3850 Group (Spec.H)

DESCRIPTION

The 3850 group (spec. H) is the 8 -bit microcomputer based on the 740 family core technology.
The 3850 group (spec. H) is designed for the household products and office automation equipment and includes serial I/O functions, 8 -bit timer, and A-D converter.

FEATURES

- Basic machine-language instructions
- Minimum instruction execution time $0.5 \mu \mathrm{~s}$
(at 8 MHz oscillation frequency)
- Memory size

ROM \qquad 8 K to 32 K bytes
RAM 512 to 1024 bytes

- Programmable input/output ports 34
- Interrupts \qquad 15 sources, 14 vectors
- Timers \qquad 8 -bit $\times 4$
- Serial I/O1 \qquad 8 -bit $\times 1$ (UART or Clock-synchronized)
- Serial I/O2 \qquad 8 -bit $\times 1$ (Clock-synchronized)
- PWM \qquad 8 -bit $\times 1$
- A-D converter \qquad 10 -bit $\times 5$ channels
- Watchdog timer \qquad
- Clock generating circuit. \qquad Built-in 2 circuits (connect to external ceramic resonator or quartz-crystal oscillator)
- Power source voltage

In high-speed mode
(at 8 MHz oscillation frequency)
In middle-speed mode.
2.7 to 5.5 V
(at 8 MHz oscillation frequency)
In low-speed mode
2.7 to 5.5 V
(at 32 kHz oscillation frequency)

- Power dissipation

In high-speed mode 34 mW
(at 8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode
Except M38507F8FP/SP $60 \mu \mathrm{~W}$
M38507F8FP/SP $450 \mu \mathrm{~W}$
(at 32 kHz oscillation frequency, at 3 V power source voltage)

- Operating temperature range
-20 to $85^{\circ} \mathrm{C}$

APPLICATION

Office automation equipment, FA equipment, Household products, Consumer electronics, etc.

PIN CONFIGURATION (TOP VIEW)

$\begin{gathered} \begin{array}{c} 1 \\ \text { VCc } \\ \text { VREF } \end{array} \longrightarrow \frac{1}{2} \\ \text { AVSS } \longrightarrow 4 \\ \text { 3/PWM } \longrightarrow 4 \end{gathered}$	\checkmark	
		$42 \longleftrightarrow \mathrm{P} 3 / \mathrm{ANo}$
		$41 \longleftrightarrow \mathrm{P}_{3} / \mathrm{AN}_{1}$
		$40 \longleftrightarrow$ P32/AN2
		$\mathrm{P} 44 / \mathrm{INT} 3 / \mathrm{PWM} \longleftrightarrow 4$
	$\stackrel{\checkmark}{\text { W }}$	$38 \longleftrightarrow \mathrm{P} 34 / \mathrm{AN} 4$
$\begin{aligned} & \text { NT2/SCMP2 } \longleftrightarrow 5 \\ & \text { P42/INT } 1 \leftrightarrow \square \end{aligned}$		$37 \longleftrightarrow$ P00/SIN2
$\mathrm{P} 41 / \mathrm{NNT}$ ¢ $\longrightarrow 7$	0	$36 \longleftrightarrow$ P01/SOUT2
P40/CNTR 1 ¢ $\longrightarrow 8$	$$	$35 \longleftrightarrow$ P02/SCLK2
		$34 \longleftrightarrow$ PO3/SRDY2
$\mathrm{P} 26 / \text { ScLK } 1 \longleftrightarrow 10$	$\stackrel{\omega}{3}$	$33 \longleftrightarrow \mathrm{PO}_{4}$
$\mathrm{P} 25 / \mathrm{TxD} \longleftrightarrow{ }^{\text {a }}$	$\frac{\square}{1}$	$32 \longleftrightarrow \mathrm{PO}_{5}$
$\mathrm{P} 24 / \mathrm{RxD} \longleftrightarrow 12$		$31 \longleftrightarrow \mathrm{P} 0_{6}$
$\mathrm{P} 23 \longrightarrow 13$	メ	$30 \longleftrightarrow \mathrm{P} 0_{7}$
$\xrightarrow{ } \mathrm{P} 22 \longrightarrow 14$	x	$29 \longleftrightarrow$ P10/(LED $)$
$\underset{\text { VPP }}{ } \begin{aligned} & \text { CNVSs } \\ & \text { P21/XCIN }\end{aligned} \longrightarrow 15$	T	$28 \longleftrightarrow P 11 /(L E D 1)$
		$27 \longleftrightarrow \mathrm{P}_{12} /(\mathrm{LED} 2)$
$\mathrm{P} 20 / \mathrm{XCOUT} \longleftrightarrow 17$	O	$26 \longleftrightarrow$ P13/(LED 3$)$
RESET $\longrightarrow 18$		$25 \longleftrightarrow$ P14/(LED 4)
XIN $\longrightarrow 19$		$24 \longleftrightarrow$ P15/(LED5)
Xout $\longleftarrow-20$		$23 \longleftrightarrow$ P16/(LED6)
Vss $\longrightarrow 21$		$22 \longleftrightarrow$ P17/(LED7)

