the Ethernet Controller.

Ethernet PHY Management Register 16 – Vendor-Specific (MR16)

Base 0x4004.8000 Address 0x10 Type R/W, reset 0x0140

.)po	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	RPTR	INPOL	reserved	ТХНІМ	SQEI	NL10	<u>г</u>	rese	l erved	1	APOL	RVSPOL	rese	rved	PCSBP	RXCC
Type Reset	R/W 0	R/W0 0	RO 0	R/W 0	R/W 0	R/W 0	RO 0	RO 1	RO 0	RO 1	R/W 0	R/W 0	RO 0	RO 0	R/W 0	R/W 0
Reber	0	0	0	0	0	Ū	0	·	0	·	0	Ū	0	0	Ū	0
Bit/Field			Nam	ne	Ту	ре	Reset	Des	Description							
	15		RPT	R	R/	W	0	Rep	eater M	ode						
								full-		s not allo		e repeater the Carr		•		
	14		INPO	DL	R/\	W0	0	Inte	rrupt Po	larity						
								Val	ue Des	cription						
								1	Sets	the pola	rity of th	e PHY in	terrupt t	o be act	ive High.	
								0	Sets	the pola	rity of th	ie PHY in	terrupt t	o active	Low.	
								Imp	portan	Low i	nterrupt	Media Ac s from the 0 to ensi	e PHY, tl	his bit m	ust alway	
	13		reserv	ved	R	0	0	com	patibility	/ with futu	ure prod	he value ucts, the dify-write	value of	a reserv	•	
	12		ТХН	IM	R/	W	0	Trar	nsmit Hig	gh Imped	lance M	ode				
								mod	le, the T	XOP and T	rxon tra	e transmit Insmitter p ins remai	pins are p	, put into a	a high imp	
	11		SQE	ΞI	R/	W	0	SQE	E Inhibit	Testing						
								Whe	en set, tl	nis bit pro	ohibits 1	0BASE-T	SQE te	sting.		
									-		0	s perform ne transm				on pulse
	10		NL1	0	R/	W	0	Nati	ural Loo	pback Mo	ode					
								this Ioop	mode, t	he transn	nission (e 10BAS data rece e data pat	ived by t	the Ethe	rnet Con	troller is
	9:6		reserv	ved	R	0	0x5	com	patibility	/ with futu	ure prod	the value ucts, the dify-write	value of	a reserv		

Bit/Field	Name	Туре	Reset	Description
5	APOL	R/W	0	Auto-Polarity Disable
				When set, this bit disables the Ethernet Controller's auto-polarity function.
				If this bit is clear, the Ethernet Controller automatically inverts the received signal due to a wrong polarity connection during auto-negotiation when in 10BASE-T mode.
4	RVSPOL	R/W	0	Receive Data Polarity
				This bit indicates whether the receive data pulses are being inverted.
				If the APOL bit is 0, then the RVSPOL bit is read-only and indicates whether the auto-polarity circuitry is reversing the polarity. In this case, if RVSPOL is set, it indicates that the receive data is inverted; if RVSPOL is clear, it indicates that the receive data is not inverted.
				If the APOL bit is 1, then the RVSPOL bit is writable and software can force the receive data to be inverted. Setting RVSPOL to 1 forces the receive data to be inverted; clearing RVSPOL does not invert the receive data.
3:2	reserved	RO	0x0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.
1	PCSBP	R/W	0	PCS Bypass
				When set, this bit enables the bypass of the PCS and scrambling/descrambling functions in 100BASE-TX mode. This mode is only valid when auto-negotiation is disabled and 100BASE-TX mode is enabled.
0	RXCC	R/W	0	Receive Clock Control
				When set, this bit enables the Receive Clock Control power saving mode if the Ethernet Controller is configured in 100BASE-TX mode. This mode shuts down the receive clock when no data is being received to save power. This mode should not be used when PCSBP is enabled and is automatically disabled when the LOOPBK bit in the MR0 register is set.

Register 23: Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17), address 0x11

This register provides the means for controlling and observing the events which trigger a PHY layer interrupt in the **MACRIS** register. This register can also be used in a polling mode via the Media Independent Interface as a means to observe key events within the PHY layer via one register address. Bits 0 through 7 are status bits which are each set based on an event. These bits are cleared after the register is read. Bits 8 through 15 of this register, when set, enable the corresponding bit in the lower byte to signal a PHY layer interrupt in the **MACRIS** register.

Addr	0x4004.8 ess 0x11 R/W, rese)													
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	JABBER_IE	RXER_IE	PRX_IE	PDF_IE	LPACK_IE	LSCHG_IE	RFAULT_IE	ANEGCOMP_IE	JABBER_INT	RXER_INT	PRX_INT	PDF_INT	LPACK_INT	LSCHG_INT	RFAULT_INT	ANEGCOMP_INT
Type Reset	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	R/W 0	RC 0	RC 0	RC 0	RC 0	RC 0	RC 0	RC 0	RC 0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	15		JABBE	R_IE	R/	W	0	Jab	ber Inter	rupt Ena	ble					
										nis bit en by the Et	-		errupts w r.	/hen a Ja	abber co	ndition
	14		RXER	_IE	R/	W	0	Rec	eive Err	or Interru	ipt Enab	le				
										nis bit en the Ethe	•		errupts w	/hen a re	eceive er	ror is
	13		PRX_	_IE	R/	W	0	Pag	e Receiv	ed Inter	rupt Ena	ble				
										is bit ena net Cont	•	em inter	rupts whe	en a new	page is I	received
	12		PDF_	_IE	R/	W	0	Par	allel Dete	ection Fa	ult Interi	upt Ena	ble			
										nis bit en cted by f			errupts w htroller.	/hen a Pa	arallel D	etection
	11		LPAC	<_IE	R/	W	0	LP /	Acknowl	edge Inte	errupt En	able				
											,		errupts w register o			
	10		LSCHO	G_IE	R/	W	0	Link	Status	Change	Interrupt	Enable				
									en set, th n OK to I		bles syst	em inter	rupts whe	en the lin	k status o	changes
	9		RFAUL	T_IE	R/	W	0	Rer	note Fau	lt Interru	pt Enabl	е				
										nis bit en signaled			errupts w er.	/hen a re	emote fai	ult
	8	А	NEGCO	MP_IE	R/	W	0	Auto	o-Negoti	ation Co	mplete Ir	nterrupt	Enable			
										nis bit en as compl	•		errupts w y.	hen the	auto-neថ្	gotiation

Ethernet PHY Management Register 17 – Interrupt Control/Status (MR17)

Bit/Field	Name	Туре	Reset	Description
7	JABBER_INT	RC	0	Jabber Event Interrupt
				When set, this bit indicates that a Jabber event has been detected by the 10BASE-T circuitry.
6	RXER_INT	RC	0	Receive Error Interrupt
				When set, this bit indicates that a receive error has been detected by the Ethernet Controller.
5	PRX_INT	RC	0	Page Receive Interrupt
				When set, this bit indicates that a new page has been received from the link partner during auto-negotiation.
4	PDF_INT	RC	0	Parallel Detection Fault Interrupt
				When set, this bit indicates that a parallel detection fault has been detected by the Ethernet Controller during the auto-negotiation process.
3	LPACK_INT	RC	0	LP Acknowledge Interrupt
				When set, this bit indicates that an FLP burst has been received with the ACK bit set in the MR5 register during auto-negotiation.
2	LSCHG_INT	RC	0	Link Status Change Interrupt
				When set, this bit indicates that the link status has changed from OK to FAIL.
1	RFAULT_INT	RC	0	Remote Fault Interrupt
				When set, this bit indicates that a remote fault condition has been signaled by the link partner.
0	ANEGCOMP_INT	RC	0	Auto-Negotiation Complete Interrupt
				When set, this bit indicates that the auto-negotiation sequence has completed successfully.

Register 24: Ethernet PHY Management Register 18 - Diagnostic (MR18), address 0x12

This register enables software to diagnose the results of the previous auto-negotiation.

Ethernet PHY Management Register 18 – Diagnostic (MR18)

Base 0x4004.8000 Address 0x12 Type RO, reset 0x0000

_	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		reserved		ANEGF	DPLX	RATE	RXSD	RX_LOCK	I			rese	rved		1	•
Type Reset	RO 0	RO 0	RO 0	RC 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0
В	lit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	15:13		reser	ved	R	0	0x0	com	patibility	with futu	ire prodi	he value ucts, the dify-write	value of	a reserv		
	12		ANE	GF	R	С	0	Auto	-Negotia	ation Fail	ure					
								auto				it no com gotiation				•
	11		DPL	х	R	0	0	Dup	lex Mode	е						
								deno	ominator	found d	uring the	nat Full-D e auto-ne common	gotiatior	n proces	s. Other	
	10		RAT	E	R	0	0	Rate	9							
								deno	ominator	found d	uring the	at 100BA e auto-ne ommon c	gotiatior	n proces	s. Other	
	9		RXS	D	R	0	0	Rec	eive Det	ection						
								(in 1	00BASE		de) or th	nat receiv at Manch e).				
	8		RX_LC	ОСК	R	0	0	Rec	eive PLL	Lock						
								rece	,	al for the		at the Ro d speed o				
	7:0		reserv	ved	R	0	0x00	com	patibility	with futu	ire prodi	he value ucts, the dify-write	value of	a reserv		

Register 25: Ethernet PHY Management Register 19 – Transceiver Control (MR19), address 0x13

This register enables software to set the gain of the transmit output to compensate for transformer loss.

Ethernet PHY Management Register 19 – Transceiver Control (MR19)

Base 0x4004.8000 Address 0x13 Type R/W, reset 0x4000

	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	
	TX	0	Ì		г т 1		1 1		rese	rved		I	1	Î	1	1	
Туре	R/W	R/W	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	
Reset	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
E	Bit/Field		Nam	e	Тур	e	Reset	Dese	cription								
	15:14		ТХО)	R/V	V	0x1	Tran	smit Arr	plitude S	Selection	ו					
The TXO field sets the transmit outp transformer insertion loss. Value Description													amplitu	de to ac	count for	transmit	
								Valu	le Desc	ription							
								0x0	Gain	set for C	.0dB of	insertion	loss				
								0x1	Gain	set for C	.4dB of	insertion	loss				
								0x2	Gain	set for C	.8dB of	insertion	loss				
								0x3	Gain	set for 1	.2dB of	insertion	loss				
	13:0		reserv	ed	RC)	0x000	00 Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.									

Register 26: Ethernet PHY Management Register 23 – LED Configuration (MR23), address 0x17

This register enables software to select the source that causes the LED1 and LED0 signals to toggle.

Ethernet PHY Management Register 23 – LED Configuration (MR23)

Base 0x4004.8000 Address 0x17 Type R/W, reset 0x0010

iype	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Γ	1		1	Î	n erved	1	1 1	J	•	LED'		1	, , , , , , , , , , , , , , , , , , ,	1	I 0[3:0]	_ آ
Type L	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
В	it/Field		Nan	ne	Ту	ре	Reset	Desc	cription							
	15:8		reser	ved	R	0	0x00	com	patibility	ould not with futu cross a r	ure prod	ucts, the	value of	f a reserv		
	7:4		LED1	[3:0]	R/	W	0x1	LED	1 Sourc	e						
								The	led1 fi	eld selec	ts the sc	ource tha	t toggles	s the LEI	o1 signal	
								Valu	ie Des	cription						
								0x0	Link	OK						
								0x1	RX o	or TX Act	ivity (De	fault LED	D1)			
								0x2	Rese	erved						
								0x3	Rese	erved						
								0x4	Rese	erved						
								0x5	1005	BASE-TX	mode					
								0x6	10B/	ASE-T m	ode					
								0x7	Full-	Duplex						
								0x8	Link	OK & Bli	nk=RX o	or TX Ac	tivity			
	3:0		LED0	[3:0]	R/	W	0x0	LED	0 Sourc	e						
								The	ledo fi	eld selec	ts the so	ource tha	t toggles	s the LEI	00 signal	
								Valu	le Des	cription						
								0x0	Link	OK (Def	ault LED	0)				
								0x1	RX o	or TX Act	ivity					
								0x2	Rese	erved						
								0x3	Rese	erved						
								0x4	Res	erved						
								0x5	1008	BASE-TX	mode					
								0x6	10B/	ASE-T m	ode					
								0x7	Full-	Duplex						
								0x8	Link	OK & Bli	nk=RX o	or TX Ac	tivity			

Register 27: Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24), address 0x18

This register enables software to control the behavior of the MDI/MDIX mux and its switching capabilities.

Ethernet PHY Management Register 24 – MDI/MDIX Control (MR24)

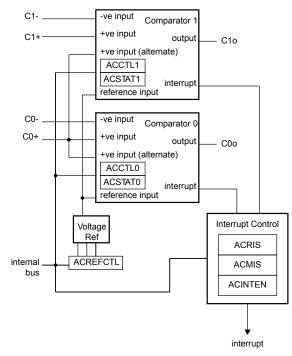
Base 0x4004.8000 Address 0x18 Type R/W, reset 0x00C0

Type R/W, Teset 0x00C0																
-	15 14 13 12				11	10	9	8	7	6	5	4	3	2	1	0
	г		1	rese	rved		T I		PD_MODE	AUTO_SW	MDIX	MDIX_CM		MDIX	_SD	1
Type Reset	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	RO 0	R/W 1	R/W 1	R/W 0	RO 0	R/W 0	R/W 0	R/W 0	R/W 0
Reser	0	0	0	0	0	0	0	0			0	0	0	0	0	Ū
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	scription							
	15:8		reserv	ved	R	0	0x00	con	npatibility	ould not r with futu cross a re	re prod	ucts, the	value of	f a reserv		
	7		PD_M	DDE	R/	W	1	Par	allel Dete	ection Mc	de					
										nables the n auto-ne					/s auto-s	witching
	6		AUTO	_SW	R/	W	1	Aut	o-Switch	ing Enab	le					
								Wh	en set, e	nables A	uto-Swi	tching of	the MDI	/MDIX m	ux.	
	5		MDI	х	R/	W	0	Aut	o-Switch	ing Confi	guratior	ı				
									en set, ir ifiguratior	ndicates t n.	hat the	MDI/MDI	X mux is	s in the ci	ossove	r (MDIX)
									en 0, it ir figuratio	ndicates t n.	hat the	mux is in	the pas	s-throug	n (MDI)	
								AUT		טדס_sw t t is 0, the						
	4		MDIX_	CM	R	0	0	Aut	o-Switch	ing Comp	olete					
								lf 0,	, it indica	ndicates t tes that tl ng is disa	ne sequ					npleted.
	3:0		MDIX_	_SD	R/	W	0x0	Aut	o-Switch	ing Seed						
									ctly affect	ovides the cts the nu				0 0		
								A 0	sets the	seed to ()x5.					

14 Analog Comparators

An analog comparator is a peripheral that compares two analog voltages, and provides a logical output that signals the comparison result.

Note: Not all comparators have the option to drive an output pin.

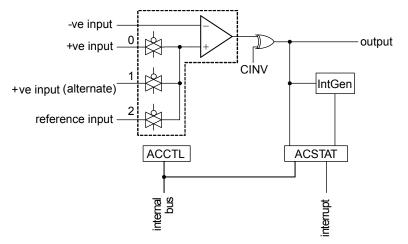

The comparator can provide its output to a device pin, acting as a replacement for an analog comparator on the board, or it can be used to signal the application via interrupts to cause it to start capturing a sample sequence.

The Stellaris[®] Analog Comparators module has the following features:

- Two independent integrated analog comparators
- Configurable for output to drive an output pin or generate an interrupt
- Compare external pin input to external pin input or to internal programmable voltage reference
- Compare a test voltage against any one of these voltages
 - An individual external reference voltage
 - A shared single external reference voltage
 - A shared internal reference voltage

14.1 Block Diagram

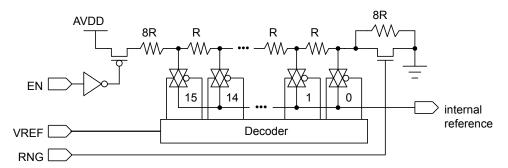

14.2 Functional Description


Important: It is recommended that the Digital-Input enable (the GPIODEN bit in the GPIO module) for the analog input pin be disabled to prevent excessive current draw from the I/O pads.

The comparator compares the VIN- and VIN+ inputs to produce an output, VOUT.

VIN- < VIN+, VOUT = 1 VIN- > VIN+, VOUT = 0

As shown in Figure 14-2 on page 368, the input source for VIN- is an external input. In addition to an external input, input sources for VIN+ can be the +ve input of comparator 0 or an internal reference.


A comparator is configured through two status/control registers (ACCTL and ACSTAT). The internal reference is configured through one control register (ACREFCTL). Interrupt status and control is configured through three registers (ACMIS, ACRIS, and ACINTEN).

Typically, the comparator output is used internally to generate controller interrupts. It may also be used to drive an external pin.

Important: The ASRCP bits in the **ACCTLn** register must be set before using the analog comparators.

14.2.1 Internal Reference Programming

The structure of the internal reference is shown in Figure 14-3 on page 369. This is controlled by a single configuration register (**ACREFCTL**). Table 14-1 on page 369 shows the programming options to develop specific internal reference values, to compare an external voltage against a particular voltage generated internally.

Figure 14-3. Comparator Internal Reference Structure

ACREFCTL Reg	gister	Output Reference Voltage Based on VREF Field Value
EN Bit Value	RNG Bit Value	
EN=0	RNG=X	0 V (GND) for any value of VREF; however, it is recommended that RNG=1 and VREF=0 for the least noisy ground reference.
EN=1	RNG=0	Total resistance in ladder is 31 R. $V_{RBF} = AV_{DD} \times \frac{R_{VRBF}}{R_{T}}$ $V_{RBF} = AV_{DD} \times \frac{(VREF + 8)}{31}$ $V_{RBF} = 0.85 + 0.106 \times VREF$ The range of internal reference in this mode is 0.85-2.448 V.
	RNG=1	Total resistance in ladder is 23 R. $V_{REF} = AV_{DD} \times \frac{R_{VREF}}{R_{T}}$ $V_{REF} = AV_{DD} \times \frac{VREF}{23}$ $V_{REF} = 0.143 \times VREF$ The range of internal reference for this mode is 0-2.152 V.

14.3 Initialization and Configuration

The following example shows how to configure an analog comparator to read back its output value from an internal register.

- 1. Enable the analog comparator 0 clock by writing a value of 0x0010.0000 to the **RCGC1** register in the System Control module.
- 2. In the GPIO module, enable the GPIO port/pin associated with CO- as a GPIO input.
- **3.** Configure the internal voltage reference to 1.65 V by writing the **ACREFCTL** register with the value 0x0000.030C.

- **4.** Configure comparator 0 to use the internal voltage reference and to *not* invert the output by writing the **ACCTL0** register with the value of 0x0000.040C.
- 5. Delay for some time.
- 6. Read the comparator output value by reading the **ACSTAT0** register's OVAL value.

Change the level of the signal input on CO- to see the OVAL value change.

14.4 Register Map

Table 14-2 on page 370 lists the comparator registers. The offset listed is a hexadecimal increment to the register's address, relative to the Analog Comparator base address of 0x4003.C000.

