DATA SHEET

LND2950 / LND2951

100mA Low Dropout Voltage Regulators

GENERAL DESCRIPTION

The LND2950-XX is a low power voltage regulator. This device is an excellent choice for use in battery powered application such as cordless telephone, radio control systems, and portable computers.

The LND2950-XX/LND2951-XX features very low quiescent current (75µA Typ.) and very low drop output voltage (Typ. 40mV at light load and 380mV at 100mA). This includes a tight initial tolerance of 0.5% typ., extremely good load and line regulation of 0.05% typ., and very low output temperature coefficient, making the LND2950-XX/LND2951-XX useful as a low-power voltage reference. The error flag output feature is used as power-on reset, warning of a low output voltage, due to falling battery voltage on input. Another feature is the logiccompatible shutdown input, which enables the regulator to be switched on and off. The LND2951-XX is available in 8 pin plastic packages. The regulator output voltage may be pinstrapped for a -XX voltage or programmed from 1.24 volts to 29 volts with an external pair of resistors. The LND2950-XX is offered in a 3-pin TO-92 package compatible with other fixed regulators.

DEVICE SELECTION GUIDE

V _{OUT} , Volts	Device
2.85*	LND2950-2.85,LND2951-2.85
3.0	LND2950-3.0,LND2951-3.0
3.3	LND2950-3.3, LND2951-3.3
5.0	LND2950-5.0, LND2951-5.0

*Other versions are also available Vout=2.0V TO 5.0V. Please consult for more information

FEATURES

- High accuracy output voltage
- Guaranteed 100mA output
- Very low quiescent current
- Low dropout voltage
- Extremely tight load and line regulation
- Very low temperature coefficient
- Needs only 1µF for stability
- Error Flag warns of output dropout
- Logic-Controlled electronic shutdown
- Output programmable from 1.24 to 29V

APPLICATIONS

- Battery powered systems
- Cordless telephones
- Radio control systems
- Portable/Palm Top/ notebook computers
- Portable Instrumentation
- Avionics
- Automotive Electronics
- SMPS Post-Regulator
- Voltage Reference

Linear Dimensions, Inc. • 445 East Ohio Street, Chicago IL 60611 USA • tel 312.321.1810 • fax 312.321.1830 • www.lineardimensions.com •

ABSOLUTE MAXIMUM RATING

Power Dissipation	Internally Limited		
Lead Temperature (Soldering, 5 seconds)	260°		
Storage Temperature Range	-65°C to+150°C		
Operating Junction Temperature Range	-55°C to +150°		
Input Supply Voltage	-0.3 to+30V		
Feedback Input Voltage	-1.5 to+30V		
Shutdown Input Voltage	-0.3 to +30V		
Error Comparator Output	-0.3 to +30V		

PIN CONFIGURATION

TO-92 (Bottom View)

ELECTRICAL CHARACTERISTICS (T_A=25 °C, V_{IN}=15V Unless otherwise noted)

PARAMETER	CONDITIONS (note 2)	MIN	TYP	MAX	UNITS	
Output Voltage	-25°C ≤T _i ≤85°C	0.985 Vo	V	1.015 Vo		
	Full Operating Temperature	0.98 Vo	v _o	1.02 Vo	V	
Output Voltage	$100\mu A \leq I_L \leq 100 mA$, $T_J \leq T_{JMAX}$	0.976 Vo	Vo	1.024 Vo		
Output Voltage Temperature Coefficient	(note 1)		50	150	ppm/ºC	
Line Regulation(Note 3)	V ₀ +1V≤V _{IN} ≤30V(Note 4)		0.04	0.4	%	
Load Regulation(Note3)	100µA ≤I _L ≤100mA		0.1	0.3	%	
Dropout Voltage(Note 5)	I _{L=} 100μA I _{L=} 100mA		50 380	80 450	mV	
Ground Current	 I _{L=} 100μΑ I _{L=} 100mA		75 8	120 12	μA mA	
Dropout Ground Current	V _{IN} =V ₀ =-0.5V,I _L =100μA		110	170	μA	
Current Limit	V _{out} =0		160	200	mA	
Thermal regulation			0.05	0.2	%/W	
Output Noise,10Hz to 100KHz	$C_L = 1\mu F$ $C_L = 200\mu F$ $C_L = 3.3\mu F$ (Bypass=0.01 μ F pins 7 to 1 (LND2951-XX))		430 160 100		μV rms	
8-PIN Versions Only						
Reference Voltage		1.21	1.235	1.26	V	
Reference Voltage	Over temperature(Note 6)	1.185		1.285		
Feedback Pin Bias Current			20	40	nA	
Reference Voltage Temperature Coefficient	(note 7)		50		ppm/ºC	
Feedback Pin Bias Current Temperature Coefficient			0.1		nA/ºC	
Error Comparator						
Output Leakage Current	Voh=30V		0.01	1.0	μA	
Output Low Voltage	Vin=4.5V,I _{OL} =400µA		150	250		
Upper Threshold Voltage	(note 8)	40	60		mV	
Lower Threshold Voltage	(note 8)		75	95		
Hysteresis	(note 8)		15			
Shutdown Input						
Input Logic Voltage	Low(Regulator ON) High (Regulator OFF)	2	1.3	0.7	V	
Shut down pin Input Current	V _s = 2.4V V _s =30V		30 450	50 600) μΑ	
	(Note 9)					
Regulator Output current in	V _{out} =5.0V		3	10		
Shutdown	3.3V≤V _{out} <5.0V		-	20		
	2.0V≤V _{out} <3.3V			30		