Package type : FP 42P2R-A/E (42-pin plastic-molded SSOP)
Package type: SP 42P4B (42-pin plastic-molded SDIP)

Fig. 1 M38503MXH-XXXFP/SP pin configuration (spec. H)

DESCRIPTION

The 3850 group (spec. A) is the 8 -bit microcomputer based on the 740 family core technology.
The 3850 group (spec. A) is designed for the household products and office automation equipment and includes serial I/O functions, 8 -bit timer, and A-D converter.

FEATURES

- Basic machine-language instructions 71
- Minimum instruction execution time $0.32 \mu \mathrm{~s}$
(at 12.5 MHz oscillation frequency)
- Memory size

ROM \qquad 8 K to 16 K bytes
RAM
512 bytes

- Programmable input/output ports .. 34
- On-chip software pull-up resistor
- Interrupts 15 sources, 14 vectors
- Timers 8 -bit $\times 4$
- Serial I/O1 \qquad 8 -bit $\times 1$ (UART or Clock-synchronized)
- Serial I/O2 \qquad 8-bit $\times 1$ (Clock-synchronized)
- PWM \qquad 8 -bit $\times 1$
- A-D converter 10 -bit $\times 9$ channels
- Watchdog timer \qquad 16 -bit $\times 1$
- Clock generating circuit \qquad Built-in 2 circuits (connect to external ceramic resonator or quartz-crystal oscillator)
- Power source voltage

In high-speed mode
4.0 to 5.5 V
(at 12.5 MHz oscillation frequency)
In high-speed mode
2.7 to 5.5 V
(at 6 MHz oscillation frequency)
In middle-speed mode.
2.7 to 5.5 V
(at 12.5 MHz oscillation frequency)
In low-speed mode.
2.7 to 5.5 V
(at 32 kHz oscillation frequency)

- Power dissipation

In high-speed mode
Except M38507F8FP/SP .. 32.5 mW
M38507F8FP/SP .. 37.5 mW
(at 12.5 MHz oscillation frequency, at 5 V power source voltage) In low-speed mode
Except M38507F8FP/SP ... $60 \mu \mathrm{~W}$
M38507F8FP/SP .. $450 \mu \mathrm{~W}$
(at 32 kHz oscillation frequency, at 3 V power source voltage)

- Operating temperature range
-20 to $85^{\circ} \mathrm{C}$

APPLICATION

Office automation equipment, FA equipment, Household products, Consumer electronics, etc.

PIN CONFIGURATION (TOP VIEW)

VCc	
VREF	\longrightarrow

Package type : FP 42P2R-A/E (42-pin plastic-molded SSOP)
Package type : SP 42P4B (42-pin plastic-molded SDIP)
Fig. 2 M38503MXA-XXXFP/SP pin configuration (spec. A)

FUNCTIONAL BLOCK

Fig. 3 Functional block diagram (spec. H)

Fig. 4 Functional block diagram (spec. A)

Table 1 Pin description (spec. H)