Table 14-2. Analog Comparators Register Map

Offset	Name	Туре	Reset	Description	See page
0x000	ACMIS	R/W1C	0x0000.0000	Analog Comparator Masked Interrupt Status	371
0x004	ACRIS	RO	0x0000.0000	Analog Comparator Raw Interrupt Status	372
0x008	ACINTEN	R/W	0x0000.0000	Analog Comparator Interrupt Enable	373
0x010	ACREFCTL	R/W	0x0000.0000	Analog Comparator Reference Voltage Control	374
0x020	ACSTAT0	RO	0x0000.0000	Analog Comparator Status 0	375
0x024	ACCTL0	R/W	0x0000.0000	Analog Comparator Control 0	376
0x040	ACSTAT1	RO	0x0000.0000	Analog Comparator Status 1	375
0x044	ACCTL1	R/W	0x0000.0000	Analog Comparator Control 1	376

14.5 **Register Descriptions**

The remainder of this section lists and describes the Analog Comparator registers, in numerical order by address offset.

Register 1: Analog Comparator Masked Interrupt Status (ACMIS), offset 0x000

This register provides a summary of the interrupt status (masked) of the comparators.

Analog Comparator Maske	d Interrupt Status (ACMIS)
-------------------------	----------------------------

Base 0x4003.C000

Offset 0x000 Type R/W1C, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	r		1	1	i		1 I	rese	erved	1	1	1	r	1	1	1
ц Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	r		1	1	1		reser	rved	1 1	1	T	T	r 1	1	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W1C	R/W1C
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
B	Bit/Field Name 31:2 reserved					pe O	Reset 0x00	Soff com pres	npatibility served a	with fut cross a	ure prod read-mo	the value ucts, the dify-write	value of operation	a reserv	•	
	1		IN	1	R/W	/10	0	Cor	nparator	1 Mask	ed Interr	upt Statu	S			
									es the ma ar the per		•	state of th	iis interru	upt. Writ	e 1 to thi	s bit to
	0 IN0					/1C	0	Cor	nparator	0 Mask	ed Interr	upt Statu	S			
									es the ma ar the per		•	state of th	iis interru	upt. Writ	e 1 to thi	s bit to

Register 2: Analog Comparator Raw Interrupt Status (ACRIS), offset 0x004

This register provides a summary of the interrupt status (raw) of the comparators.

Analog Comparator Raw Interrupt Status (ACRIS)

Base 0x4003.C000 Offset 0x004 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				· ·	rese	l erved	1		1	1	1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		ſ	1				reser	rved	r 1	I		1	1	ſ	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ie	Ту	pe	Reset	Des	cription							
	31:2		reserv	/ed	R	0	0x00	com	tware sho npatibility served a	with futu	ure prod	ucts, the	value of	a reserv	•	
	1		IN1		R	0	0	Con	nparator	1 Interru	pt Statu	s				
								Whe 1.	en set, in	dicates tl	hat an in	terrupt h	as been g	generate	ed by con	nparator
	0		INC)	R	0	0	Con	nparator	0 Interru	pt Statu	s				
								Whe 0.	en set, in	dicates tl	nat an in	terrupt h	as been g	generate	ed by con	nparator

Register 3: Analog Comparator Interrupt Enable (ACINTEN), offset 0x008

This register provides the interrupt enable for the comparators.

Offse	0x4003. t 0x008 R/W, res	•	0.0000				,									
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
[T	1	1		ſ	т т	rese	erved		1	1	1 I		1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		T	1	1	1	r	reser	ved	1 1	I	1	1	1	1	IN1	IN0
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
			Niere		т.		Deset	D								
E	sit/Field		Nan	ne	Ty	ре	Reset	Des	cription							
	Bit/Field Name 31:2 reserved				R	0	0x00	con	tware sho npatibility served ac	with fut	ure prod	ucts, the	value of	a reserv	•	
	1		IN	1	R/	W	0	Cor	nparator	1 Interru	upt Enab	le				
								Whe	en set, er	ables th	ie contro	ller interr	upt from	the com	parator 1	l output.
	0		IN	0	R/	W	0	Cor	nparator	0 Interru	upt Enab	le				
								Whe	en set, er	ables th	ne contro	ller interr	upt from	the com	parator () output.

Analog Comparator Interrupt Enable (ACINTEN)

Register 4: Analog Comparator Reference Voltage Control (ACREFCTL), offset 0x010

This register specifies whether the resistor ladder is powered on as well as the range and tap.

Analog Comparator Reference Voltage Control (ACREFCTL)

Base 0x4003.C000 Offset 0x010 Type R/W, reset 0x0000.0000

1390	1011,100		0.0000													
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
		1	1	1		1	1	rese	erved	1	1	1		1	1	1
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			rese	erved		•	EN	RNG		rese	rved	1		VF	REF	1
Туре	RO	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	Bit/Field		Nam	20	т	200	Reset	Dee	cription							
	ni/Fielu		Indii	le	Ty	ре	Resei	Des	scription							
	31:10		reserv	ved	R	0	0x00					he value			•	
											•	ucts, the dify-write			ed bit sl	nould be
								prot					oporadi			
	9		EN	1	R/	W	0	Res	sistor Lad	lder Ena	ble					
												the resis		•		-
									stor ladd analog \		owered	. If 1, the	resistor	ladder is	s connec	ted to
								This	s bit is re	set to 0 s	so that t	he intern	al refere	nce cons	sumes th	e least
								amo	ount of p	ower if n	ot used	and prog	rammed	Ι.		
	8		RN	G	R/	W	0	Res	sistor Lad	lder Ran	ge					
								The	RNG bit	specifies	the ran	ge of the	e resistor	ladder.	If 0, the	resistor
											istance	of 31 R.	If 1, the r	resistor la	adder ha	s a total
								resi	stance o	1 23 R.						
	7:4		reserv	ved	R	0	0x00					he value			•	
											•	ucts, the dify-write			ed bit sl	nould be
								prea		0.000 a I		any will	oporadi			
	3:0		VRE	F	R/	W	0x00	Res	sistor Lad	der Volt	age Ref					
										•		e resisto		•	•	•
									•	•		oltage co e availab	•	•		
											•	availab		•		

14-1 on page 369 for some output reference voltage examples.

Register 5: Analog Comparator Status 0 (ACSTAT0), offset 0x020 Register 6: Analog Comparator Status 1 (ACSTAT1), offset 0x040

These registers specify the current output value of the comparator.

Analog Comparator Status 0 (ACSTAT0)

Base 0x4003.C000 Offset 0x020 Type RO, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1				т т	rese	rved	1 1		1				
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
			T		, , ,		reser	ved	1	1		1		ſ	OVAL	reserved
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field 31:2		Narr resen	ved	Tyj R(C	Reset 0x00	Soft com	patibility	ould not i v with futu cross a re	ire prod	ucts, the	value of	a reserv		
	1		OVA	L	R	С	0	Con	nparator	Output \	/alue					
								The	OVAL bi	it specifie	s the cu	irrent out	put valu	e of the	compara	itor.
	0		reserv	ved	R	C	0	com	patibility	ould not i with futu cross a re	ire prod	ucts, the	value of	a reserv	•	

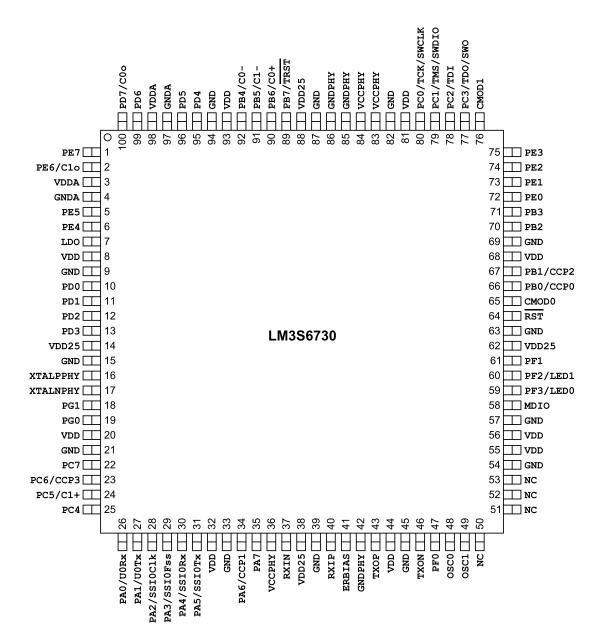
Register 7: Analog Comparator Control 0 (ACCTL0), offset 0x024 Register 8: Analog Comparator Control 1 (ACCTL1), offset 0x044

These registers configure the comparator's input and output.

Analog Comparator Control 0 (ACCTL0)

Base 0x4003.C000 Offset 0x024 Type R/W, reset 0x0000.0000

	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
			1 1			1	т т	rese	rved	1	1	1 1		1	1	
Туре	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	1		reserved			AS	RCP		rese	l erved	1	ISLVAL	IS	EN	CINV	reserved
Туре	RO	RO	RO	RO	RO	R/W	R/W	RO	RO	RO	RO	R/W	R/W	R/W	R/W	RO
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
E	Bit/Field		Nam	ne	Ту	ре	Reset	Des	cription							
	31:11		reserv	/ed	R	0	0x00	Soft	ware sh	ould not	relv on	the value	of a res	erved bit	. To pro	vide
												ucts, the			•	
								pres	served a	cross a r	ead-mo	dify-write	operatio	on.		
	10:9		ASR	CP	R/	W	0x00	Ana	log Sou	rce Posit	ive					
								Tho	A CDCD f	ield snec	ifics the	source of	inputvo	ltage to t	ha V/N+	terminal
												dings for				terminar
								\ /- I								
									ue Fund							
								0x0	Pin v	alue						
								0x1	Pin ۱	alue of (C0+					
								0x2	Inter	nal volta	ge refer	ence				
								0x3	Rese	erved						
	8:5		reserv	/ed	R	0	0					the value				
												lucts, the dify-write			/ed bit si	nould be
	4		ISLV/	Δ1	D	W	0			nse Leve		÷	-			
	4		ISLV/	٦ L	r./	vv	U									
										•		e sense va mode If		•	0	


an interrupt if in Level Sense mode. If 0, an interrupt is generated if the comparator output is Low. Otherwise, an interrupt is generated if the comparator output is High.

Bit/Field	Name	Туре	Reset	Description
3:2	ISEN	R/W	0x0	Interrupt Sense
				The ISEN field specifies the sense of the comparator output that generates an interrupt. The sense conditioning is as follows:
				Value Function
				0x0 Level sense, see ISLVAL
				0x1 Falling edge
				0x2 Rising edge
				0x3 Either edge
1	CINV	R/W	0	Comparator Output Invert
				The CINV bit conditionally inverts the output of the comparator. If 0, the output of the comparator is unchanged. If 1, the output of the comparator is inverted prior to being processed by hardware.
0	reserved	RO	0	Software should not rely on the value of a reserved bit. To provide compatibility with future products, the value of a reserved bit should be preserved across a read-modify-write operation.

15 Pin Diagram

The LM3S6730 microcontroller pin diagrams are shown below.

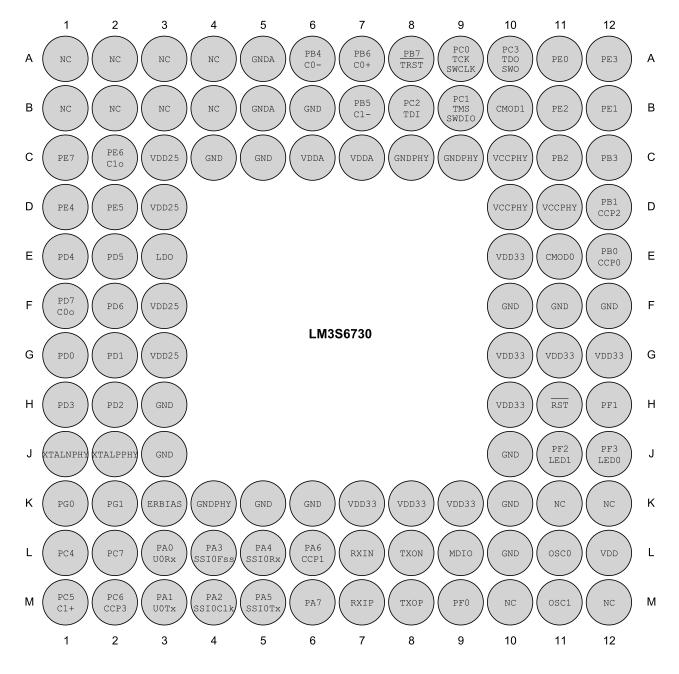


Figure 15-2. 108-Ball BGA Package Pin Diagram (Top View)

16 Signal Tables

The following tables list the signals available for each pin. Functionality is enabled by software with the **GPIOAFSEL** register.

Important: All multiplexed pins are GPIOs by default, with the exception of the five JTAG pins (PB7 and PC[3:0]) which default to the JTAG functionality.

Table 16-1 on page 380 shows the pin-to-signal-name mapping, including functional characteristics of the signals. Table 16-2 on page 383 lists the signals in alphabetical order by signal name.

Table 16-3 on page 387 groups the signals by functionality, except for GPIOs. Table 16-4 on page 389 lists the GPIO pins and their alternate functionality.

16.1 100-Pin LQFP Package Pin Tables

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
1	PE7	I/O	TTL	GPIO port E bit 7.
2	PE6	I/O	TTL	GPIO port E bit 6.
	Clo	0	TTL	Analog comparator 1 output.
3	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.
4	GNDA	-	Power	The ground reference for the analog circuits (Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
5	PE5	I/O	TTL	GPIO port E bit 5.
6	PE4	I/O	TTL	GPIO port E bit 4.
7	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
8	VDD	-	Power	Positive supply for I/O and some logic.
9	GND	-	Power	Ground reference for logic and I/O pins.
10	PDO	I/O	TTL	GPIO port D bit 0.
11	PD1	I/O	TTL	GPIO port D bit 1.
12	PD2	I/O	TTL	GPIO port D bit 2.
13	PD3	I/O	TTL	GPIO port D bit 3.
14	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
15	GND	-	Power	Ground reference for logic and I/O pins.
16	XTALPPHY	I	TTL	Ethernet PHY XTALP 25-MHz oscillator crystal input or external clock reference input.
17	XTALNPHY	0	TTL	Ethernet PHY XTALN 25-MHz oscillator crystal output. Leave unconnected when using a single-ended 25-MHz clock input connected to the XTALPPHY pin.

Table 16-1. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
18	PG1	I/O	TTL	GPIO port G bit 1.
19	PG0	I/O	TTL	GPIO port G bit 0.
20	VDD	-	Power	Positive supply for I/O and some logic.
21	GND	-	Power	Ground reference for logic and I/O pins.
22	PC7	I/O	TTL	GPIO port C bit 7.
23	PC6	I/O	TTL	GPIO port C bit 6.
F	CCP3	I/O	TTL	Capture/Compare/PWM 3.
24	PC5	I/O	TTL	GPIO port C bit 5.
	C1+	I	Analog	Analog comparator 1 positive input.
25	PC4	I/O	TTL	GPIO port C bit 4.
26	PA0	I/O	TTL	GPIO port A bit 0.
	UORx	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
27	PA1	I/O	TTL	GPIO port A bit 1.
	UOTx	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
28	PA2	I/O	TTL	GPIO port A bit 2.
	SSIOClk	I/O	TTL	SSI module 0 clock.
29	PA3	I/O	TTL	GPIO port A bit 3.
	SSIOFss	I/O	TTL	SSI module 0 frame.
30	PA4	I/O	TTL	GPIO port A bit 4.
	SSIORx	1	TTL	SSI module 0 receive.
31	PA5	I/O	TTL	GPIO port A bit 5.
	SSIOTx	0	TTL	SSI module 0 transmit.
32	VDD	-	Power	Positive supply for I/O and some logic.
33	GND	-	Power	Ground reference for logic and I/O pins.
34	PA6	I/O	TTL	GPIO port A bit 6.
	CCP1	I/O	TTL	Capture/Compare/PWM 1.
35	PA7	I/O	TTL	GPIO port A bit 7.
36	VCCPHY	-	Power	VCC of the Ethernet PHY.
37	RXIN	I	Analog	RXIN of the Ethernet PHY.
38	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
39	GND	-	Power	Ground reference for logic and I/O pins.
40	RXIP	1	Analog	RXIP of the Ethernet PHY.
41	ERBIAS	1	Analog	12.4-k Ω resistor (1% precision) used internally for Ethernet PHY.
42	GNDPHY	-	Power	GND of the Ethernet PHY.
43	TXOP	0	Analog	TXOP of the Ethernet PHY.
44	VDD	-	Power	Positive supply for I/O and some logic.
45	GND	-	Power	Ground reference for logic and I/O pins.
46	TXON	0	Analog	TXON of the Ethernet PHY.
47	PF0	I/O	TTL	GPIO port F bit 0.

Table 16-1. Signals by Pin Number (continued)

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
48	OSC0	1	Analog	Main oscillator crystal input or an external clock reference input
49	OSC1	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
50	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
51	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
52	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
53	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
54	GND	-	Power	Ground reference for logic and I/O pins.
55	VDD	-	Power	Positive supply for I/O and some logic.
56	VDD	-	Power	Positive supply for I/O and some logic.
57	GND	-	Power	Ground reference for logic and I/O pins.
58	MDIO	I/O	TTL	MDIO of the Ethernet PHY.
59	PF3	I/O	TTL	GPIO port F bit 3.
-	LED0	0	TTL	Ethernet LED 0.
60	PF2	I/O	TTL	GPIO port F bit 2.
-	LED1	0	TTL	Ethernet LED 1.
61	PF1	I/O	TTL	GPIO port F bit 1.
62	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
63	GND	-	Power	Ground reference for logic and I/O pins.
64	RST	I	TTL	System reset input.
65	CMOD0	I	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
66	PB0	I/O	TTL	GPIO port B bit 0.
-	CCP0	I/O	TTL	Capture/Compare/PWM 0.
67	PB1	I/O	TTL	GPIO port B bit 1.
-	CCP2	I/O	TTL	Capture/Compare/PWM 2.
68	VDD	-	Power	Positive supply for I/O and some logic.
69	GND	-	Power	Ground reference for logic and I/O pins.
70	PB2	I/O	TTL	GPIO port B bit 2.
71	PB3	I/O	TTL	GPIO port B bit 3.
72	PE0	I/O	TTL	GPIO port E bit 0.
73	PE1	I/O	TTL	GPIO port E bit 1.
74	PE2	I/O	TTL	GPIO port E bit 2.
75	PE3	I/O	TTL	GPIO port E bit 3.
76	CMOD1	I	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
77	PC3	I/O	TTL	GPIO port C bit 3.
-	SWO	0	TTL	JTAG TDO and SWO.
-	TDO	0	TTL	JTAG TDO and SWO.
78	PC2	I/O	TTL	GPIO port C bit 2.
-	TDI	1	TTL	JTAG TDI.