Note 1: Output or reference voltage temperature coefficients is defined as the worst case voltage change divided by the total temperature range.

Note 2: Unless otherwise specified all limits guaranteed for $T_j = 25^{\circ}C$, $V_{in}=V_o + 1V$, $I_L=100\mu$ Aand $C_L = 1\mu$ F. Additional conditions for the 8 pin versions are feedback tied to -XX V tap and output tied to output sense($V_{out} = XX V$) and V shutdown $\leq 0.8 V$.

Note 3: Regulations is measured at constant junction temperature, using pulse testing with a low duty cycle. Changes in output voltage due to heating effects are covered under the specification for thermal regulation.

Note 4: Line regulation for LND2951-xx is tested at 150°Cfor $I_L=1mA$. For $I_L=100\mu A$ and Tj=125°C, line regulation is guaranteed by design to 0.2%. See typical performance characteristics for line regulation verse temperature and load current.

Note 5: Dropout voltage is defined as the input to output differential at which the output voltage drops 100mV below its nominal value measured at 1V differential. At very low values of programmed output voltage, the minimum input supply voltage of 2V(2.3V over temperature) must be taken into account.

Note 6: $V_{ref} \leq V_{out} \leq (Vin-1V)$, 2.3V $\leq Vin \leq 30V$, 100 $\mu A \leq I_L \leq 100 \text{ mA}$, $T_J \leq T_{JMAX}$

Note 7: Output or reference voltage temperature coefficient is defined as the worst case voltage change divided by the total temperature range.

Note 8: Comparator thresholds are expressed in terms of a voltage differential at the feedback terminal below the nominal reference voltage measured at $V_0 + 1V$ input. To express these thresholds in terms of output voltage change, multiply by the error amplifier gain = V_{out}/V_{ref} =(R1+R2)/R2. For example, at a programmed output voltage of 5V, the error output is guaranteed to go low when the output drops by 95mVx5V/1.235V=384mV. Thresholds remain constant as a percent of V_{out} as V_{out} is varied, with the dropout warning occurring at typically 5% below nominal, 7.5% guaranteed.

Note 9: $V_{shutdown} \ge 2V$, $V_{in} \le 30V$, $V_{out} = 0$, Feed-back pin tied to -XX V tap.

APPLICATION HINTS

External Capacitors

A 1.0 μ F (or greater) capacitor is required between the output and the ground for stability at output voltages of 5V or more. At lower output voltages, more capacitance is required. 2.2 μ F or more is recommended for 3 V and 3.3 V versions.

Programming the Output Voltage

The LND2951 may be pin-strapped for the nominal fixed output voltage. Alternatively it may be programmed for any output voltage between 1.24 V and 29 V depending upon the requirements.

BLOCK DIAGRAM AND TYPICAL APPLICATIONS

LinearDimensions

LND2950 / LND2951

TYPICAL APPLICATIONS

*Minimum input-output voltage ranges from 40mV to 400mV, depending on load current. Current limit is typically 160mA.

*Minimum input-output voltage ranges from 40mV to 400mV, depending on load current. Current limit is typically 160mA.

5V Current Limiter

Latch Off When Error Flag Occurs

Low Drift Current Source