Pin	Name	Functions	Function except a port function
Vcc, Vss	Power source	-Apply voltage of $2.7 \mathrm{~V}-5.5 \mathrm{~V}$ to Vcc , and 0 V to Vss .	
CNVss	CNVss input	\cdot This pin controls the operation mode of the chip. - Normally connected to Vss.	
RESET	Reset input	-Reset input pin for active "L".	
XIN	Clock input	- Input and output pins for the clock generating circuit. -Connect a ceramic resonator or quartz-crystal oscillator between the XIN and Xout pins to set the oscillation frequency.	
Xout	Clock output	-When an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.	
P00/SIN2 P01/Sout2 P02/Sclk2 P03/SRDY2	I/O port P0	-8-bit CMOS I/O port. - $/$ /O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level. -CMOS 3-state output structure.	- Serial I/O2 function pin
P04-P07			
P10-P17	I/O port P1	-P10 to P17 (8 bits) are enabled to output large current for LED drive.	
$\begin{aligned} & \hline \text { P20/XCOUT } \\ & \text { P21/XCIN } \\ & \hline \end{aligned}$	I/O port P2	-8-bit CMOS I/O port. - //O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level. -P20, P21, P24 to P27: CMOS3-state output structure. -P22, P23: N-channel open-drain structure.	- Sub-clock generating circuit I/O pins (connect a resonator)
$\begin{aligned} & \hline \mathrm{P} 22 \\ & \mathrm{P} 23 \end{aligned}$			
$\begin{aligned} & \text { P24/RxD } \\ & \text { P25/TxD } \end{aligned}$			- Serial I/O1 function pin
P26/Sclk1			
$\begin{aligned} & \hline \frac{\mathrm{P} 27 / \mathrm{CNTRo}}{\mathrm{SRDY}} 1 \end{aligned}$			- Serial I/O1 function pin/ Timer X function pin
P3o/AN0P34/AN4	I/O port P3	-8-bit CMOS I/O port with the same function as port PO. -CMOS compatible input level. -CMOS 3-state output structure.	- A-D converter input pin
P40/CNTR1	I/O port P4	$\cdot 8$-bit CMOS I/O port with the same function as port PO. -CMOS compatible input level. -CMOS 3-state output structure.	- Timer Y function pin
$\begin{aligned} & \text { P41/INT0 } \\ & \text { P42/INT1 } \end{aligned}$			- Interrupt input pins
P43/INT2/ScMP2			- Interrupt input pin - SCMP2 output pin
P44/INT3/PWM			- Interrupt input pin - PWM output pin

Table 2 Pin description (spec. A)

Pin	Name	Functions	Function except a port function
Vcc, Vss	Power source	-Apply voltage of 2.7 V - 5.5 V to Vcc, and 0 V to Vss.	
CNVss	CNVss input	-This pin controls the operation mode of the chip. - Normally connected to Vss.	
RESET	Reset input	-Reset input pin for active "L".	
XIN	Clock input	- Input and output pins for the clock generating circuit. -Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the oscillation frequency.	
Xout	Clock output	-When an external clock is used, connect the clock source to the Xin pin and leave the Xout pin open.	
$\begin{aligned} & \text { P0o/SIN2 } \\ & \text { P01/SouT2 } \\ & \text { P02/SCLK2 } \\ & \text { P03/SRDY2 } \end{aligned}$	I/O port P0	-8-bit CMOS I/O port. - I/O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled in a byte unit. -P10 to P17 (8 bits) are enabled to output large current for LED drive.	- Serial I/O2 function pin
P04/AN5-P07/AN8			- A-D converter input pin
P10-P17	I/O port P1		
$\begin{aligned} & \text { P20/XCOUT } \\ & \text { P21/XCIN } \end{aligned}$	I/O port P2	-8-bit CMOS I/O port. - $/$ O direction register allows each pin to be individually programmed as either input or output. -CMOS compatible input level. $\cdot \mathrm{P} 20, \mathrm{P} 21, \mathrm{P} 24$ to P27: CMOS3-state output structure. -P22, P23: N-channel open-drain structure. -Pull-up control of P20, P21, P24-P27 is enabled in a byte unit.	- Sub-clock generating circuit I/O pins (connect a resonator)
$\begin{aligned} & \mathrm{P} 22 \\ & \mathrm{P} 23 \end{aligned}$			
$\begin{aligned} & \mathrm{P} 24 / \mathrm{RxD} \\ & \mathrm{P} 25 / \mathrm{TxD} \end{aligned}$			- Serial l/O1 function pin
P26/SCLK1			
$\frac{\text { P27/CNTRo/ }}{\text { SRDY1 }}$			- Serial I/O1 function pin/ Timer X function pin
P30/AN0P34/AN4	I/O port P3	-8-bit CMOS I/O port with the same function as port P0. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled in a bit unit.	- A-D converter input pin
P40/CNTR1	I/O port P4	-8-bit CMOS I/O port with the same function as port PO. -CMOS compatible input level. -CMOS 3-state output structure. -Pull-up control is enabled in a bit unit.	- Timer Y function pin
$\begin{aligned} & \mathrm{P} 41 / \mathrm{INT} 0 \\ & \mathrm{P} 42 / \mathrm{INT}_{1} \end{aligned}$			- Interrupt input pins
P43/INT2/SCMP2			- Interrupt input pin - ScmP2 output pin
P44/INT3/PWM			- Interrupt input pin - PWM output pin

PART NUMBERING

Product name

Fig. 5 Part numbering

GROUP EXPANSION

Renesas Technology plans to expand the 3850 group (spec. H/A) as follows.