Table 16-1. Signals by Pin Number (continued)

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
79	PC1	I/O	TTL	GPIO port C bit 1.
	SWDIO	I/O	TTL	JTAG TMS and SWDIO.
	TMS	I/O	TTL	JTAG TMS and SWDIO.
80	PC0	I/O	TTL	GPIO port C bit 0.
	SWCLK	I	TTL	JTAG/SWD CLK.
	TCK	I	TTL	JTAG/SWD CLK.
81	VDD	-	Power	Positive supply for I/O and some logic.
82	GND	-	Power	Ground reference for logic and I/O pins.
83	VCCPHY	-	Power	VCC of the Ethernet PHY.
84	VCCPHY	-	Power	VCC of the Ethernet PHY.
85	GNDPHY	-	Power	GND of the Ethernet PHY.
86	GNDPHY	-	Power	GND of the Ethernet PHY.
87	GND	-	Power	Ground reference for logic and I/O pins.
88	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
89	PB7	I/O	TTL	GPIO port B bit 7.
	TRST	I	TTL	JTAG TRST.
90	PB6	I/O	TTL	GPIO port B bit 6.
	C0+	I	Analog	Analog comparator 0 positive input.
91	PB5	I/O	TTL	GPIO port B bit 5.
	C1-	I	Analog	Analog comparator 1 negative input.
92	PB4	I/O	TTL	GPIO port B bit 4.
	C0-	I	Analog	Analog comparator 0 negative input.
93	VDD	-	Power	Positive supply for I/O and some logic.
94	GND	-	Power	Ground reference for logic and I/O pins.
95	PD4	I/O	TTL	GPIO port D bit 4.
96	PD5	I/O	TTL	GPIO port D bit 5.
97	GNDA	-	Power	The ground reference for the analog circuits (Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
98	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.
99	PD6	I/O	TTL	GPIO port D bit 6.
100	PD7	I/O	TTL	GPIO port D bit 7.
F	COo	0	TTL	Analog comparator 0 output.

Table 16-1. Signals by Pin Number (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-2. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
C0+	90	I	Analog	Analog comparator 0 positive input.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
C0-	92	I	Analog	Analog comparator 0 negative input.
COo	100	0	TTL	Analog comparator 0 output.
C1+	24	I	Analog	Analog comparator 1 positive input.
C1-	91	I	Analog	Analog comparator 1 negative input.
Clo	2	0	TTL	Analog comparator 1 output.
CCP0	66	I/O	TTL	Capture/Compare/PWM 0.
CCP1	34	I/O	TTL	Capture/Compare/PWM 1.
CCP2	67	I/O	TTL	Capture/Compare/PWM 2.
CCP3	23	I/O	TTL	Capture/Compare/PWM 3.
CMOD0	65	I	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
CMOD1	76	I	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
ERBIAS	41	I	Analog	12.4-k Ω resistor (1% precision) used internally for Ethernet PHY.
GND	9 15 21 33 39 45 54 57 63 63 69 82 87 94	-	Power	Ground reference for logic and I/O pins.
GNDA	4 97	-	Power	The ground reference for the analog circuits (Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
GNDPHY	42 85 86	-	Power	GND of the Ethernet PHY.
LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
LED0	59	0	TTL	Ethernet LED 0.
LED1	60	0	TTL	Ethernet LED 1.
MDIO	58	I/O	TTL	MDIO of the Ethernet PHY.
NC	50 51 52 53	-	-	No connect. Leave the pin electrically unconnected/isolated.
OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.

Table 16-2. Signals by Signal Name (continued)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
OSC1	49	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
PAO	26	I/O	TTL	GPIO port A bit 0.
PA1	27	I/O	TTL	GPIO port A bit 1.
PA2	28	I/O	TTL	GPIO port A bit 2.
PA3	29	I/O	TTL	GPIO port A bit 3.
PA4	30	I/O	TTL	GPIO port A bit 4.
PA5	31	I/O	TTL	GPIO port A bit 5.
РАб	34	I/O	TTL	GPIO port A bit 6.
PA7	35	I/O	TTL	GPIO port A bit 7.
PBO	66	I/O	TTL	GPIO port B bit 0.
PB1	67	I/O	TTL	GPIO port B bit 1.
PB2	70	I/O	TTL	GPIO port B bit 2.
PB3	71	I/O	TTL	GPIO port B bit 3.
PB4	92	I/O	TTL	GPIO port B bit 4.
PB5	91	I/O	TTL	GPIO port B bit 5.
PB6	90	I/O	TTL	GPIO port B bit 6.
PB7	89	I/O	TTL	GPIO port B bit 7.
PCO	80	I/O	TTL	GPIO port C bit 0.
PC1	79	I/O	TTL	GPIO port C bit 1.
PC2	78	I/O	TTL	GPIO port C bit 2.
PC3	77	I/O	TTL	GPIO port C bit 3.
PC4	25	I/O	TTL	GPIO port C bit 4.
PC5	24	I/O	TTL	GPIO port C bit 5.
PC6	23	I/O	TTL	GPIO port C bit 6.
PC7	22	I/O	TTL	GPIO port C bit 7.
PDO	10	I/O	TTL	GPIO port D bit 0.
PD1	11	I/O	TTL	GPIO port D bit 1.
PD2	12	I/O	TTL	GPIO port D bit 2.
PD3	13	I/O	TTL	GPIO port D bit 3.
PD4	95	I/O	TTL	GPIO port D bit 4.
PD5	96	I/O	TTL	GPIO port D bit 5.
PD6	99	I/O	TTL	GPIO port D bit 6.
PD7	100	I/O	TTL	GPIO port D bit 7.
PEO	72	I/O	TTL	GPIO port E bit 0.
PE1	73	I/O	TTL	GPIO port E bit 1.
PE2	74	I/O	TTL	GPIO port E bit 2.
PE3	75	I/O	TTL	GPIO port E bit 3.
PE4	6	I/O	TTL	GPIO port E bit 4.
PE5	5	I/O	TTL	GPIO port E bit 5.
PE6	2	I/O	TTL	GPIO port E bit 6.

Table 16-2. Signals by Signal Name (continued)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
PE7	1	I/O	TTL	GPIO port E bit 7.
PF0	47	I/O	TTL	GPIO port F bit 0.
PF1	61	I/O	TTL	GPIO port F bit 1.
PF2	60	I/O	TTL	GPIO port F bit 2.
PF3	59	I/O	TTL	GPIO port F bit 3.
PG0	19	I/O	TTL	GPIO port G bit 0.
PG1	18	I/O	TTL	GPIO port G bit 1.
RST	64	I	TTL	System reset input.
RXIN	37	I	Analog	RXIN of the Ethernet PHY.
RXIP	40	Ι	Analog	RXIP of the Ethernet PHY.
SSIOClk	28	I/O	TTL	SSI module 0 clock.
SSIOFss	29	I/O	TTL	SSI module 0 frame.
SSIORx	30	Ι	TTL	SSI module 0 receive.
SSIOTx	31	0	TTL	SSI module 0 transmit.
SWCLK	80	Ι	TTL	JTAG/SWD CLK.
SWDIO	79	I/O	TTL	JTAG TMS and SWDIO.
SWO	77	0	TTL	JTAG TDO and SWO.
TCK	80	Ι	TTL	JTAG/SWD CLK.
TDI	78	Ι	TTL	JTAG TDI.
TDO	77	0	TTL	JTAG TDO and SWO.
TMS	79	I/O	TTL	JTAG TMS and SWDIO.
TRST	89	Ι	TTL	JTAG TRST.
TXON	46	0	Analog	TXON of the Ethernet PHY.
TXOP	43	0	Analog	TXOP of the Ethernet PHY.
UORx	26	Ι	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
VCCPHY	36 83 84	-	Power	VCC of the Ethernet PHY.
VDD	8 20 32 44 55 56 68 81 93	-	Power	Positive supply for I/O and some logic.
VDD25	14 38 62 88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.

Table 16-2. Signals by Signal Name (continued)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
VDDA	3 98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.
XTALNPHY	17	0	TTL	Ethernet PHY XTALN 25-MHz oscillator crystal output. Leave unconnected when using a single-ended 25-MHz clock input connected to the XTALPPHY pin.
XTALPPHY	16	I	TTL	Ethernet PHY XTALP 25-MHz oscillator crystal input or external clock reference input.

Table 16-2. Signals by Signal Name (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-3. Signals by Function, Except for GPIO

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
Analog Comparators	C0+	90	I	Analog	Analog comparator 0 positive input.
	C0-	92	Ι	Analog	Analog comparator 0 negative input.
	C0o	100	0	TTL	Analog comparator 0 output.
	C1+	24	Ι	Analog	Analog comparator 1 positive input.
	C1-	91	I	Analog	Analog comparator 1 negative input.
	C10	2	0	TTL	Analog comparator 1 output.
Ethernet	ERBIAS	41	Ι	Analog	12.4-k Ω resistor (1% precision) used internally for Ethernet PHY.
	GNDPHY	42 85 86	-	Power	GND of the Ethernet PHY.
	LED0	59	0	TTL	Ethernet LED 0.
	LED1	60	0	TTL	Ethernet LED 1.
	MDIO	58	I/O	TTL	MDIO of the Ethernet PHY.
	RXIN	37	Ι	Analog	RXIN of the Ethernet PHY.
	RXIP	40	I	Analog	RXIP of the Ethernet PHY.
	TXON	46	0	Analog	TXON of the Ethernet PHY.
	TXOP	43	0	Analog	TXOP of the Ethernet PHY.
	VCCPHY	36 83 84	-	Power	VCC of the Ethernet PHY.
	XTALNPHY	17	0	TTL	Ethernet PHY XTALN 25-MHz oscillator crystal output. Leave unconnected when using a single-ended 25-MHz clock input connected to the XTALPPHY pin.
	XTALPPHY	16	Ι	TTL	Ethernet PHY XTALP 25-MHz oscillator crystal input or external clock reference input.
General-Purpose	CCP0	66	I/O	TTL	Capture/Compare/PWM 0.
Timers	CCP1	34	I/O	TTL	Capture/Compare/PWM 1.
	CCP2	67	I/O	TTL	Capture/Compare/PWM 2.
	CCP3	23	I/O	TTL	Capture/Compare/PWM 3.

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
JTAG/SWD/SWO	SWCLK	80	I	TTL	JTAG/SWD CLK.
	SWDIO	79	I/O	TTL	JTAG TMS and SWDIO.
	SWO	77	0	TTL	JTAG TDO and SWO.
	TCK	80	I	TTL	JTAG/SWD CLK.
	TDI	78	I	TTL	JTAG TDI.
	TDO	77	0	TTL	JTAG TDO and SWO.
	TMS	79	I/O	TTL	JTAG TMS and SWDIO.
	TRST	89	I	TTL	JTAG TRST.
Power	GND	9 15 21 33 39 45 54 57 63 69 82 87 94	-	Power	Ground reference for logic and I/O pins.
	GNDA	4 97	-	Power	The ground reference for the analog circuits (Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	LDO	7	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin mus also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
	VDD	8 20 32 44 55 56 68 81 93	-	Power	Positive supply for I/O and some logic.
	VDD25	14 38 62 88	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDDA	3 98	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.

Table 16-3. Signals by Function, Except for GPIO (continued)

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
SSI	SSIOClk	28	I/O	TTL	SSI module 0 clock.
	SSIOFss	29	I/O	TTL	SSI module 0 frame.
	SSIORx	30	I	TTL	SSI module 0 receive.
	SSIOTx	31	0	TTL	SSI module 0 transmit.
System Control & Clocks	CMOD0	65	I	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
	CMOD1	76	I	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
	OSC0	48	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	49	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
	RST	64	I	TTL	System reset input.
UART	UORx	26	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
	UOTx	27	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.

Table 16-3. Signals by Function, Except for GPIO (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-4. GPIO Pins and Alternate Functions

IO	Pin Number	Multiplexed Function	Multiplexed Function
PAO	26	UORx	
PA1	27	UOTx	
PA2	28	SSIOClk	
PA3	29	SSIOFss	
PA4	30	SSIORx	
PA5	31	SSI0Tx	
PA6	34	CCP1	
PA7	35		
PB0	66	CCP0	
PB1	67	CCP2	
PB2	70		
PB3	71		
PB4	92	C0-	
PB5	91	C1-	
PB6	90	C0+	
PB7	89	TRST	
PC0	80	тск	SWCLK
PC1	79	TMS	SWDIO
PC2	78	TDI	
PC3	77	TDO	SWO
PC4	25		
PC5	24	C1+	

ю	Pin Number	Multiplexed Function	Multiplexed Function
PC6	23	CCP3	
PC7	22		
PDO	10		
PD1	11		
PD2	12		
PD3	13		
PD4	95		
PD5	96		
PD6	99		
PD7	100	COo	
PEO	72		
PE1	73		
PE2	74		
PE3	75		
PE4	6		
PE5	5		
PE6	2	Clo	
PE7	1		
PF0	47		
PF1	61		
PF2	60	LED1	
PF3	59	LED0	
PG0	19		
PG1	18		

Table 16-4. GPIO Pins and Alternate Functions (continued)

16.2 108-Pin BGA Package Pin Tables

Table 16-5. Signals by Pin Number

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
A1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A3	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A4	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
A5	GNDA	-	Power	The ground reference for the analog circuits (Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
A6	PB4	I/O	TTL	GPIO port B bit 4.
	C0-	I	Analog	Analog comparator 0 negative input.
A7	PB6	I/O	TTL	GPIO port B bit 6.
	C0+	I	Analog	Analog comparator 0 positive input.
A8	PB7	I/O	TTL	GPIO port B bit 7.
	TRST	I	TTL	JTAG TRST.

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
A9	PC0	I/O	TTL	GPIO port C bit 0.
	SWCLK	I	TTL	JTAG/SWD CLK.
	TCK	I	TTL	JTAG/SWD CLK.
A10	PC3	I/O	TTL	GPIO port C bit 3.
-	SWO	0	TTL	JTAG TDO and SWO.
	TDO	0	TTL	JTAG TDO and SWO.
A11	PEO	I/O	TTL	GPIO port E bit 0.
A12	PE3	I/O	TTL	GPIO port E bit 3.
B1	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
B2	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
B3	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
B4	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
B5	GNDA	-	Power	The ground reference for the analog circuits (Analog Comparators etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
B6	GND	-	Power	Ground reference for logic and I/O pins.
B7	PB5	I/O	TTL	GPIO port B bit 5.
	C1-	I	Analog	Analog comparator 1 negative input.
B8	PC2	I/O	TTL	GPIO port C bit 2.
	TDI	I	TTL	JTAG TDI.
B9	PC1	I/O	TTL	GPIO port C bit 1.
	SWDIO	I/O	TTL	JTAG TMS and SWDIO.
	TMS	I/O	TTL	JTAG TMS and SWDIO.
B10	CMOD1	I	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
B11	PE2	I/O	TTL	GPIO port E bit 2.
B12	PE1	I/O	TTL	GPIO port E bit 1.
C1	PE7	I/O	TTL	GPIO port E bit 7.
C2	PE6	I/O	TTL	GPIO port E bit 6.
	Clo	0	TTL	Analog comparator 1 output.
C3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
C4	GND	-	Power	Ground reference for logic and I/O pins.
C5	GND	-	Power	Ground reference for logic and I/O pins.
C6	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.
C7	VDDA	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.
C8	GNDPHY	-	Power	GND of the Ethernet PHY.

Table 16-5. Signals by Pin Number (continued)

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
C9	GNDPHY	-	Power	GND of the Ethernet PHY.
C10	VCCPHY	-	Power	VCC of the Ethernet PHY.
C11	PB2	I/O	TTL	GPIO port B bit 2.
C12	PB3	I/O	TTL	GPIO port B bit 3.
D1	PE4	I/O	TTL	GPIO port E bit 4.
D2	PE5	I/O	TTL	GPIO port E bit 5.
D3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
D10	VCCPHY	-	Power	VCC of the Ethernet PHY.
D11	VCCPHY	-	Power	VCC of the Ethernet PHY.
D12	PB1	I/O	TTL	GPIO port B bit 1.
	CCP2	I/O	TTL	Capture/Compare/PWM 2.
E1	PD4	I/O	TTL	GPIO port D bit 4.
E2	PD5	I/O	TTL	GPIO port D bit 5.
E3	LDO	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
E10	VDD33	-	Power	Positive supply for I/O and some logic.
E11	CMOD0	I	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
E12	PB0	I/O	TTL	GPIO port B bit 0.
	CCP0	I/O	TTL	Capture/Compare/PWM 0.
F1	PD7	I/O	TTL	GPIO port D bit 7.
	C00	0	TTL	Analog comparator 0 output.
F2	PD6	I/O	TTL	GPIO port D bit 6.
F3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
F10	GND	-	Power	Ground reference for logic and I/O pins.
F11	GND	-	Power	Ground reference for logic and I/O pins.
F12	GND	-	Power	Ground reference for logic and I/O pins.
G1	PD0	I/O	TTL	GPIO port D bit 0.
G2	PD1	I/O	TTL	GPIO port D bit 1.
G3	VDD25	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
G10	VDD33	-	Power	Positive supply for I/O and some logic.
G11	VDD33	-	Power	Positive supply for I/O and some logic.
G12	VDD33	-	Power	Positive supply for I/O and some logic.
H1	PD3	I/O	TTL	GPIO port D bit 3.
H2	PD2	I/O	TTL	GPIO port D bit 2.
H3	GND	-	Power	Ground reference for logic and I/O pins.
H10	VDD33	-	Power	Positive supply for I/O and some logic.
H11	RST	I	TTL	System reset input.

Table 16-5. Signals by Pin Number (continued)

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
H12	PF1	I/O	TTL	GPIO port F bit 1.
J1	XTALNPHY	0	TTL	Ethernet PHY XTALN 25-MHz oscillator crystal output. Leave unconnected when using a single-ended 25-MHz clock input connected to the XTALPPHY pin.
J2	XTALPPHY	I	TTL	Ethernet PHY XTALP 25-MHz oscillator crystal input or external clock reference input.
J3	GND	-	Power	Ground reference for logic and I/O pins.
J10	GND	-	Power	Ground reference for logic and I/O pins.
J11	PF2	I/O	TTL	GPIO port F bit 2.
	LED1	0	TTL	Ethernet LED 1.
J12	PF3	I/O	TTL	GPIO port F bit 3.
	LED0	0	TTL	Ethernet LED 0.
K1	PG0	I/O	TTL	GPIO port G bit 0.
K2	PG1	I/O	TTL	GPIO port G bit 1.
K3	ERBIAS	I	Analog	12.4-k Ω resistor (1% precision) used internally for Ethernet PHY.
K4	GNDPHY	-	Power	GND of the Ethernet PHY.
K5	GND	-	Power	Ground reference for logic and I/O pins.
K6	GND	-	Power	Ground reference for logic and I/O pins.
K7	VDD33	-	Power	Positive supply for I/O and some logic.
K8	VDD33	-	Power	Positive supply for I/O and some logic.
K9	VDD33	-	Power	Positive supply for I/O and some logic.
K10	GND	-	Power	Ground reference for logic and I/O pins.
K11	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
K12	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
L1	PC4	I/O	TTL	GPIO port C bit 4.
L2	PC7	I/O	TTL	GPIO port C bit 7.
L3	PAO	I/O	TTL	GPIO port A bit 0.
	UORx	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
L4	PA3	I/O	TTL	GPIO port A bit 3.
	SSIOFss	I/O	TTL	SSI module 0 frame.
L5	PA4	I/O	TTL	GPIO port A bit 4.
	SSIORx	I	TTL	SSI module 0 receive.
L6	PA6	I/O	TTL	GPIO port A bit 6.
	CCP1	I/O	TTL	Capture/Compare/PWM 1.
L7	RXIN	I	Analog	RXIN of the Ethernet PHY.
L8	TXON	0	Analog	TXON of the Ethernet PHY.
L9	MDIO	I/O	TTL	MDIO of the Ethernet PHY.
L10	GND	-	Power	Ground reference for logic and I/O pins.
L11	OSC0	I	Analog	Main oscillator crystal input or an external clock reference input.
L12	VDD	-	Power	Positive supply for I/O and some logic.

Table 16-5. Signals by Pin Number (continued)

Pin Number	Pin Name	Pin Type	Buffer Type ^a	Description
M1	PC5	I/O	TTL	GPIO port C bit 5.
	C1+	I	Analog	Analog comparator 1 positive input.
M2	PC6	I/O	TTL	GPIO port C bit 6.
	CCP3	I/O	TTL	Capture/Compare/PWM 3.
M3	PA1	I/O	TTL	GPIO port A bit 1.
	UOTx	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
M4	PA2	I/O	TTL	GPIO port A bit 2.
	SSIOClk	I/O	TTL	SSI module 0 clock.
M5	PA5	I/O	TTL	GPIO port A bit 5.
	SSIOTx	0	TTL	SSI module 0 transmit.
M6	PA7	I/O	TTL	GPIO port A bit 7.
M7	RXIP	I	Analog	RXIP of the Ethernet PHY.
M8	TXOP	0	Analog	TXOP of the Ethernet PHY.
M9	PFO	I/O	TTL	GPIO port F bit 0.
M10	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.
M11	OSC1	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
M12	NC	-	-	No connect. Leave the pin electrically unconnected/isolated.

Table 16-5. Signals by Pin Number (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-6. Signals by Signal Name

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
C0+	A7	I	Analog	Analog comparator 0 positive input.
C0-	A6	I	Analog	Analog comparator 0 negative input.
COo	F1	0	TTL	Analog comparator 0 output.
C1+	M1	I	Analog	Analog comparator 1 positive input.
C1-	B7	I	Analog	Analog comparator 1 negative input.
Clo	C2	0	TTL	Analog comparator 1 output.
CCP0	E12	I/O	TTL	Capture/Compare/PWM 0.
CCP1	L6	I/O	TTL	Capture/Compare/PWM 1.
CCP2	D12	I/O	TTL	Capture/Compare/PWM 2.
CCP3	M2	I/O	TTL	Capture/Compare/PWM 3.
CMOD0	E11	I	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
CMOD1	B10	I	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
ERBIAS	К3	I	Analog	12.4-k Ω resistor (1% precision) used internally for Ethernet PHY.

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
GND	B6 C4 C5 F10 F11 F12 H3 J3 J10 K5 K6 K10 L10	-	Power	Ground reference for logic and I/O pins.
GNDA	A5 B5	-	Power	The ground reference for the analog circuits (Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
GNDPHY	C8 C9 K4	-	Power	GND of the Ethernet PHY.
LDO	E3	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
LEDO	J12	0	TTL	Ethernet LED 0.
LED1	J11	0	TTL	Ethernet LED 1.
MDIO	L9	I/O	TTL	MDIO of the Ethernet PHY.
NC	A1 A2 A3 A4 B1 B2 B3 B4 K11 K12 M10 M12	-	-	No connect. Leave the pin electrically unconnected/isolated.
OSC0	L11	I	Analog	Main oscillator crystal input or an external clock reference input.
OSC1	M11	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
PAO	L3	I/O	TTL	GPIO port A bit 0.
PA1	M3	I/O	TTL	GPIO port A bit 1.
PA2	M4	I/O	TTL	GPIO port A bit 2.
PA3	L4	I/O	TTL	GPIO port A bit 3.
PA4	L5	I/O	TTL	GPIO port A bit 4.
PA5	M5	I/O	TTL	GPIO port A bit 5.
PA6	L6	I/O	TTL	GPIO port A bit 6.

Table 16-6. Signals by Signal Name (continued)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
PA7	M6	I/O	TTL	GPIO port A bit 7.
PB0	E12	I/O	TTL	GPIO port B bit 0.
PB1	D12	I/O	TTL	GPIO port B bit 1.
PB2	C11	I/O	TTL	GPIO port B bit 2.
PB3	C12	I/O	TTL	GPIO port B bit 3.
PB4	A6	I/O	TTL	GPIO port B bit 4.
PB5	B7	I/O	TTL	GPIO port B bit 5.
PB6	A7	I/O	TTL	GPIO port B bit 6.
PB7	A8	I/O	TTL	GPIO port B bit 7.
PC0	A9	I/O	TTL	GPIO port C bit 0.
PC1	B9	I/O	TTL	GPIO port C bit 1.
PC2	B8	I/O	TTL	GPIO port C bit 2.
PC3	A10	I/O	TTL	GPIO port C bit 3.
PC4	L1	I/O	TTL	GPIO port C bit 4.
PC5	M1	I/O	TTL	GPIO port C bit 5.
PC6	M2	I/O	TTL	GPIO port C bit 6.
PC7	L2	I/O	TTL	GPIO port C bit 7.
PDO	G1	I/O	TTL	GPIO port D bit 0.
PD1	G2	I/O	TTL	GPIO port D bit 1.
PD2	H2	I/O	TTL	GPIO port D bit 2.
PD3	H1	I/O	TTL	GPIO port D bit 3.
PD4	E1	I/O	TTL	GPIO port D bit 4.
PD5	E2	I/O	TTL	GPIO port D bit 5.
PD6	F2	I/O	TTL	GPIO port D bit 6.
PD7	F1	I/O	TTL	GPIO port D bit 7.
PEO	A11	I/O	TTL	GPIO port E bit 0.
PE1	B12	I/O	TTL	GPIO port E bit 1.
PE2	B11	I/O	TTL	GPIO port E bit 2.
PE3	A12	I/O	TTL	GPIO port E bit 3.
PE4	D1	I/O	TTL	GPIO port E bit 4.
PE5	D2	I/O	TTL	GPIO port E bit 5.
PE6	C2	I/O	TTL	GPIO port E bit 6.
PE7	C1	I/O	TTL	GPIO port E bit 7.
PF0	M9	I/O	TTL	GPIO port F bit 0.
PF1	H12	I/O	TTL	GPIO port F bit 1.
PF2	J11	I/O	TTL	GPIO port F bit 2.
PF3	J12	I/O	TTL	GPIO port F bit 3.
PGO	K1	I/O	TTL	GPIO port G bit 0.
PG1	K2	I/O	TTL	GPIO port G bit 1.
RST	H11	I	TTL	System reset input.
RXIN	L7	I	Analog	RXIN of the Ethernet PHY.

Table 16-6. Signals by Signal Name (continued)

Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
RXIP	M7	I	Analog	RXIP of the Ethernet PHY.
SSIOClk	M4	I/O	TTL	SSI module 0 clock.
SSIOFss	L4	I/O	TTL	SSI module 0 frame.
SSIORx	L5	I	TTL	SSI module 0 receive.
SSIOTx	M5	0	TTL	SSI module 0 transmit.
SWCLK	A9	I	TTL	JTAG/SWD CLK.
SWDIO	B9	I/O	TTL	JTAG TMS and SWDIO.
SWO	A10	0	TTL	JTAG TDO and SWO.
TCK	A9	I	TTL	JTAG/SWD CLK.
TDI	B8	I	TTL	JTAG TDI.
TDO	A10	0	TTL	JTAG TDO and SWO.
TMS	B9	I/O	TTL	JTAG TMS and SWDIO.
TRST	A8	I	TTL	JTAG TRST.
TXON	L8	0	Analog	TXON of the Ethernet PHY.
TXOP	M8	0	Analog	TXOP of the Ethernet PHY.
UORx	L3	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
UOTx	M3	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.
VCCPHY	C10 D10 D11	-	Power	VCC of the Ethernet PHY.
VDD	L12	-	Power	Positive supply for I/O and some logic.
VDD25	C3 D3 F3 G3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
VDD33	E10 G10 G11 G12 H10 K7 K8 K9	-	Power	Positive supply for I/O and some logic.
VDDA	C6 C7	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.
XTALNPHY	J1	0	TTL	Ethernet PHY XTALN 25-MHz oscillator crystal output. Leave unconnected when using a single-ended 25-MHz clock input connected to the XTALPPHY pin.
XTALPPHY	J2	I	TTL	Ethernet PHY XTALP 25-MHz oscillator crystal input or external clock reference input.

Table 16-6. Signals by Signal Name (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
Analog Comparators	C0+	A7	I	Analog	Analog comparator 0 positive input.
	C0-	A6	I	Analog	Analog comparator 0 negative input.
	C0o	F1	0	TTL	Analog comparator 0 output.
	C1+	M1	I	Analog	Analog comparator 1 positive input.
	C1-	B7	I	Analog	Analog comparator 1 negative input.
	Clo	C2	0	TTL	Analog comparator 1 output.
Ethernet	ERBIAS	K3	I	Analog	12.4-k Ω resistor (1% precision) used internally for Ethernet PHY.
	GNDPHY	C8 C9 K4	-	Power	GND of the Ethernet PHY.
	LED0	J12	0	TTL	Ethernet LED 0.
	LED1	J11	0	TTL	Ethernet LED 1.
	MDIO	L9	I/O	TTL	MDIO of the Ethernet PHY.
	RXIN	L7	I	Analog	RXIN of the Ethernet PHY.
	RXIP	M7	I	Analog	RXIP of the Ethernet PHY.
	TXON	L8	0	Analog	TXON of the Ethernet PHY.
	TXOP	M8	0	Analog	TXOP of the Ethernet PHY.
	VCCPHY	C10 D10 D11	-	Power	VCC of the Ethernet PHY.
	XTALNPHY	J1	0	TTL	Ethernet PHY XTALN 25-MHz oscillator crystal output. Leave unconnected when using a single-ended 25-MHz clock input connected to the XTALPPHY pin.
	XTALPPHY	J2	I	TTL	Ethernet PHY XTALP 25-MHz oscillator crystal input or external clock reference input.
General-Purpose	CCP0	E12	I/O	TTL	Capture/Compare/PWM 0.
Timers	CCP1	L6	I/O	TTL	Capture/Compare/PWM 1.
	CCP2	D12	I/O	TTL	Capture/Compare/PWM 2.
	CCP3	M2	I/O	TTL	Capture/Compare/PWM 3.
JTAG/SWD/SWO	SWCLK	A9	I	TTL	JTAG/SWD CLK.
	SWDIO	B9	I/O	TTL	JTAG TMS and SWDIO.
	SWO	A10	0	TTL	JTAG TDO and SWO.
	ТСК	A9	I	TTL	JTAG/SWD CLK.
	TDI	B8	I	TTL	JTAG TDI.
	TDO	A10	0	TTL	JTAG TDO and SWO.
	TMS	B9	I/O	TTL	JTAG TMS and SWDIO.
	TRST	A8	I	TTL	JTAG TRST.

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
Power	GND	B6 C4 C5 F10 F11 F12 H3 J3 J10 K5 K6 K10 L10	-	Power	Ground reference for logic and I/O pins.
	GNDA	A5 B5	-	Power	The ground reference for the analog circuits (Analog Comparators, etc.). These are separated from GND to minimize the electrical noise contained on VDD from affecting the analog functions.
	LDO	E3	-	Power	Low drop-out regulator output voltage. This pin requires an external capacitor between the pin and GND of 1 μ F or greater. When the on-chip LDO is used to provide power to the logic, the LDO pin must also be connected to the VDD25 pins at the board level in addition to the decoupling capacitor(s).
	VDD	L12	-	Power	Positive supply for I/O and some logic.
	VDD25	C3 D3 F3 G3	-	Power	Positive supply for most of the logic function, including the processor core and most peripherals.
	VDD33	E10 G10 G11 G12 H10 K7 K8 K9	-	Power	Positive supply for I/O and some logic.
	VDDA	C6 C7	-	Power	The positive supply (3.3 V) for the analog circuits (ADC, Analog Comparators, etc.). These are separated from VDD to minimize the electrical noise contained on VDD from affecting the analog functions. VDDA pins must be connected to 3.3 V, regardless of system implementation.
SSI	SSIOClk	M4	I/O	TTL	SSI module 0 clock.
	SSIOFss	L4	I/O	TTL	SSI module 0 frame.
	SSIORx	L5	I	TTL	SSI module 0 receive.
	SSIOTx	M5	0	TTL	SSI module 0 transmit.

Table 16-7. Signals by Function, Except for GPIO (continued)

Function	Pin Name	Pin Number	Pin Type	Buffer Type ^a	Description
System Control & Clocks	CMOD0	E11	I	TTL	CPU Mode bit 0. Input must be set to logic 0 (grounded); other encodings reserved.
	CMOD1	B10	I	TTL	CPU Mode bit 1. Input must be set to logic 0 (grounded); other encodings reserved.
	OSC0	L11	I	Analog	Main oscillator crystal input or an external clock reference input.
	OSC1	M11	0	Analog	Main oscillator crystal output. Leave unconnected when using a single-ended clock source.
	RST	H11	I	TTL	System reset input.
UART	UORx	L3	I	TTL	UART module 0 receive. When in IrDA mode, this signal has IrDA modulation.
	UOTx	M3	0	TTL	UART module 0 transmit. When in IrDA mode, this signal has IrDA modulation.

Table 16-7. Signals by Function, Except for GPIO (continued)

a. The TTL designation indicates the pin has TTL-compatible voltage levels.

Table 16-8. GPIO Pins and Alternate Functions

ю	Pin Number	Multiplexed Function	Multiplexed Function
PAO	L3	UORx	
PA1	M3	UOTx	
PA2	M4	SSIOClk	
PA3	L4	SSIOFss	
PA4	L5	SSIORx	
PA5	M5	SSIOTx	
PA6	L6	CCP1	
PA7	M6		
PB0	E12	CCP0	
PB1	D12	CCP2	
PB2	C11		
PB3	C12		
PB4	A6	C0-	
PB5	B7	C1-	
PB6	A7	C0+	
PB7	A8	TRST	
PC0	A9	TCK	SWCLK
PC1	В9	TMS	SWDIO
PC2	B8	TDI	
PC3	A10	TDO	SWO
PC4	L1		
PC5	M1	C1+	
PC6	M2	CCP3	
PC7	L2		
PDO	G1		
PD1	G2		

Ю	Pin Number	Multiplexed Function	Multiplexed Function
PD2	H2		
PD3	H1		
PD4	E1		
PD5	E2		
PD6	F2		
PD7	F1	COo	
PEO	A11		
PE1	B12		
PE2	B11		
PE3	A12		
PE4	D1		
PE5	D2		
PE6	C2	Clo	
PE7	C1		
PF0	M9		
PF1	H12		
PF2	J11	LED1	
PF3	J12	LEDO	
PGO	K1		
PG1	K2		

Table 16-8. GPIO Pins and Alternate Functions (continued)

17 Operating Characteristics

Table 17-1. Temperature Characteristics

Characteristic	Symbol	Value	Unit
Industrial operating temperature range	T _A	-40 to +85	°C
Extended operating temperature range	T _A	-40 to +105	°C
Unpowered storage temperature range	T _S	-65 to +150	°C

Table 17-2. Thermal Characteristics

Characteristic	Symbol	Value	Unit
Thermal resistance (junction to ambient) ^a	Θ _{JA}	34	°C/W
Average junction temperature ^b	TJ	$T_A + (P_{AVG} \bullet \Theta_{JA})$	°C

a. Junction to ambient thermal resistance θ_{JA} numbers are determined by a package simulator.

b. Power dissipation is a function of temperature.

Table 17-3. ESD Absolute Maximum Ratings^a

Parameter Name	Min	Nom	Мах	Unit
V _{ESDHBM}	-	-	2.0	kV
V _{ESDCDM}	-	-	1.0	kV
V _{ESDMM}	-	-	100	V

a. All Stellaris parts are ESD tested following the JEDEC standard.

18 Electrical Characteristics

18.1 DC Characteristics

18.1.1 Maximum Ratings

The maximum ratings are the limits to which the device can be subjected without permanently damaging the device.

Note: The device is not guaranteed to operate properly at the maximum ratings.

Table 18-1. Maximum Ratings

Characteristic	Symbol	Va	Unit	
a		Min	Мах	_
I/O supply voltage (V _{DD})	V _{DD}	0	4	V
Core supply voltage (V _{DD25})	V _{DD25}	0	3	V
Analog supply voltage (V _{DDA})	V _{DDA}	0	4	V
Ethernet PHY supply voltage (V _{CCPHY})	V _{CCPHY}	0	4	V
Input voltage	V _{IN}	-0.3	5.5	V
Maximum current per output pins	I	-	25	mA

a. Voltages are measured with respect to GND.

18.1.2 Recommended DC Operating Conditions

For special high-current applications, the GPIO output buffers may be used with the following restrictions. With the GPIO pins configured as 8-mA output drivers, a total of four GPIO outputs may be used to sink current loads up to 18 mA each. At 18-mA sink current loading, the V_{OL} value is specified as 1.2 V. The high-current GPIO package pins must be selected such that there are only a maximum of two per side of the physical package or BGA pin group with the total number of high-current GPIO outputs not exceeding four for the entire package.

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{DD}	I/O supply voltage	3.0	3.3	3.6	V
V _{DD25}	Core supply voltage	2.25	2.5	2.75	V
V _{DDA}	Analog supply voltage	3.0	3.3	3.6	V
V _{CCPHY}	Ethernet PHY supply voltage	3.0	3.3	3.6	V
V _{IH}	High-level input voltage	2.0	-	5.0	V
V _{IL}	Low-level input voltage	-0.3	-	1.3	V
V _{OH} ^a	High-level output voltage	2.4	-	-	V
V _{OL} a	Low-level output voltage	-	-	0.4	V

Table 18-2. Recommended DC Operating Conditions

Important: This device contains circuitry to protect the inputs against damage due to high-static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum-rated voltages to this high-impedance circuit. Reliability of operation is enhanced if unused inputs are connected to an appropriate logic voltage level (for example, either GND or V_{DD}).

Parameter	Parameter Name	Min	Nom	Max	Unit
I _{OH}		·			
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA
I _{OL}	Low-level sink current, V _{OL} =0.4 V				
	2-mA Drive	2.0	-	-	mA
	4-mA Drive	4.0	-	-	mA
	8-mA Drive	8.0	-	-	mA

Table 18-2. Recommended DC Operating Conditions (continued)

a. V_{OL} and V_{OH} shift to 1.2 V when using high-current GPIOs.