Memory Type

Support for mask ROM, One Time PROM, and flash memory versions.

Memory Size

Flash memory size .. 32 K bytes
Mask ROM size 8 K to 32 K bytes (spec. H)
8 K to 16 K bytes (spec. A)
RAM size .. 512 to 1 K bytes (spec. H)
512 bytes (spec. A)

Packages

42P4B 42-pin shrink plastic-molded DIP
42P2R-A/E \qquad 42-pin plastic-molded SOP
42S1B-A \qquad 42-pin shrink ceramic DIP (EPROM version)

Memory Expansion Plan

ROM size (bytes)

Fig. 6 Memory expansion plan

Currently planning products are listed below.

Table 3 Support products (spec. H)

Product name	ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks
M38503M2H-XXXSP	$\begin{gathered} 8192 \\ (8062) \\ \hline \end{gathered}$	512	42P4B	Mask ROM version
M38503M2H-XXXFP			42P2R-A/E	Mask ROM version
M38503M4H-XXXSP	$\begin{gathered} 16384 \\ (16254) \end{gathered}$	512	42P4B	Mask ROM version
M38503M4H-XXXFP			42P2R-A/E	Mask ROM version
M38504M6-XXXSP	$\begin{gathered} 24576 \\ (24446) \end{gathered}$	640	424P4B	Mask ROM version
M38504E6-XXXSP				One Time PROM version
M38504E6SP				One Time PROM version (blank)
M38504E6SS			42S1B-A	EPROM version
M38504M6-XXXFP				Mask ROM version
M38504E6-XXXFP			42P2R-A/E	One Time PROM version
M38504E6FP				One Time PROM version (blank)
M38507M8-XXXSP			42P4B	Mask ROM version
M38507M8-XXXFP	32768	1024	42P2R-A/E	Mask ROM version
M38507F8SP	(32638)	1024	42P4B	Flash memory version
M38507F8FP			42P2R-A/E	Flash memory version

Table 4 Support products (spec. A)

Product name	ROM size (bytes) ROM size for User in ($)$	RAM size (bytes)	Package	Remarks
M38503M2A-XXXSP	8192 (8062)	512	42P4B	
M38503M2A-XXXFP	16384 (16254)		42P2R-A/E	Mask ROM version
M38503M4A-XXXSP	32768	1024	42P4B	Mask ROM version
M38503M4A-XXXFP			Flash memory version	
M38507F8SP			42P2R-A/E	Flash memory version
M38507F8FP				

Table 5 Differences among 3850 group (standard), 3850 group (spec. H), and 3850 group (spec. A)

	3850 group (standard)	3850 group (spec. H)	3850 group (spec. A)
Serial I/O	1: Serial I/O (UART or Clock-synchronized)	$\begin{gathered} \text { 2: Serial I/O1 (UART or Clock-synchronized) } \\ \text { Serial I/O2 (Clock-synchronized) } \end{gathered}$	2: Serial I/O1 (UART or Clock-synchronized)
A-D converter	Unserviceable in low-speed mode Analog channel \qquad 5	Serviceable in low-speed mode Analog channel \qquad 5	Serviceable in low-speed mode Analog channel \qquad 9
Large current port	5: P13-P17	8: P10-P17	8: P10-P17
Software pull-up resistor	Not available	Not available	Built-in (Port P0-P4)
Maximum operating frequency	8 MHz	8 MHz	12.5 MHz

Notes on differences among 3850 group (standard), 3850 group (spec. H), and 3850 group (spec. A)

(1) The absolute maximum ratings of 3850 group (spec. H / A) is smaller than that of 3850 group (standard).
-Power source voltage $\mathrm{Vcc}=-0.3$ to 6.5 V

- CNV ss input voltage $\mathrm{VI}=-0.3$ to $\mathrm{Vcc}+0.3 \mathrm{~V}$
(2) The oscillation circuit constants of XIN-XOUT, XCIN-XCOUT may be some differences among 3850 group (standard), 3850 group (spec. H), and 3850 group (spec. A).
(3) Do not write any data to the reserved area and the reserved bit. (Do not change the contents after reset.)
(4) Fix bit 3 of the CPU mode register to " 1 ".
(5) Be sure to perform the termination of unused pins.