18.1.3 On-Chip Low Drop-Out (LDO) Regulator Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
V _{LDOOUT}	Programmable internal (logic) power supply output value	2.25	2.5	2.75	V
	Output voltage accuracy	-	2%	-	%
t _{PON}	Power-on time	-	-	100	μs
t _{ON}	Time on	-	-	200	μs
t _{OFF}	Time off	-	-	100	μs
V _{STEP}	Step programming incremental voltage	-	50	-	mV
C _{LDO}	External filter capacitor size for internal power supply	1.0	-	3.0	μF

Table 18-3. LDO Regulator Characteristics

18.1.4 GPIO Module Characteristics

Table 18-4. GPIO Module DC Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{GPIOPU}	GPIO internal pull-up resistor	50	-	110	kΩ
R _{GPIOPD}	GPIO internal pull-down resistor	55	-	180	kΩ

18.1.5 Power Specifications

The power measurements specified in the tables that follow are run on the core processor using SRAM with the following specifications (except as noted):

- V_{DD} = 3.3 V
- V_{DD25} = 2.50 V
- V_{DDA} = 3.3 V
- V_{DDPHY} = 3.3 V
- Temperature = 25°C

- Clock Source (MOSC) =3.579545 MHz Crystal Oscillator
- Main oscillator (MOSC) = enabled
- Internal oscillator (IOSC) = disabled

Table 18-5. Detailed Power Specifications

Parameter	Parameter Name	Conditions		V _{DD} , V _{DDA} , ddphy	2.5	V V _{DD25}	Unit	
			Nom	Мах	Nom	Мах		
I _{DD_RUN}	Run mode 1 (Flash loop)	V _{DD25} = 2.50 V	48	pending ^a	108	pending ^a	mA	
		Code= while(1){} executed in Flash						
		Peripherals = All ON						
		System Clock = 50 MHz (with PLL)						
	Run mode 2	V _{DD25} = 2.50 V	5	pending ^a	52	pending ^a	mA	
	(Flash loop)	Code= while(1){} executed in Flash						
		Peripherals = All OFF						
		System Clock = 50 MHz (with PLL)						
	(SRAM loop)	V _{DD25} = 2.50 V	48	pending ^a	100	pending ^a	mA	
		Code= while(1){} executed in SRAM						
		Peripherals = All ON						
		System Clock = 50 MHz (with PLL)						
	Run mode 2	V _{DD25} = 2.50 V	5	pending ^a	45	pending ^a	mA	
	(SRAM loop)	Code= while(1){} executed in SRAM						
		Peripherals = All OFF						
		System Clock = 50 MHz (with PLL)						
I _{DD_SLEEP}	Sleep mode	V _{DD25} = 2.50 V	5	pending ^a	16	pending ^a	mA	
		Peripherals = All OFF						
		System Clock = 50 MHz (with PLL)						
I _{DD_DEEPSLEEP}	Deep-Sleep mode	LDO = 2.25 V	4.6	pending ^a	0.21	pending ^a	mA	
		Peripherals = All OFF						
		System Clock = IOSC30KHZ/64						

a. Pending characterization completion.

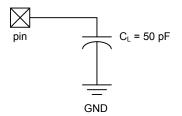
18.1.6 Flash Memory Characteristics

Table 18-6. Flash Memory Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
PE _{CYC}	Number of guaranteed program/erase cycles before failure ^a	10,000	100,000	-	cycles
T _{RET}	Data retention at average operating temperature of 85°C (industrial) or 105°C (extended)	10	-	-	years
T _{PROG}	Word program time	20	-	-	μs
T _{ERASE}	Page erase time	20	-	-	ms

Table 18-6. Flash Memory Characteristics (continued)

Parameter	Parameter Name	Min	Nom	Мах	Unit
T _{ME}	Mass erase time	-	-	250	ms


a. A program/erase cycle is defined as switching the bits from 1-> 0 -> 1.

18.2 AC Characteristics

18.2.1 Load Conditions

Unless otherwise specified, the following conditions are true for all timing measurements. Timing measurements are for 4-mA drive strength.

Figure 18-1. Load Conditions

18.2.2 Clocks

Table 18-7. Phase Locked Loop (PLL) Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
f _{ref_crystal}	Crystal reference ^a	3.579545	-	8.192	MHz
f _{ref_ext}	External clock reference ^a	3.579545	-	8.192	MHz
f _{pll}	PLL frequency ^b	-	400	-	MHz
T _{READY}	PLL lock time	-	-	0.5	ms

a. The exact value is determined by the crystal value programmed into the XTAL field of the Run-Mode Clock Configuration (RCC) register.

b. PLL frequency is automatically calculated by the hardware based on the XTAL field of the RCC register.

Table 18-8 on page 406 shows the actual frequency of the PLL based on the crystal frequency used (defined by the XTAL field in the **RCC** register).

XTAL	Crystal Frequency (MHz)	PLL Frequency (MHz)	Error
0x4	3.5795	400.904	0.0023%
0x5	3.6864	398.1312	0.0047%
0x6	4.0	400	-
0x7	4.096	401.408	0.0035%
0x8	4.9152	398.1312	0.0047%
0x9	5.0	400	-
0xA	5.12	399.36	0.0016%
0xB	6.0	400	-
0xC	6.144	399.36	0.0016%

Table 18-8. Actual PLL Frequency

XTAL	Crystal Frequency (MHz)	PLL Frequency (MHz)	Error
0xD	7.3728	398.1312	0.0047%
0xE	8.0	400	0.0047%
0xF	8.192	398.6773333	0.0033%

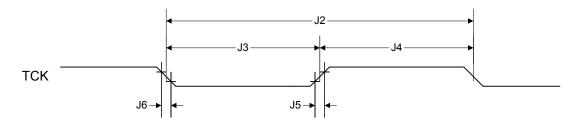
Table 18-9. Clock Characteristics

Parameter	Parameter Name	Min	Nom	Мах	Unit
f _{IOSC}	Internal 12 MHz oscillator frequency	8.4	12	15.6	MHz
f _{IOSC30KHZ}	Internal 30 KHz oscillator frequency	15	30	45	KHz
f _{MOSC}	Main oscillator frequency	1	-	8.192	MHz
t _{MOSC_per}	Main oscillator period	125	-	1000	ns
f _{ref_crystal_bypass}	Crystal reference using the main oscillator (PLL in BYPASS mode)	1	-	8.192	MHz
f _{ref_ext_bypass}	External clock reference (PLL in BYPASS mode)	0	-	50	MHz
f _{system_clock}	System clock	0	-	50	MHz

Table 18-10. Crystal Characteristics

Parameter Name		Value				
Frequency	8	6	4	3.5	MHz	
Frequency tolerance	±50	±50	±50	±50	ppm	
Aging	±5	±5	±5	±5	ppm/yr	
Oscillation mode	Parallel	Parallel	Parallel	Parallel	-	
Temperature stability (-40°C to 85°C)	±25	±25	±25	±25	ppm	
Temperature stability (-40°C to 105°C)	±25	±25	±25	±25	ppm	
Motional capacitance (typ)	27.8	37.0	55.6	63.5	pF	
Motional inductance (typ)	14.3	19.1	28.6	32.7	mH	
Equivalent series resistance (max)	120	160	200	220	Ω	
Shunt capacitance (max)	10	10	10	10	pF	
Load capacitance (typ)	16	16	16	16	pF	
Drive level (typ)	100	100	100	100	μW	

18.2.3 JTAG and Boundary Scan


Table 18-11. JTAG Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
J1	f _{тск}	TCK operational clock frequency	0	-	10	MHz
J2	t _{TCK}	TCK operational clock period	100	-	-	ns
J3	t _{TCK_LOW}	TCK clock Low time	-	t _{TCK}	-	ns
J4	t _{тск_нідн}	TCK clock High time	-	t _{TCK}	-	ns
J5	t _{TCK_R}	TCK rise time	0	-	10	ns
J6	t _{TCK_F}	TCK fall time	0	-	10	ns

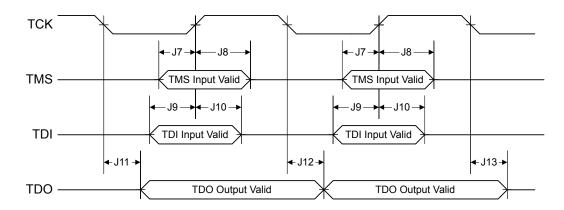

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
J7	t _{TMS_SU}	TMS setup time to TCK rise	20	-	-	ns
J8	t _{TMS_HLD}	TMS hold time from TCK rise	20	-	-	ns
J9	t _{TDI_SU}	TDI setup time to TCK rise	25	-	-	ns
J10	t _{TDI_HLD}	TDI hold time from TCK rise	25	-	-	ns
J11	TCK fall to Data	2-mA drive	-	23	35	ns
t _{TDO_ZDV}	Valid from High-Z	4-mA drive		15	26	ns
-		8-mA drive		14	25	ns
		8-mA drive with slew rate control		18	29	ns
J12	TCK fall to Data	2-mA drive	-	21	35	ns
t _{TDO_DV}	Valid from Data Valid	4-mA drive	1	14	25	ns
-	Valid	8-mA drive	1	13	24	ns
		8-mA drive with slew rate control	1	18	28	ns
J13	TCK fall to High-Z	2-mA drive	-	9	11	ns
t _{TDO DVZ}	from Data Valid	4-mA drive	1	7	9	ns
-		8-mA drive	1	6	8	ns
		8-mA drive with slew rate control]	7	9	ns
J14	t _{TRST}	TRST assertion time	100	-	-	ns
J15	t _{TRST_SU}	TRST setup time to TCK rise	10	-	-	ns

Table 18-11. JTAG Characteristics (continued)

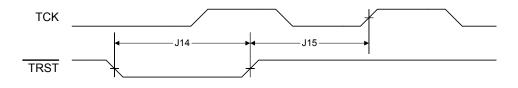

Figure 18-2. JTAG Test Clock Input Timing

Figure 18-4. JTAG TRST Timing

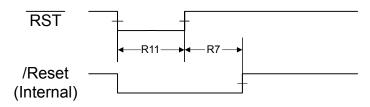
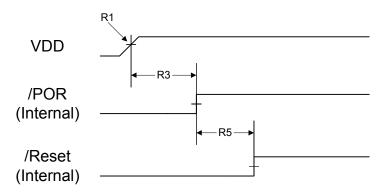
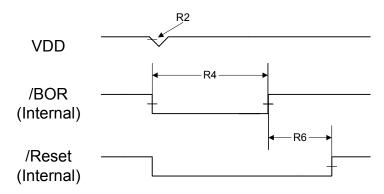
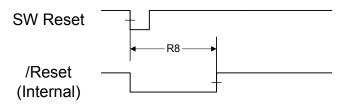

18.2.4 Reset

Table 18-12. Reset Characteristics


Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
R1	V _{TH}	Reset threshold	-	2.0	-	V
R2	V _{BTH}	Brown-Out threshold	2.85	2.9	2.95	V
R3	T _{POR}	Power-On Reset timeout	-	10	-	ms
R4	T _{BOR}	Brown-Out timeout	-	500	-	μs
R5	T _{IRPOR}	Internal reset timeout after POR	6	-	11	ms
R6	T _{IRBOR}	Internal reset timeout after BOR ^a	0	-	1	μs
R7	T _{IRHWR}	Internal reset timeout after hardware reset (RST pin)	0	-	1	ms
R8	T _{IRSWR}	Internal reset timeout after software-initiated system reset ^a	2.5	-	20	μs
R9	T _{IRWDR}	Internal reset timeout after watchdog reset ^a	2.5	-	20	μs
R10	T _{VDDRISE}	Supply voltage (V _{DD}) rise time (0V-3.3V)	-	-	250	μs
R11	T _{MIN}	Minimum RST pulse width	2	-	-	μs

a. 20 * t _{MOSC_per}


Figure 18-5. External Reset Timing (RST)


Figure 18-6. Power-On Reset Timing

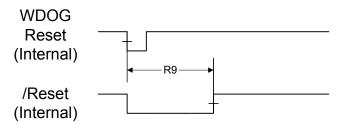

Figure 18-7. Brown-Out Reset Timing

Figure 18-8. Software Reset Timing

Figure 18-9. Watchdog Reset Timing

18.2.5 Sleep Modes

Table 18-13. Sleep Modes AC Characteristics^a

Parameter No	Parameter	Parameter Name	Min	Nom	Max	Unit
D1	t _{WAKE_S}	Time to wake from interrupt in sleep or deep-sleep mode, not using the PLL	-	-	7	system clocks
D2	t _{WAKE_PLL_S}	Time to wake from interrupt in sleep or deep-sleep mode when using the PLL	-	-	T _{READY}	ms

a. Values in this table assume the IOSC is the clock source during sleep or deep-sleep mode.

18.2.6 General-Purpose I/O (GPIO)

Note: All GPIOs are 5 V-tolerant.

Table 18-14. GPIO Characteristics

Parameter	Parameter Name	Condition	Min	Nom	Max	Unit
t _{GPIOR}	GPIO Rise Time	2-mA drive	-	17	26	ns
	(from 20% to 80% of V _{DD})	4-mA drive		9	13	ns
		8-mA drive		6	9	ns
		8-mA drive with slew rate control		10	12	ns
t _{GPIOF}	GPIO Fall Time	2-mA drive	-	17	25	ns
	(from 80% to 20% of V _{DD})	4-mA drive		8	12	ns
		8-mA drive		6	10	ns
		8-mA drive with slew rate control		11	13	ns

18.2.7 Synchronous Serial Interface (SSI)

Table 18-15. SSI Characteristics

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
S1	t _{clk_per}	SSIClk cycle time	2	-	65024	system clocks
S2	t _{clk_high}	SSIClk high time	-	0.5	-	t clk_per
S3	t _{clk_low}	SSIClk low time	-	0.5	-	t clk_per
S4	t _{clkrf}	SSIClk rise/fall time	-	7.4	26	ns
S5	t _{DMd}	Data from master valid delay time	0	-	1	system clocks
S6	t _{DMs}	Data from master setup time	1	-	-	system clocks
S7	t _{DMh}	Data from master hold time	2	-	-	system clocks
S8	t _{DSs}	Data from slave setup time	1	-	-	system clocks

Parameter No.	Parameter	Parameter Name	Min	Nom	Мах	Unit
S9	t _{DSh}	Data from slave hold time	2	-	-	system clocks

Figure 18-10. SSI Timing for TI Frame Format (FRF=01), Single Transfer Timing Measurement

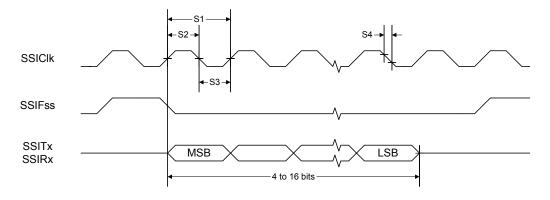
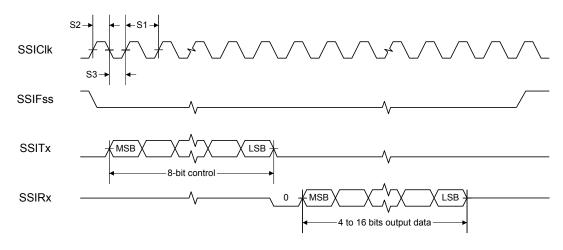



Figure 18-11. SSI Timing for MICROWIRE Frame Format (FRF=10), Single Transfer

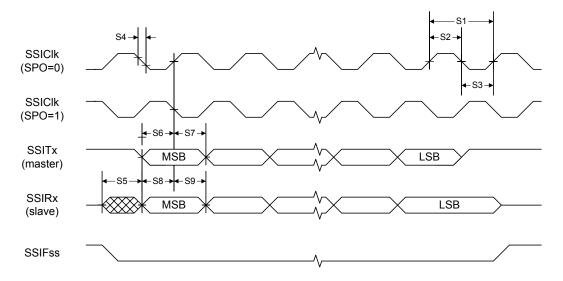


Figure 18-12. SSI Timing for SPI Frame Format (FRF=00), with SPH=1

18.2.8 Ethernet Controller

Table 18-16. 100BASE-TX Transmitter Characteristics^a

Parameter Name	Min	Nom	Мах	Unit
Peak output amplitude	950	-	1050	mVpk
Output amplitude symmetry	98	-	102	%
Output overshoot	-	-	5	%
Rise/Fall time	3	-	5	ns
Rise/Fall time imbalance	-	-	500	ps
Duty cycle distortion	-	-	-	ps
Jitter	-	-	1.4	ns

a. Measured at the line side of the transformer.

Table 18-17. 100BASE-TX Transmitter Characteristics (informative)^a

Parameter Name	Min	Nom	Max	Unit
Return loss	16	-	-	dB
Open-circuit inductance	350	-	-	μH

a. The specifications in this table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements.

Table 18-18. 100BASE-TX Receiver Characteristics

Parameter Name	Min	Nom	Max	Unit
Signal detect assertion threshold	600	700	-	mVppd
Signal detect de-assertion threshold	350	425	-	mVppd
Differential input resistance	-	20	-	kΩ

Parameter Name	Min	Nom	Max	Unit
Jitter tolerance (pk-pk)	4	-	-	ns
Baseline wander tracking	-75	-	+75	%
Signal detect assertion time	-	-	1000	μs
Signal detect de-assertion time	-	-	4	μs

Table 18-18. 100BASE-TX Receiver Characteristics (continued)

Table 18-19. 10BASE-T Transmitter Characteristics^a

Parameter Name	Min	Nom	Max	Unit
Peak differential output signal	2.2	-	2.8	V
Harmonic content	27	-	-	dB
Link pulse width	-	100	-	ns
Start-of-idle pulse width	-	300	-	ns
		350		

a. The Manchester-encoded data pulses, the link pulse and the start-of-idle pulse are tested against the templates and using the procedures found in Clause 14 of *IEEE 802.3*.

Table 18-20. 10BASE-T Transmitter Characteristics (informative)^a

Parameter Name	Min	Nom	Max	Unit
Output return loss	15	-	-	dB
Output impedance balance	29-17log(f/10)	-	-	dB
Peak common-mode output voltage	-	-	50	mV
Common-mode rejection	-	-	100	mV
Common-mode rejection jitter	-	-	1	ns

a. The specifications in this table are included for information only. They are mainly a function of the external transformer and termination resistors used for measurements.

Table 18-21. 10BASE-T Receiver Characteristics

Parameter Name	Min	Nom	Max	Unit
DLL phase acquisition time	-	10	-	BT
Jitter tolerance (pk-pk)	30	-	-	ns
Input squelched threshold	500	600	700	mVppd
Input unsqueiched threshold	275	350	425	mVppd
Differential input resistance	-	20	-	kΩ
Bit error ratio	-	10 ⁻¹⁰	-	-
Common-mode rejection	25	-	-	V

Table 18-22. Isolation Transformers^a

Name	Value	Condition
Turns ratio	1 CT : 1 CT	+/- 5%
Open-circuit inductance	350 uH (min)	@ 10 mV, 10 kHz
Leakage inductance	0.40 uH (max)	@ 1 MHz (min)
Inter-winding capacitance	25 pF (max)	
DC resistance	0.9 Ohm (max)	

Table 18-22. Isolation Transformers (continued)

Name	Value	Condition		
Insertion loss	0.4 dB (typ)	0-65 MHz		
HIPOT	1500	Vrms		

a. Two simple 1:1 isolation transformers are required at the line interface. Transformers with integrated common-mode chokes are recommended for exceeding FCC requirements. This table gives the recommended line transformer characteristics.

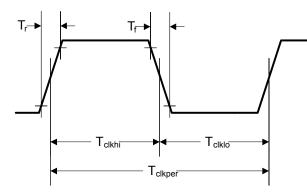

Note: The 100Base-TX amplitude specifications assume a transformer loss of 0.4 dB. For the transmit line transformer with higher insertion losses, up to 1.2 dB of insertion loss can be compensated by selecting the appropriate setting in the Transmit Amplitude Selection (TXO) bits in the **MR19** register.

Table 18-23. Ethernet Reference Crystal^a

Name	Value	Condition
Frequency	25.00000	MHz
Frequency tolerance	±50	PPM
Aging	±2	PPM/yr
Temperature stability (-40° to 85°)	±5	PPM
Temperature stability (-40° to 105°)	±5	PPM
Oscillation mode	Parallel resonance, fundamental mode	
Parameters at 25° C ±2° C; Drive level = 0.5 mW		
Drive level (typ)	50-100	μW
Shunt capacitance (max)	10	pF
Motional capacitance (min)	10	fF
Series resistance (max)	60	Ω
Spurious response (max)	> 5 dB below main within 500 kHz	

a. If the internal crystal oscillator is used, select a crystal that meets these specifications.

Figure 18-13. External XTLP Oscillator Characteristics

Parameter Name	Symbol	Min	Nom	Max	Unit
XTLN Input Low Voltage	XTLN _{ILV}	-	-	0.8	-
XTLP Frequency ^a	XTLP _f	-	25.0	-	-
XTLP Period ^b	T _{clkper}	-	40	-	-
XTLP Duty Cycle	XTLP _{DC}	40	-	60	%
		40		60	
Rise/Fall Time	T _r , T _f	-	-	4.0	ns
Absolute Jitter	T _{JITTER}	-	-	0.1	ns

Table 18-24. External XTLP Oscillator Characteristics

a. IEEE 802.3 frequency tolerance ± 50 ppm.

b. IEEE 802.3 frequency tolerance ± 50 ppm.

18.2.9 Analog Comparator

Table 18-25. Analog Comparator Characteristics

Parameter	Parameter Name	Min	Nom	Мах	Unit
V _{OS}	Input offset voltage	-	±10	±25	mV
V _{CM}	Input common mode voltage range	0	-	V _{DD} -1.5	V
C _{MRR}	Common mode rejection ratio	50	-	-	dB
T _{RT}	Response time	-	-	1	μs
T _{MC}	Comparator mode change to Output Valid	-	-	10	μs

Table 18-26. Analog Comparator Voltage Reference Characteristics

Parameter	Parameter Name	Min	Nom	Max	Unit
R _{HR}	Resolution high range	-	V _{DD} /31	-	LSB
R _{LR}	Resolution low range	-	V _{DD} /23	-	LSB
A _{HR}	Absolute accuracy high range	-	-	±1/2	LSB
A _{LR}	Absolute accuracy low range	-	-	±1/4	LSB

A Serial Flash Loader

A.1 Serial Flash Loader

The Stellaris[®] serial flash loader is a preprogrammed flash-resident utility used to download code to the flash memory of a device without the use of a debug interface. The serial flash loader uses a simple packet interface to provide synchronous communication with the device. The flash loader runs off the crystal and does not enable the PLL, so its speed is determined by the crystal used. The two serial interfaces that can be used are the UART0 and SSI0 interfaces. For simplicity, both the data format and communication protocol are identical for both serial interfaces.

A.2 Interfaces

Once communication with the flash loader is established via one of the serial interfaces, that interface is used until the flash loader is reset or new code takes over. For example, once you start communicating using the SSI port, communications with the flash loader via the UART are disabled until the device is reset.

A.2.1 UART

The Universal Asynchronous Receivers/Transmitters (UART) communication uses a fixed serial format of 8 bits of data, no parity, and 1 stop bit. The baud rate used for communication is automatically detected by the flash loader and can be any valid baud rate supported by the host and the device. The auto detection sequence requires that the baud rate should be no more than 1/32 the crystal frequency of the board that is running the serial flash loader. This is actually the same as the hardware limitation for the maximum baud rate for any UART on a Stellaris[®] device which is calculated as follows:

Max Baud Rate = System Clock Frequency / 16

In order to determine the baud rate, the serial flash loader needs to determine the relationship between its own crystal frequency and the baud rate. This is enough information for the flash loader to configure its UART to the same baud rate as the host. This automatic baud-rate detection allows the host to use any valid baud rate that it wants to communicate with the device.

The method used to perform this automatic synchronization relies on the host sending the flash loader two bytes that are both 0x55. This generates a series of pulses to the flash loader that it can use to calculate the ratios needed to program the UART to match the host's baud rate. After the host sends the pattern, it attempts to read back one byte of data from the UART. The flash loader returns the value of 0xCC to indicate successful detection of the baud rate. If this byte is not received after at least twice the time required to transfer the two bytes, the host can resend another pattern of 0x55, 0x55, and wait for the 0xCC byte again until the flash loader acknowledges that it has received a synchronization pattern correctly. For example, the time to wait for data back from the flash loader should be calculated as at least 2*(20(bits/sync)/baud rate (bits/sec)). For a baud rate of 115200, this time is 2*(20/115200) or 0.35 ms.

A.2.2 SSI

The Synchronous Serial Interface (SSI) port also uses a fixed serial format for communications, with the framing defined as Motorola format with SPH set to 1 and SPO set to 1. See "Frame Formats" on page 285 in the SSI chapter for more information on formats for this transfer protocol. Like the UART, this interface has hardware requirements that limit the maximum speed that the SSI clock can run. This allows the SSI clock to be at most 1/12 the crystal frequency of the board running

the flash loader. Since the host device is the master, the SSI on the flash loader device does not need to determine the clock as it is provided directly by the host.

A.3 Packet Handling

All communications, with the exception of the UART auto-baud, are done via defined packets that are acknowledged (ACK) or not acknowledged (NAK) by the devices. The packets use the same format for receiving and sending packets, including the method used to acknowledge successful or unsuccessful reception of a packet.

A.3.1 Packet Format

All packets sent and received from the device use the following byte-packed format.

```
struct
{
 unsigned char ucSize;
 unsigned char ucCheckSum;
 unsigned char Data[];
};
ucSize
                               The first byte received holds the total size of the transfer including
                               the size and checksum bytes.
ucChecksum
                               This holds a simple checksum of the bytes in the data buffer only.
                               The algorithm is Data[0]+Data[1]+...+ Data[ucSize-3].
Data
                               This is the raw data intended for the device, which is formatted in
                               some form of command interface. There should be ucSize-2
                               bytes of data provided in this buffer to or from the device.
```

A.3.2 Sending Packets

The actual bytes of the packet can be sent individually or all at once; the only limitation is that commands that cause flash memory access should limit the download sizes to prevent losing bytes during flash programming. This limitation is discussed further in the section that describes the serial flash loader command, COMMAND_SEND_DATA (see "COMMAND_SEND_DATA (0x24)" on page 420).

Once the packet has been formatted correctly by the host, it should be sent out over the UART or SSI interface. Then the host should poll the UART or SSI interface for the first non-zero data returned from the device. The first non-zero byte will either be an ACK (0xCC) or a NAK (0x33) byte from the device indicating the packet was received successfully (ACK) or unsuccessfully (NAK). This does not indicate that the actual contents of the command issued in the data portion of the packet was received correctly.

A.3.3 Receiving Packets

The flash loader sends a packet of data in the same format that it receives a packet. The flash loader may transfer leading zero data before the first actual byte of data is sent out. The first non-zero byte is the size of the packet followed by a checksum byte, and finally followed by the data itself. There is no break in the data after the first non-zero byte is sent from the flash loader. Once the device communicating with the flash loader receives all the bytes, it must either ACK or NAK the packet to indicate that the transmission was successful. The appropriate response after sending a NAK to the flash loader is to resend the command that failed and request the data again. If needed, the host may send leading zeros before sending down the ACK/NAK signal to the flash loader, as the

flash loader only accepts the first non-zero data as a valid response. This zero padding is needed by the SSI interface in order to receive data to or from the flash loader.

A.4 Commands

The next section defines the list of commands that can be sent to the flash loader. The first byte of the data should always be one of the defined commands, followed by data or parameters as determined by the command that is sent.

A.4.1 COMMAND_PING (0X20)

This command simply accepts the command and sets the global status to success. The format of the packet is as follows:

Byte[0] = 0x03; Byte[1] = checksum(Byte[2]); Byte[2] = COMMAND_PING;

The ping command has 3 bytes and the value for COMMAND_PING is 0x20 and the checksum of one byte is that same byte, making Byte[1] also 0x20. Since the ping command has no real return status, the receipt of an ACK can be interpreted as a successful ping to the flash loader.

A.4.2 COMMAND_GET_STATUS (0x23)

This command returns the status of the last command that was issued. Typically, this command should be sent after every command to ensure that the previous command was successful or to properly respond to a failure. The command requires one byte in the data of the packet and should be followed by reading a packet with one byte of data that contains a status code. The last step is to ACK or NAK the received data so the flash loader knows that the data has been read.

Byte[0] = 0x03
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_GET_STATUS

A.4.3 COMMAND_DOWNLOAD (0x21)

This command is sent to the flash loader to indicate where to store data and how many bytes will be sent by the COMMAND_SEND_DATA commands that follow. The command consists of two 32-bit values that are both transferred MSB first. The first 32-bit value is the address to start programming data into, while the second is the 32-bit size of the data that will be sent. This command also triggers an erase of the full area to be programmed so this command takes longer than other commands. This results in a longer time to receive the ACK/NAK back from the board. This command should be followed by a COMMAND_GET_STATUS to ensure that the Program Address and Program size are valid for the device running the flash loader.

The format of the packet to send this command is a follows:

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_DOWNLOAD
Byte[3] = Program Address [31:24]
Byte[4] = Program Address [23:16]
Byte[5] = Program Address [15:8]
Byte[6] = Program Address [7:0]
Byte[7] = Program Size [31:24]
```

```
Byte[8] = Program Size [23:16]
Byte[9] = Program Size [15:8]
Byte[10] = Program Size [7:0]
```

A.4.4 COMMAND_SEND_DATA (0x24)

This command should only follow a COMMAND_DOWNLOAD command or another COMMAND_SEND_DATA command if more data is needed. Consecutive send data commands automatically increment address and continue programming from the previous location. The caller should limit transfers of data to a maximum 8 bytes of packet data to allow the flash to program successfully and not overflow input buffers of the serial interfaces. The command terminates programming once the number of bytes indicated by the COMMAND_DOWNLOAD command has been received. Each time this function is called it should be followed by a COMMAND_GET_STATUS to ensure that the data was successfully programmed into the flash. If the flash loader sends a NAK to this command, the flash loader does not increment the current address to allow retransmission of the previous data.

```
Byte[0] = 11
Byte[1] = checksum(Bytes[2:10])
Byte[2] = COMMAND_SEND_DATA
Byte[3] = Data[0]
Byte[4] = Data[1]
Byte[5] = Data[2]
Byte[6] = Data[2]
Byte[6] = Data[3]
Byte[7] = Data[4]
Byte[8] = Data[5]
Byte[9] = Data[6]
Byte[10] = Data[7]
```

A.4.5 COMMAND_RUN (0x22)

This command is used to tell the flash loader to execute from the address passed as the parameter in this command. This command consists of a single 32-bit value that is interpreted as the address to execute. The 32-bit value is transmitted MSB first and the flash loader responds with an ACK signal back to the host device before actually executing the code at the given address. This allows the host to know that the command was received successfully and the code is now running.