FUNCTIONAL DESCRIPTION
 CENTRAL PROCESSING UNIT (CPU)

The 3850 group (spec. H/A) uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set.
Machine-resident 740 Family instructions are as follows:
The FST and SLW instructions cannot be used.
The STP, WIT, MUL, and DIV instructions can be used.

[Accumulator (A)]

The accumulator is an 8-bit register. Data operations such as data transfer, etc., are executed mainly through the accumulator.

[Index Register X (X)]

The index register X is an 8 -bit register. In the index addressing modes, the value of the OPERAND is added to the contents of register X and specifies the real address.

[Index Register Y (Y)]

The index register Y is an 8-bit register. In partial instruction, the value of the OPERAND is added to the contents of register Y and specifies the real address.

[Stack Pointer (S)]

The stack pointer is an 8-bit register used during subroutine calls and interrupts. This register indicates start address of stored area (stack) for storing registers during subroutine calls and interrupts. The low-order 8 bits of the stack address are determined by the contents of the stack pointer. The high-order 8 bits of the stack address are determined by the stack page selection bit. If the stack page selection bit is " 0 ", the high-order 8 bits becomes " 0016 ". If the stack page selection bit is " 1 ", the high-order 8 bits becomes "0116".
The operations of pushing register contents onto the stack and popping them from the stack are shown in Figure 8.
Store registers other than those described in Figure 8 with program when the user needs them during interrupts or subroutine calls.

[Program Counter (PC)]

The program counter is a 16 -bit counter consisting of two 8-bit registers PCH and PCL. It is used to indicate the address of the next instruction to be executed.

Fig. 7740 Family CPU register structure

Fig. 8 Register push and pop at interrupt generation and subroutine call
Table 6 Push and pop instructions of accumulator or processor status register

	Push instruction to stack	Pop instruction from stack
Accumulator	PHA	PLA
Processor status register	PHP	PLP

[Processor status register (PS)]

The processor status register is an 8 -bit register consisting of 5 flags which indicate the status of the processor after an arithmetic operation and 3 flags which decide MCU operation. Branch operations can be performed by testing the Carry (C) flag, Zero (Z) flag, Overflow (V) flag, or the Negative (N) flag. In decimal mode, the Z, V, N flags are not valid.
-Bit 0: Carry flag (C)
The C flag contains a carry or borrow generated by the arithmetic logic unit (ALU) immediately after an arithmetic operation. It can also be changed by a shift or rotate instruction.
-Bit 1: Zero flag (Z)
The Z flag is set if the result of an immediate arithmetic operation or a data transfer is " 0 ", and cleared if the result is anything other than "0".
-Bit 2: Interrupt disable flag (I)
The I flag disables all interrupts except for the interrupt generated by the BRK instruction.
Interrupts are disabled when the I flag is " 1 ".
-Bit 3: Decimal mode flag (D)
The D flag determines whether additions and subtractions are executed in binary or decimal. Binary arithmetic is executed when this flag is " 0 "; decimal arithmetic is executed when it is " 1 ". Decimal correction is automatic in decimal mode. Only the ADC and SBC instructions can be used for decimal arithmetic.
-Bit 4: Break flag (B)
The B flag is used to indicate that the current interrupt was generated by the BRK instruction. The BRK flag in the processor status register is always " 0 ". When the BRK instruction is used to generate an interrupt, the processor status register is pushed onto the stack with the break flag set to " 1 ".
-Bit 5: Index X mode flag (T)
When the T flag is " 0 ", arithmetic operations are performed between accumulator and memory. When the T flag is " 1 ", direct arithmetic operations and direct data transfers are enabled between memory locations.
-Bit 6: Overflow flag (V)
The V flag is used during the addition or subtraction of one byte of signed data. It is set if the result exceeds +127 to -128 . When the BIT instruction is executed, bit 6 of the memory location operated on by the BIT instruction is stored in the overflow flag.
-Bit 7: Negative flag (N)
The N flag is set if the result of an arithmetic operation or data transfer is negative. When the BIT instruction is executed, bit 7 of the memory location operated on by the BIT instruction is stored in the negative flag.