```
Byte[0] = 7
Byte[1] = checksum(Bytes[2:6])
Byte[2] = COMMAND_RUN
Byte[3] = Execute Address[31:24]
Byte[4] = Execute Address[23:16]
Byte[5] = Execute Address[15:8]
Byte[6] = Execute Address[7:0]
```

A.4.6 COMMAND_RESET (0x25)

This command is used to tell the flash loader device to reset. This is useful when downloading a new image that overwrote the flash loader and wants to start from a full reset. Unlike the COMMAND_RUN command, this allows the initial stack pointer to be read by the hardware and set up for the new code. It can also be used to reset the flash loader if a critical error occurs and the host device wants to restart communication with the flash loader.

Byte[0] = 3
Byte[1] = checksum(Byte[2])
Byte[2] = COMMAND_RESET

The flash loader responds with an ACK signal back to the host device before actually executing the software reset to the device running the flash loader. This allows the host to know that the command was received successfully and the part will be reset.

B Register Quick Reference

				07		05							10	47	10
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17 1	16 0
			12	''	10	3	0	. '	0	5	4		2		0
-	1 Control 400F.E000														
DID0, type	e RO, offset	t 0x000, re	set -												
		VER									CL	ASS			
			MA	JOR							MIN	NOR			
PBORCTL	L, type R/W,	offset 0x0	030, reset 0:	x0000.7FF	D										
														BORIOR	
LDOPCTL	_, type R/W,	offset 0x0)34, reset 0)	x0000.0000)			1							
	DO -#		- 4 0 0 0 0 0									V	ADJ		
RIS, type	RO, offset (JXU5U, res	et 0x0000.0												
									PLLLRIS					BORRIS	
IMC type	P/W offsot	0x054 ro	cot 0x0000	0000					FLLLRIS					BURRIS	
nao, type	R/W, offset	. JAUJ4, re	381 040000.	0000											
									PLLLIM					BORIM	
MISC. tvn	e R/W1C, o	ffset 0x05	8. reset 0x0	000.0000										2011	
			.,												
									PLLLMIS					BORMIS	
RESC, typ	pe R/W, offs	et 0x05C,	reset -												
											SW	WDT	BOR	POR	EXT
RCC, type	e R/W, offse	t 0x060, re	eset 0x0780	.3AD1				1				1		1	
				ACG		SYS	SDIV		USESYSDIV						
		PWRDN		BYPASS			X	FAL		OSC	CSRC			IOSCDIS	MOSCDIS
PLLCFG,	type RO, of	fset 0x064	l, reset -												
				•		F							R		
RCC2, typ	pe R/W, offs	et 0x070, i	reset 0x078	0.2810											
USERCC2					SYS	SDIV2	_	_							
		PWRDN2		BYPASS2						OSCSRC2	2				
DSLPCLK	CFG, type	R/W, offse	t 0x144, res	et 0x0780.	0000								-		
					DSDI	/ORIDE									
									[DSOSCSR	С				
DID1, type	e RO, offset		set -												
	VE				F.	AM							DOUD		
	PINCOUNT								TEMP		PI	KG	ROHS	QL	JAL
DCU, type	RO, offset	uxuu8, res	set uxuurf.(JU3F			004	Mez							
								MSZ SHSZ							
DC1 type	RO, offset	0x010 roc	set 0x0000 *	309F			FLA	01702							
Doi, type	, no, onset	0.010, 165													
	MINS	(SDIV						MPU			PLL	WDT	SWO	SWD	JTAG
DC2, type	RO, offset		set 0x0307.0	0011				1 0					0.110	0.10	0.710
, ., po	,					COMP1	COMP0						TIMER2	TIMER1	TIMER0
						001011	001110				SSI0				UART0
DC3, type	RO, offset	0x018. res	set 0x8F00.0	0FC0							2.0.0				2
32KHZ	,			CCP3	CCP2	CCP1	CCP0								
				C10		C1MINUS	C00	COPLUS	COMINUS						
				1 0.0	2 200		500	1 23. 200							

04	00	00	00	07	00	05	04	00	00	04	00	40	40	47	40
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0
					10	9	0	/	0	5	4	3	2		0
JC4, type	e RO, offset	JXU1C, re		007F											
	EPHY0		EMAC0						00100	00105	00105	00100	00100	00100	0.010
									GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIO
RCGC0, I	type R/W, off	set 0x100	, reset 0x00	000040											
												WDT			
SCGC0, t	type R/W, off	set 0x110	, reset 0x00	000040											
												WDT			
DCGC0, 1	type R/W, off	set 0x120	, reset 0x00	000040											
												WDT			
RCGC1, I	type R/W, off	set 0x104	, reset 0x00	000000											
						COMP1	COMP0						TIMER2	TIMER1	TIMER
											SSI0				UART
SCGC1, t	type R/W, off	set 0x114	, reset 0x00	000000											
						COMP1	COMP0						TIMER2	TIMER1	TIMER
											SSI0				UART
DCGC1 1	type R/W, off	set 0x124	. reset 0x00	000000							1				
,	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,			COMP1	COMP0						TIMER2	TIMER1	TIMER
						001111	001111 0				SSI0		THREFT	THREFT	UART
PCCC2 (type R/W, off	cot 0x109	rocot 0x00	000000							0010				0,411
R0002, 1		Set UX 100													
	EPHY0		EMAC0						GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	CDIO
									GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIUB	GPIOA
SCGC2, t	type R/W, off	set 0x118		000000											
	EPHY0		EMAC0												
									GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
DCGC2, 1	type R/W, off	set 0x128	, reset 0x00	000000											
	EPHY0		EMAC0												
									GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIOA
SRCR0, t	type R/W, off	set 0x040	, reset 0x00	000000											
												WDT			
SRCR1, t	type R/W, off	set 0x044	, reset 0x00	000000											
						COMP1	COMP0						TIMER2	TIMER1	TIMER
											SSI0				UART
SRCR2, t	type R/W, off	set 0x048	, reset 0x00	000000											
	EPHY0		EMAC0												
									GPIOG	GPIOF	GPIOE	GPIOD	GPIOC	GPIOB	GPIO
Interna	al Memory	,													
	Memory C		Pogistor	e (Elach	Control										
	400F.D000	onuol	registers	s (i lasli	Sontio	(Jisel)									
		0x000	ent Oronon	0000											
гіла, тур	e R/W, offset	. JXUUU, re	set 0X0000.	.0000											OFFOR
							055								OFFSE
							UFF	SET							
FMD, typ	e R/W, offset	0x004, re	eset 0x0000.	.0000											
								TA							
							DA	TA							
FMC, typ	e R/W, offset	0x008, re	eset 0x0000.	.0000											
							WR	KEY							
												COMT	MERASE	ERASE	WRIT

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	30 14	29 13	12	11	10	25 9	8	23	6	5	20 4	3	2	17	0
	pe RO, offs				10	Ū	0		Ŭ	Ū			-		
	,	,													
														PRIS	ARIS
FCIM, type	e R/W, offse	et 0x010, r	eset 0x000	0.0000				1				1			
														PMASK	AMASK
FCMISC, t	type R/W1C	, offset 0x	(014, reset (0x0000.000	0										
														PMISC	AMISC
Flash N	I Memory Nemory F 400F.E000		on Regis	sters (Sy	stem Co	ontrol Of	fset)								
USECRL,	type R/W, o	ffset 0x14	40, reset 0x3	31											
											U	SEC			
FMPRE0,	type R/W, o	ffset 0x13	0 and 0x20	0, reset 0x	FFFF.FFFF										
							READ	ENABLE							
							READ_	ENABLE							
FMPPE0,	type R/W, o	ffset 0x13	4 and 0x40	0, reset 0x	FFFF.FFFF										
							PROG_	ENABLE							
							PROG_	ENABLE							
USER_DB	BG, type R/V	V, offset 0	x1D0, reset	0xFFFF.FF	FE										
NW								DATA							
						D/	ATA							DBG1	DBG0
	G0, type R/	W, offset	0x1E0, rese	et 0xFFFF.F	FFF										
NW								DATA							
			=.				D	ATA							
	G1, type R/	vv, offset	UX1E4, rese	OXFFFF.F	FFF			DATA							
NW								DATA ATA							
	type R/W, o	ffeat 0x20	14 resot Ox				0.								
T MF K⊑ I,	type N/W, O	11561 0720	14, Teset UAI				READ	ENABLE							
FMPRE2	type R/W, o	ffset 0x20	18. reset 0×1	0000.0000											
 ,	.,,.		.,				READ	ENABLE							
								ENABLE							
FMPRE3,	type R/W, o	ffset 0x20	C, reset 0x	0000.0000											
							READ_	ENABLE							
							READ	ENABLE							
FMPPE1,	type R/W, o	ffset 0x40	4, reset 0xF	FFFF.FFFF											
							PROG	ENABLE							
							PROG	ENABLE							
FMPPE2,	type R/W, o	ffset 0x40	8, reset 0x0	0000.0000											
							PROG	ENABLE							
							PROG	ENABLE							
FMPPE3,	type R/W, o	ffset 0x40	C, reset 0x	0000.0000											
							PROG	ENABLE							
							PROG								

04	00	00	00	07	00	05	04	00	00	01	00	10	40	47	40
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18	17	16 0
						3	0		0	5	4		2		0
GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po GPIO Po	rt A base: rt B base: rt C base: rt D base: rt D base: rt E base: rt F base: rt G base:	0x4000.4 0x4000.5 0x4000.7 0x4000.7 0x4002.4 0x4002.5	4000 5000 5000 7000 4000 5000	(GPIOs)	1										
)x0000.0000	, ,										
or iobali	ч, туре то н	, onset ox			,										
											D/	I ATA			
GPIODIR,	type R/W, o	offset 0x40)0, reset 0x	0000.0000				1							
											D	IR			
GPIOIS, ty	/pe R/W, of	fset 0x404	, reset 0x00	000.0000											
												S			
GPIOIBE,	type R/W, c	offset 0x40	08, reset 0x	0000.0000											
											IE	BE			
GPIOIEV,	type R/W, o	ffset 0x40	C, reset 0x	0000.0000		-		_				-			
											IE	EV			
GPIOIM, ty	ype R/W, of	fset 0x410), reset 0x0	000.0000											
											I	ΛE			
GPIORIS,	type RO, of	ffset 0x414	4, reset 0x0	000.0000				1							
												IS			
GPIOMIS	type RO o	ffeet 0x41	8, reset 0x0												
GFIONIIS,	type KO, U	11561 0741	o, reset ono	000.0000								1			
											N	l IIS			
GPIOICR.	type W1C.	offset 0x4	1C. reset 0	x0000.0000				1							
,	. , ,														
												C			
GPIOAFSI	EL, type R/	W, offset 0	x420, reset	i -											
											AF	SEL			
GPIODR2	R, type R/W	l, offset 0x	500, reset (0x0000.00F	F										
											DF	RV2			
GPIODR4	R, type R/W	l, offset 0x	504, reset (0x0000.000)										
											DF	RV4			
GPIODR8	R, type R/W	l, offset 0x	508, reset (0x0000.000)										
											DF	RV8			
GPIOODR	, type R/W,	offset 0x5	50C, reset 0	x0000.0000											
											0	DE			
GPIOPUR	, type R/W,	offset 0x5	10, reset -									1			
											P	UE			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPIOPDR	, type R/W,	offset 0x5	14, reset 0x	k0000.0000				•							
											Р	DE			
SPIOSLR	, type R/W,	offset 0x5 [.]	18, reset 0x	«0000.0000								1			
											S	RL			
PIODEN	l, type R/W,	offset 0x5	1C, reset -												
											D	EN			
	K, type R/W	/ offset 0x	520 reset	 0×0000 000	1						D				
	, ., .,	., eneer ex		•	•		LC	ОСК							
								CK							
SPIOCR,	type -, offse	et 0x524, re	eset -												
											0	' CR			
PIOPeri	phID4, type	RO, offset	t 0xFD0, re	set 0x0000.	0000										
											P	ID4			
GPIOPeri	phID5, type	RO, offset	t 0xFD4, re	set 0x0000.	0000			1							
		DO offere			0000						PI	ID5			
PIOPeri	phID6, type	RO, onsei			0000										
											P	ID6			
GPIOPeri	phID7, type	RO. offset	t 0xFDC. re	set 0x0000	.0000										
	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-,	, .												
											P	ID7			
GPIOPeri	phID0, type	RO, offset	t 0xFE0, res	set 0x0000.	0061										
											P	ID0			
GPIOPeri	phID1, type	RO, offset	t 0xFE4, res	set 0x0000.	0000										
											PI	ID1			
3PIOPeri	phID2, type	RO, offset	t 0xFE8, res	set 0x0000.	0018										
												ID2			
SPIOPori	nhID3 type	RO offer		set 0x0000	0001			1			P				
	phID3, type	, 011301													
											P	ID3			
GPIOPCe	IIID0, type F	RO, offset	0xFF0, rese	et 0x0000.00	00D			1							
											С	ID0			
GPIOPCe	IIID1, type F	RO, offset (0xFF4, rese	et 0x0000.0	0F0										
											С	ID1			
GPIOPCe	IIID2, type F	RO, offset (0xFF8, rese	et 0x0000.0	005										
											С	ID2			
SPIOPCe	IIID3, type F	RO, offset (0xFFC, res	et 0x0000.0	0B1										
											C	ID3			

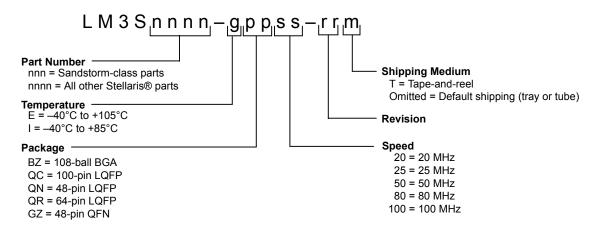
				07		05				04			10	47	10
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17 1	16 0
					10	3	0		0	5	-		2		0
	ase: 0x40		5												
Timer1 b	ase: 0x40	03.1000													
	ase: 0x40														
GPIMCFO	G, type R/W	, onset uxi	JUU, reset u	x0000.0000	J										
														GPTMCFG	
CPTMTA	VIR, type R/V	N offset 0	v004 reset	0×0000 00	00									GFTWICEG	
		, onset 0	x004, 16361	0,0000.00											
												TAAMS	TACMR	ТА	MR
GPTMTB	MR, type R/	N. offset 0	x008. reset	0x0000.00	00										
		.,													
												TBAMS	TBCMR	ТВ	MR
GPTMCTI	, type R/W,	offset 0x0	0C, reset 0	x0000.000)			1				1			
	TBPWML			TBE	VENT	TBSTALL	TBEN		TAPWML		RTCEN	TAE	/ENT	TASTALL	TAEN
GPTMIMF	R, type R/W,	offset 0x0	18, reset 0x	<0000.0000			*								
					CBEIM	CBMIM	TBTOIM					RTCIM	CAEIM	CAMIM	TATOIN
GPTMRIS	, type RO, o	offset 0x01	C, reset 0x	0000.0000	-	-		-					-	-	
					CBERIS	CBMRIS	TBTORIS					RTCRIS	CAERIS	CAMRIS	TATORI
GPTMMIS	s, type RO, o	offset 0x02	20, reset 0x0	0000.0000											
					CBEMIS	CBMMIS	TBTOMIS					RTCMIS	CAEMIS	CAMMIS	TATOMI
GPTMICR	type W1C	offset 0x0	024, reset 0	x0000.0000)										
					ODEOINT	ODMOINT						DTOONIT	OAFOINT	OAMOINIT	
00714741		N - 65 4 0				CBMCINT	TBTOCINT					RICCINI	CAECINI	CAMCINT	TATOCIN
GPIMIAI	LR, type R/	N, offset u	xuza, reset	UXFFFF.FF	FF		TAII	БЦ							
							TAI								
GPTMTRI	LR, type R/	W offset 0	x02C reset	0x0000 FI	FF										
		, onset o													
							TBI	l LRL							
GPTMTA	MATCHR, ty	pe R/W. of	fset 0x030.	reset 0xFF	FF.FFFF										
							TAN	/RH							
							TAN								
GPTMTB	MATCHR, ty	pe R/W, of	fset 0x034,	reset 0x00	00.FFFF										
							TBN	/ //RL							
GPTMTAF	PR, type R/V	V, offset 0	k038, reset	0x0000.000	00										
											TA	PSR			
GPTMTB	PR, type R/	V, offset 0	x03C, reset	0x0000.00	00										
											TBI	PSR			
GPTMTAF	PMR, type R	/W, offset	0x040, rese	et 0x0000.0	000										
00711		AAI - 57	0+011	4.0.0000	000						IAP	SMR			
GPIMIB	PMR, type F	avv, offset	uxu44, rese	et UXUUUU.0	000										
											TDD	SMD			
											IBP	SMR			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GPTMTAR,	type RO,	offset 0x04	l8, reset 0x	FFFF.FFFF				1				1		1	
							TA	RH							
							TA	RL							
GPTMTBR	, type RO,	offset 0x04	4C, reset 0x	0000.FFFF				1				1			
							т	 BRL							
Matabal	a Tima	-					10								
Watchdo Base 0x40															
)00, reset 0	xFFFF.FFF	F										
							WDT	FLoad							
							WDT	FLoad							
WDTVALU	E, type RC), offset 0x(004, reset 0	xFFFF.FFF	F										
								Value							
WDTCTI 4		offect AvAA	8, reset 0x0	000 0000			WDI	Value							
	JPC 10144, 0		5, 16361 UX												
														RESEN	INTEN
WDTICR, ty	ype WO, o	ffset 0x00C	C, reset -												
							WDT	IntClr							
							WDT	IntClr							
WDTRIS, ty	/pe RO, of	fset 0x010,	reset 0x00	00.000											
															WDTRIS
WDTMIS. t	vpe RO. of	ffset 0x014	, reset 0x00	00.0000											WDTRK
	, po 110, o		,												
															WDTMIS
WDTTEST,	type R/W,	offset 0x4	18, reset 0x	0000.0000											
							STALL								
WDTLOCK	, type R/W	, offset 0x0	COO, reset O	x0000.000	0		W/D1	FLock							
								FLOCK							
WDTPerip	nID4, type	RO, offset	0xFD0, res	et 0x0000.0	0000										
											P	ID4			
WDTPerip	nID5, type	RO, offset	0xFD4, res	et 0x0000.(0000			1							
WDTPorint		RO offect	0xFD8, res	et 0x0000 (000						P	ID5			
WD II enpi	про, туре	ito, onset	UXI D0, 183	et 0x0000.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										
											P	ID6			
WDTPerip	nID7, type	RO, offset	0xFDC, res	et 0x0000.	0000										
											Р	ID7			
WDTPerip	nID0, type	RO, offset	0xFE0, res	et 0x0000.0	005										
											D	ID0			
WDTPerint	1D1. type	RO, offset	0xFE4, res	et 0x0000 (0018			1			F				
. p	, ., ., .,	2, 511001	,												
											P	I ID1			
WDTPerip	nID2, type	RO, offset	0xFE8, res	et 0x0000.0	0018										
											P	ID2			

31						05	~ ~			0.1		1 10		47	
45	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
VDTPeripi	nID3, type l	RO, offset	0xFEC, res	set 0x0000.	0001							1			
											PI	D3			
WDTPCelli	DU, type R	O, offset 0	xFF0, rese	t 0x0000.00											
											0				
											CI	ID0			
WDTPCell	D1, type R	O, offset 0	xFF4, rese	t 0x0000.00	DFO			1							
											CI	ID1			
WDTPCell	D2, type R	O, offset 0	xFF8, rese	t 0x0000.00	005			1				1			
		<u> </u>									CI	ID2			
WDTPCell	D3, type R	O, offset 0	xFFC, rese	et 0x0000.0	0B1			1							
												ID3			
Univers			is Receiv	vers/Tra	nsmitter	s (UAR1	s)								
UART0 ba															
UARTDR, t	ype R/W, o	offset 0x00	0, reset 0x(0000.0000											
				OE	BE	PE	FE				DA	ATA			
UARTRSR	UARTECR	, type RO,	offset 0x00	04, reset 0)	×0000.0000	(Reads)									
												OE	BE	PE	FE
UARTRSR/	UARTECR	, type WO	, offset 0x0	04, reset 0	x0000.0000	(Writes)									
				1				1							
											DA	ATA			
UARTFR, t	ype RO, of		, reset 0x0	000.0090							DA				
	ype RO, of		s, reset 0x00	000.0090											
UARTFR, t		fset 0x018						TXFE	RXFF	TXFF	DA	ATA BUSY			
UARTFR, t		fset 0x018	9, reset 0x00 D20, reset 0		0			TXFE	RXFF	TXFF					
UARTFR, t		fset 0x018			0			TXFE	RXFF	TXFF	RXFE	BUSY			
UARTFR, t UARTILPR	, type R/W,	fset 0x018 offset 0x0	020, reset 0)x0000.0000				TXFE	RXFF	TXFF	RXFE				
UARTFR, t	, type R/W,	fset 0x018 offset 0x0	020, reset 0)x0000.0000				TXFE	RXFF	TXFF	RXFE	BUSY			
UARTFR, t UARTILPR	, type R/W,	fset 0x018 offset 0x0	020, reset 0)x0000.0000					RXFF	TXFF	RXFE	BUSY			
UARTIER UARTIER	, type R/W,), type R/W	fset 0x018 offset 0x0	020, reset 0 024, reset ()x0000.000	0		DIV	TXFE	RXFF	TXFF	RXFE	BUSY			
UARTIER UARTIER	, type R/W,), type R/W	fset 0x018 offset 0x0	020, reset 0)x0000.000	0		DIN		RXFF	TXFF	RXFE	BUSY			
UARTIER UARTIER	, type R/W,), type R/W	fset 0x018 offset 0x0	020, reset 0 024, reset ()x0000.000	0		DIN		RXFF	TXFF	RXFE	BUSY DVSR			
UARTIERC UARTIERC	, type R/W,), type R/W D, type R/W	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x	020, reset 0 024, reset (028, reset	0x0000.000	0				RXFF	TXFF	RXFE	BUSY DVSR	FRAC		
UARTIER UARTIER	, type R/W,), type R/W D, type R/W	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x	020, reset 0 024, reset (028, reset	0x0000.000	0				RXFF	TXFF	RXFE	BUSY DVSR	FRAC		
UARTIERC UARTIERC	, type R/W,), type R/W D, type R/W	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x	020, reset 0 024, reset (028, reset	0x0000.000	0			 //INT			ILPE	BUSY BUSY DVSR DIVI			
UARTILPR UARTIBRD UARTIBRD UARTFBRI	, type R/W,), type R/W D, type R/V H, type R/V	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x	020, reset 0 024, reset 0 028, reset 0 028, reset	0x0000.000	0					TXFF	RXFE	BUSY DVSR	FRAC	PEN	BRK
UARTILPR UARTIBRD UARTIBRD UARTFBRI	, type R/W,), type R/W D, type R/V H, type R/V	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x	020, reset 0 024, reset (028, reset	0x0000.000	0			 //INT			ILPE	BUSY BUSY DVSR DIVI		PEN	BRK
UARTILPR UARTIBRD UARTIBRD	, type R/W,), type R/W D, type R/V H, type R/V	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x	020, reset 0 024, reset 0 028, reset 0 028, reset	0x0000.000	0			/INT SPS			ILPE	BUSY BUSY DVSR DIVI	EPS		
UARTILPR UARTIBRD UARTIBRD UARTLCRI UARTLCRI	, type R/W, D, type R/W D, type R/V H, type R/V type R/W,	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x offset 0x0	020, reset 0 024, reset (028, reset (020, reset 020, reset 0 30, reset 0	x0000.0300	0	RXE	DIN	 //INT			ILPE	BUSY BUSY DVSR DIVI		PEN	
UARTILPR UARTIBRD UARTIBRD UARTLCRI UARTLCRI	, type R/W, D, type R/W D, type R/V H, type R/V type R/W,	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x offset 0x0	020, reset 0 024, reset 0 028, reset 0 028, reset	x0000.0300	0	RXE		/INT SPS			ILPE	BUSY BUSY DVSR DIVI	EPS		BRK
UARTILPR UARTIBRD UARTIBRD UARTLCRI UARTLCRI	, type R/W, D, type R/W D, type R/V H, type R/V type R/W,	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x offset 0x0	020, reset 0 024, reset (028, reset (020, reset 020, reset 0 30, reset 0	x0000.0300	0	RXE		/INT SPS			ILPE	BUSY BUSY DVSR DIVI	EPS		
UARTILPR UARTIBRD UARTIBRD UARTLCRI UARTLCRI	, type R/W, D, type R/W D, type R/V H, type R/V type R/W,	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x offset 0x0	020, reset 0 024, reset (028, reset (020, reset 020, reset 0 30, reset 0	x0000.0300	0	RXE		/INT SPS			ILPE	BUSY BUSY DVSR DIVI DIVI	EPS		UARTEN
UARTILPR UARTIBRD UARTIBRD UARTFBRI UARTLCRI UARTLCRI UARTIFLS	, type R/W, D, type R/W D, type R/W H, type R/W, type R/W,	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x offset 0x0 offset 0x0	020, reset 0 024, reset (028, reset (020, reset 020, reset 0 30, reset 0	x0000.000	0	RXE		/INT SPS			RXFE ILPC	BUSY BUSY DVSR DIVI DIVI	EPS	SIREN	UARTEN
UARTILPR UARTIBRD UARTIBRD UARTICRI UARTLCRI UARTICTL,	, type R/W, D, type R/W D, type R/W H, type R/W, type R/W,	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x offset 0x0 offset 0x0	020, reset 0 024, reset 0 024, reset 0 028, reset 0 30, reset 0 034, reset 0	x0000.000	0	RXE		/INT SPS			RXFE ILPC	BUSY BUSY DVSR DIVI DIVI	EPS	SIREN	UARTEN
UARTILPR UARTIBRD UARTIBRD UARTICRI UARTLCRI UARTICTL,	, type R/W, D, type R/W D, type R/W H, type R/W, type R/W,	fset 0x018 offset 0x0 , offset 0x0 V, offset 0x V, offset 0x offset 0x0 offset 0x0	020, reset 0 024, reset 0 024, reset 0 028, reset 0 30, reset 0 034, reset 0	x0000.000	0	RXE		/INT SPS			RXFE ILPC	BUSY BUSY DVSR DIVI DIVI	EPS	SIREN	UARTEN
UARTIERC UARTIERC UARTIBRC UARTIERC UARTICRI UARTICRI UARTIFLS	, type R/W,), type R/W D, type R/W H, type R/W, type R/W, of	fset 0x018 offset 0x0 ; offset 0x0 V, offset 0x v, offset 0x0 offset 0x0 offset 0x0	020, reset 0 024, reset 0 024, reset 0 028, reset 0 30, reset 0 034, reset 0	x0000.000	0		TXE	INT SPS LBE	W		RXFE ILPE	BUSY BUSY DVSR DIVI DIVI	EPS	SIREN	UARTEN
UARTIERC UARTIERC UARTIBRC UARTIERC UARTICRI UARTICRI UARTIFLS	, type R/W,), type R/W D, type R/W H, type R/W, type R/W, of	fset 0x018 offset 0x0 ; offset 0x0 V, offset 0x v, offset 0x0 offset 0x0 offset 0x0	020, reset 0 024, reset 0 024, reset 0 028, reset 0 30, reset 0 034, reset 0 034, reset 0x0	x0000.000	0		TXE	INT SPS LBE	W		RXFE ILPE	BUSY BUSY DVSR DIVI DIVI	EPS	SIREN	UARTEN

31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23 7	22 6	21 5	20 4	19 3	18 2	17	16 0
	, type RO, o				10	5	0	,	0	5	-		2		U
	, , , , ,														
					OEMIS	BEMIS	PEMIS	FEMIS	RTMIS	TXMIS	RXMIS				
JARTICR	, type W1C	, offset 0x0)44, reset 0:	x0000.0000)			1				1			
					OEIC	BEIC	PEIC	FEIC	RTIC	TXIC	RXIC				
JARTPer	iphID4, type	e RO, offse	t 0xFD0, re	set 0x0000	0.0000										
											PI	D4			
JARTPer	iphID5, type	e RO, offse	et 0xFD4, re	set 0x0000	0.0000										
											PI	D5			
JARTPer	iphID6, type	e RO, offse	et 0xFD8, re	set 0x0000	0.0000			1				1			
											PI	D6			
	iphID7, type	RO offer	t 0xEDC re	 	0,000							50			
	.e	, 01136													
											PI	 D7			
JARTPer	iphID0, type	e RO, offse	t 0xFE0, re	set 0x0000	0.0011			1							
											PI	D0			
ARTPer	iphID1, type	e RO, offse	t 0xFE4, re	set 0x0000	0.0000		-								
											PI	D1			
JARTPer	iphID2, typ	e RO, offse	t 0xFE8, re	set 0x0000	0.0018										
											PI	D2			
JARTPer	iphID3, type	e RO, offse	et 0xFEC, re	eset 0x0000	0.0001							1			
												D3			
	ellID0, type	PO offect									FI	03			
JAKIPU	embo, type	KO, Oliset	UXFFU, IES												
											CI	D0			
JARTPC	ellID1, type	RO. offset	0xFF4. res	 et 0x0000.(00F0										
	. , , , , ,	-,													
											CI	D1			
JARTPC	ellID2, type	RO, offset	0xFF8, res	et 0x0000.(0005										
											CI	D2			
JARTPC	ellID3, type	RO, offset	0xFFC, res	et 0x0000.	00B1										
											CI	D3			
	onous S		erface (S	SSI)											
	se: 0x4000														
SICR0, 1	type R/W, of	mset 0x000	, reset 0x0	000.0000											
			60	 CR				SPH	SPO		RF			SS	
SICP1	type R/W, of	ffeat NyAA4						351	350	FI	м		D		
,010R1,1	ype r. w, 0		, reset uxu												
												SOD	MS	SSE	LBM
SIDR. tv	pe R/W, off	set 0x008	reset 0x00	00.0000				I							
, . ,	, •														
							DA	I ATA				I			

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	17	0
	pe RO, offs						0			0		-	-		
ee.e., .jp															
											BSY	RFF	RNE	TNF	TFE
SSICPSR.	type R/W, o	offset 0x01	10. reset 0x	0000.0000								1			
,															
											CPSI	I DVSR			
SSIIM, typ	e R/W, offs	et 0x014, r	eset 0x000	0.0000											
												ТХІМ	RXIM	RTIM	RORIM
SSIRIS, ty	vpe RO, offs	et 0x018, i	reset 0x000	0.0008											
												TXRIS	RXRIS	RTRIS	RORRIS
SSIMIS, ty	/pe RO, offs	et 0x01C,	reset 0x00	00.0000			-			-					
												TXMIS	RXMIS	RTMIS	RORMIS
SSIICR, ty	vpe W1C, of	fset 0x020	, reset 0x00	000.000											
														RTIC	RORIC
SSIPeriph	ID4, type R	O, offset 0	xFD0, rese	t 0x0000.00	00										
											PI	D4			
SSIPeriph	ID5, type R	O, offset 0	xFD4, rese	t 0x0000.00	00			-	-		-	-			
											PI	D5			
SSIPeriph	ID6, type R	O, offset 0	xFD8, rese	t 0x0000.00	00										
											PI	D6			
SSIPeriph	ID7, type R	O, offset 0	xFDC, rese	et 0x0000.00	000			1				1			
											PI	D7			
SSIPeriph	ID0, type R	O, offset 0	xFE0, reset	t 0x0000.00	22										
											PI	D0			
SSIPeriph	ID1, type R	O, offset 0	IXFE4, reset	t 0x0000.00	00			1				1			
												 D1			
CCIDerinh	ID2, type R	0		t 0×0000 00	40						FI	וט			
SSIFERIDI	ibz, type k	O, Oliset U	AFEO, TESE		10										
											PI	 D2			
SSIPerinh	ID3, type R		XEEC reso	t 0x0000 00	001			1			FI				
Son enpli	. 20, суре к	e, onaer u													
											PI	 D3			
SSIPCellIF	D0, type RO	. offset Ox	FF0, reset (0x0000.000	D			1				-			
Juli ouni	, ., .,	,			-										
											CI	D0			
SSIPCellIF	D1, type RO	. offset 0x	FF4, reset (0x0000.00F	0			I				-			
	, .,,,	,	.,		-										
											CI	D1			
SSIPCellIC	D2, type RO	, offset 0x	FF8, reset (0x0000.000	5			1							
			,												
											CI	D2			
								1			0.	-			


04	00	00	00	07	00	05	04	00	00	04	00	10	40	47	40
31 15	30 14	29 13	28 12	27 11	26 10	25 9	24 8	23	22 6	21 5	20 4	19 3	18 2	17	16 0
	3, type RO,					-						-	_		-
	-, -, -,		,												
											CI	D3			
Ethernet	t Control	ler				1									
Ethernet															
Base 0x40															
MACRIS/M	ACIACK, ty	pe RO, of	fset 0x000,	reset 0x00	00.0000 (F	Reads)									
									PHYINT	MDINT	RXER	FOV	TXEMP	TXER	RXINT
MACRIS/M	ACIACK, ty	pe WO, of	fset 0x000	, reset 0x00	000.000 (Writes)									
									PHYINT	MDINT	RXER	FOV	TXEMP	TXER	RXINT
MACIM, typ	be R/W, offs	et 0x004,	reset 0x00	00.007F											
									PHYINTM	MDINTM	RXERM	FOVM	TXEMPM	TXERM	RXINTM
MACRCTL,	type R/W,	offset 0x0	08, reset 0	×0000.0008											
											RSTFIFO	BADCRC	PRMS	AMUL	RXEN
MACTCTL,	type R/W, o	offset 0x0	UC, reset 0	x0000.0000											
													0.00	DADEN	TYEN
		<i></i>	0		(Decede)						DUPLEX		CRC	PADEN	TXEN
MACDATA,	type RO, o	mset uxu1	u, reset ux	0000.0000	(Reads)			DATA							
								DATA							
MACDATA,	type WO (offect OvOr	10 reset 0y	0000 0000	(Writes)		101								
IIIAODAIA,	(j pe i ie, (10, 10001 0,		(111100)		ТХГ	DATA							
								DATA							
MACIA0, ty	pe R/W, off	set 0x014	, reset 0x0	000.0000											
	• •		MACO								MAC	OCT3			
			MACO	OCT2							MAC	OCT1			
MACIA1, ty	pe R/W, off	set 0x018	, reset 0x0	000.000											
			MAC	DCT6							MAC	OCT5			
MACTHR, t	ype R/W, o	ffset 0x01	C, reset 0x	0000.003F											
												THR	ESH		
MACMCTL,	, type R/W,	offset 0x0	20, reset 0	x0000.0000											
MACMCTL,	, type R/W,	offset 0x0	20, reset 0	×0000.0000	1										
										REGADR				WRITE	START
MACMCTL, MACMDV, t										REGADR				WRITE	START
										REGADR				WRITE	START
MACMDV, t	type R/W, o	ffset 0x02	4, reset 0x	0000.0080						REGADR	D	IV		WRITE	START
	type R/W, o	ffset 0x02	4, reset 0x	0000.0080						REGADR	D	 V		WRITE	START
MACMDV, t	type R/W, o	ffset 0x02	4, reset 0x	0000.0080						REGADR	D	IV		WRITE	START
MACMDV, t	type R/W, o , type R/W,	ffset 0x02 offset 0x0	4, reset 0x/	0000.0080)×0000.0000)					REGADR	D	 V		WRITE	START
MACMDV, t	type R/W, o , type R/W,	ffset 0x02 offset 0x0	4, reset 0x/	0000.0080)×0000.0000)		M	DTX		REGADR	D	 V		WRITE	START
MACMDV, t	type R/W, o , type R/W,	ffset 0x02 offset 0x0	4, reset 0x/	0000.0080)×0000.0000)					REGADR	D	IV		WRITE	START
MACMDV, t MACMTXD, MACMRXD	type R/W, o , type R/W, , type R/W,	ffset 0x02 offset 0x0 offset 0x0	4, reset 0x 12C, reset 0 130, reset 0	0000.0080 1×0000.000(1×0000.000()			DTX		REGADR	D	IV IV		WRITE	START
MACMDV, t	type R/W, o , type R/W, , type R/W,	ffset 0x02 offset 0x0 offset 0x0	4, reset 0x 12C, reset 0 130, reset 0	0000.0080 1×0000.000(1×0000.000()					REGADR	D	 //		WRITE	START

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
MACTR, ty	ype R/W, of	fset 0x038	8, reset 0x00	000.000											
															NEWT
Etherne	et Contro	oller													
MII Man	nagemen	t													
MR0 type	R/W addr	es 0x00 r	reset 0x310	n											
RESET			ANEGEN		ISO	RANEG	DUPLEX	COLT							
					130	NAMEG	DUFLEX								
мкт, туре	100X F		eset 0x7849	10T_H					MFPS	ANEGC	RFAULT	ANEGA	LINK		EXTE
MD2 from	_	100X_H	10T_F						IVIFF3	ANEGC	RFAULI	ANEGA	LINK	JAB	EAIL
мк2, туре	e RO, addre	SS UXU2, FE	eset 0x000E	-			0.00	01.61							
		000					JUU	21:6]							
MR3, type	e RO, addre		eset 0x7237												
			I[5:0]					N	IN				R	N	
	e R/W, addro		reset 0x01E	1											
NP		RF					A3	A2	A1	A0			S		
			eset 0x0000												
NP	ACK	RF				A[7:0]						S		
MR6, type	e RO, addre	ss 0x06, re	eset 0x0000												
											PDF	LPNPA		PRX	LPANE
		ress 0x10,	reset 0x01												
RPTR	INPOL		TXHIM	SQEI	NL10					APOL	RVSPOL			PCSBP	RXCO
			reset 0x000									1			
JABBER_IE	RXER_IE	PRX_IE	PDF_IE	LPACK_IE	LSCHG_IE	RFAULT_IE	ANEGCOMP_E	JABBER_INT	RXER_INT	PRX_INT	PDF_INT	LPACK_INT	LSCHG_INT	RFAULT_INT	ANEGCOMP
MR18, typ	be RO, addr	ess 0x12,	reset 0x000	0											
			ANEGF	DPLX	RATE	RXSD	RX_LOCK								
MR19, typ	be R/W, add	ress 0x13,	reset 0x40	00											
T>	хо														
MR23, typ	oe R/W, add	ress 0x17,	reset 0x00	10											
									LED	1[3:0]			LED	0[3:0]	
MR24, typ	be R/W, add	ress 0x18,	reset 0x00	C0											
								PD_MODE	AUTO_SW	MDIX	MDIX_CM		MDI	(_SD	
Analog	Compar	ators													
Base 0x4	4003.C000	1													
ACMIS, ty	/pe R/W1C,	offset 0x0	00, reset 0x	0000.0000											
														IN1	IN0
ACRIS, ty	pe RO, offs	et 0x004, ı	reset 0x000	0.0000											
														IN1	IN0
ACINTEN,	, type R/W,	offset 0x0	08, reset 0x	0000.0000											
														IN1	IN0
ACREFCT	L, type R/V	V, offset 0>	k010, reset (0x0000.000	00										
						EN	RNG						VR	EF	
ACSTAT0,	, type RO, c	offset 0x02	0, reset 0x0	0000.0000											
														OVAL	
ACSTAT1,	, type RO, c	offset 0x04	0, reset 0x0	000.0000											
														OVAL	

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
ACCTL0,	type R/W, o	offset 0x024	, reset 0x0	000.0000											
					ASF	RCP					ISLVAL	IS	EN	CINV	
ACCTL1,	type R/W, o	offset 0x044	, reset 0x0	000.0000											
					ASF	RCP					ISLVAL	IS	EN	CINV	

C Ordering and Contact Information

C.1 Ordering Information

Table C-1. Part Ordering Information

Orderable Part Number	Description
LM3S6730-IBZ50-A2	Stellaris [®] LM3S6730 Microcontroller Industrial Temperature 108-ball BGA
LM3S6730-IBZ50-A2T	Stellaris [®] LM3S6730 Microcontroller Industrial Temperature 108-ball BGA Tape-and-reel
LM3S6730-EQC50-A2	Stellaris [®] LM3S6730 Microcontroller Extended Temperature 100-pin LQFP
LM3S6730-EQC50-A2T	Stellaris [®] LM3S6730 Microcontroller Extended Temperature 100-pin LQFP Tape-and-reel
LM3S6730-IQC50-A2	Stellaris [®] LM3S6730 Microcontroller Industrial Temperature 100-pin LQFP
LM3S6730-IQC50-A2T	Stellaris [®] LM3S6730 Microcontroller Industrial Temperature 100-pin LQFP Tape-and-reel

C.2 Part Markings

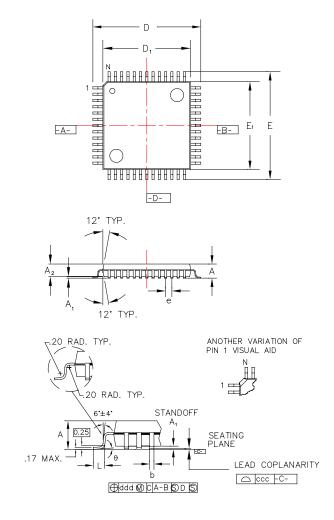
The Stellaris[®] microcontrollers are marked with an identifying number. This code contains the following information:

- The first line indicates the part number. In the example figure below, this is the LM3S6965.
- The first seven characters in the second line indicate the temperature, package, speed, and revision. In the example figure below, this is an Industrial temperature (I), 100-pin LQFP package (QC), 50-MHz (50), revision A2 (A2) device.
- The remaining characters contain internal tracking numbers.

C.3 Kits

The Stellaris[®] Family provides the hardware and software tools that engineers need to begin development quickly.

- Reference Design Kits accelerate product development by providing ready-to-run hardware and comprehensive documentation including hardware design files
- Evaluation Kits provide a low-cost and effective means of evaluating Stellaris[®] microcontrollers before purchase
- Development Kits provide you with all the tools you need to develop and prototype embedded applications right out of the box

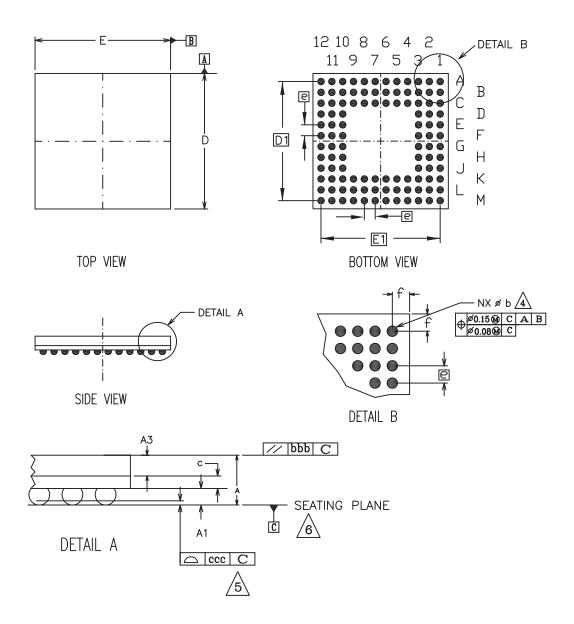

See the website at www.ti.com/stellaris for the latest tools available, or ask your distributor.

C.4 Support Information

For support on Stellaris[®] products, contact the TI Worldwide Product Information Center nearest you: http://www-k.ext.ti.com/sc/technical-support/product-information-centers.htm.

D Package Information

Figure D-1. 100-Pin LQFP Package



Note: The following notes apply to the package drawing.

- **1.** All dimensions shown in mm.
- 2. Dimensions shown are nominal with tolerances indicated.
- 3. Foot length 'L' is measured at gage plane 0.25 mm above seating plane.

B	ody +2.00 mm Footprint, 1.4 mm packag	e thickness
Symbols	Leads	100L
А	Max.	1.60
A ₁	-	0.05 Min./0.15 Max.
A ₂	±0.05	1.40
D	±0.20	16.00
D ₁	±0.05	14.00
E	±0.20	16.00
E ₁	±0.05	14.00
L	+0.15/-0.10	0.60
е	Basic	0.50
b	+0.05	0.22
θ	-	0°-7°
ddd	Max.	0.08
CCC	Max.	0.08
JEDEC R	eference Drawing	MS-026
Variati	on Designator	BED

Figure D-2. 108-Ball BGA Package

Note: The following notes apply to the package drawing.

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. 'e' REPRESENTS THE BASIC SOLDER BALL GRID PITCH.
- 3. 'M' REPRESENTS THE BASIC SOLDER BALL MATRIX SIZE. AND SYMBOL 'N' IS THE NUMBER OF BALLS AFTER DEPOPULATING.
- (b' IS MEASURABLE AT THE MAXIMUM SOLDER BALL DIAMETER AFTER REFLOW PARALLEL TO PRIMARY DAIUM C.
- ⚠ DIMENSION 'ccc' IS MEASURED PARALLEL TO PRIMARY DATUM C.
- A PRIMARY DATUM C AND SEATING PLANE ARE DEFINED BY THE SPHERICAL CROWNS OF THE SOLDER BALLS.
- 7. PACKAGE SURFACE SHALL BE MATTE FINISH CHARMILLES 24 TO 27.
- 8. SUBSTRATE MATERIAL BASE IS BT RESIN.
- 9. THE OVERALL PACKAGE THICKNESS "A" ALREADY CONSIDERS COLLAPSE BALLS
- 10. DIMENSIONING AND TOLERANCING PER ASME Y14.5M 1994.
- $\underline{\Lambda}$ except dimension b.

Symbols	MIN	NOM	MAX		
A	1.22	1.36	1.50		
A1	0.29	0.34	0.39		
A3	0.65	0.70	0.75		
С	0.28	0.32	0.36		
D	9.85	10.00	10.15		
D1	8.80 BSC				
E	9.85	10.00	10.15		
E1	8.80 BSC				
b	0.43	0.48	0.53		
bbb	.20				
ddd	.12				
e	0.80 BSC				
f	-	0.60	-		
М	12				
n	108				
I	REF: JI	EDEC MO-219F			

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Amplifiers	amplifier.ti.com	Audio	www.ti.com/audio
Data Converters	dataconverter.ti.com	Automotive	www.ti.com/automotive
DLP® Products	www.dlp.com	Communications and Telecom	www.ti.com/communications
DSP	dsp.ti.com	Computers and Peripherals	www.ti.com/computers
Clocks and Timers	www.ti.com/clocks	Consumer Electronics	www.ti.com/consumer-apps
Interface	interface.ti.com	Energy	www.ti.com/energy
Logic	logic.ti.com	Industrial	www.ti.com/industrial
Power Mgmt	power.ti.com	Medical	www.ti.com/medical
Microcontrollers	microcontroller.ti.com	Security	www.ti.com/security
RFID	www.ti-rfid.com	Space, Avionics & Defense	www.ti.com/space-avionics-defense
RF/IF and ZigBee® Solutions	www.ti.com/lprf	Video and Imaging	www.ti.com/video
		Wireless	www.ti.com/wireless-apps

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2010, Texas Instruments Incorporated