Table 7 Set and clear instructions of each bit of processor status register

	C flag	Z flag	I flag	D flag	B flag	T flag	V flag	N flag
Set instruction	SEC	-	SEI	SED	-	SET	-	-
Clear instruction	CLC	-	CLI	CLD	-	CLT	CLV	-

[CPU Mode Register (CPUM)] 003B16

The CPU mode register contains the stack page selection bit, etc.
The CPU mode register is allocated at address 003B16.

Fig. 9 Structure of CPU mode register

MEMORY
 Special Function Register (SFR) Area

The Special Function Register area in the zero page contains control registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Fig. 10 Memory map diagram

000016	Port P0 (P0)
000116	Port P0 direction register (POD)
000216	Port P1 (P1)
000316	Port P1 direction register (P1D)
000416	Port P2 (P2)
000516	Port P2 direction register (P2D)
000616	Port P3 (P3)
000716	Port P3 direction register (P3D)
000816	Port P4 (P4)
000916	Port P4 direction register (P4D)
000A16	
000B16	
000C16	
000D16	
000E16	
000F16	
001016	
001116	
001216	Reserved *
001316	Reserved *
001416	Reserved *
001516	Serial I/O2 control register 1 (SIO2CON1)
001616	Serial I/O2 control register 2 (SIO2CON2)
001716	Serial I/O2 register (SIO2)
001816	Transmit/Receive buffer register (TB/RB)
001916	Serial I/O1 status register (SIOSTS)
001A16	Serial I/O1 control register (SIOCON)
001B16	UART control register (UARTCON)
$001 \mathrm{C}_{16}$	Baud rate generator (BRG)
001D16	PWM control register (PWMCON)
001E16	PWM prescaler (PREPWM)
001F16	PWM register (PWM)

002016	Prescaler 12 (PRE12)
002116	Timer 1 (T1)
002216	Timer 2 (T2)
002316	Timer XY mode register (TM)
002416	Prescaler X (PREX)
002516	Timer X (TX)
002616	Prescaler Y (PREY)
002716	Timer Y (TY)
002816	Timer count source selection register (TCSS)
002916	
002A16	
002B16	Reserved *
002 C 16	Reserved *
002D16	Reserved *
002E16	Reserved *
002F16	Reserved *
003016	Reserved *
003116	Reserved *
003216	
003316	
003416	A-D control register (ADCON)
003516	A-D conversion low-order register (ADL)
003616	A-D conversion high-order register (ADH)
003716	Reserved *
003816	MISRG
003916	Watchdog timer control register (WDTCON)
003A16	Interrupt edge selection register (INTEDGE)
003B16	CPU mode register (CPUM)
$003 \mathrm{C}_{16}$	Interrupt request register 1 (IREQ1)
003D16	Interrupt request register 2 (IREQ2)
003E16	Interrupt control register 1 (ICON1)
003F16	Interrupt control register 2 (ICON2)
OFFE 16	Flash memory control register (FMCR)

* Reserved : Do not write any data to this addresses, because these areas are reserved.

Fig. 11 Memory map of special function register (SFR) (spec. H)

000016	Port P0 (P0)
000116	Port P0 direction register (POD)
000216	Port P1 (P1)
000316	Port P1 direction register (P1D)
000416	Port P2 (P2)
000516	Port P2 direction register (P2D)
000616	Port P3 (P3)
000716	Port P3 direction register (P3D)
000816	Port P4 (P4)
000916	Port P4 direction register (P4D)
000A16	
000B16	
$000 \mathrm{C}_{16}$	
000D16	
000E16	
000F16	
001016	
001116	
001216	Port P0, P1, P2 pull-up control register (PULL012)
001316	Port P3 pull-up control register (PULL3)
001416	Port P4 pull-up control register (PULL4)
001516	Serial I/O2 control register 1 (SIO2CON1)
001616	Serial I/O2 control register 2 (SIO2CON2)
001716	Serial I/O2 register (SIO2)
001816	Transmit/Receive buffer register (TB/RB)
001916	Serial I/O1 status register (SIOSTS)
001A16	Serial I/O1 control register (SIOCON)
001B16	UART control register (UARTCON)
001C16	Baud rate generator (BRG)
001D16	PWM control register (PWMCON)
001E16	PWM prescaler (PREPWM)
001F16	PWM register (PWM)

002016	Prescaler 12 (PRE12)
002116	Timer 1 (T1)
002216	Timer 2 (T2)
002316	Timer XY mode register (TM)
002416	Prescaler X (PREX)
002516	Timer X (TX)
002616	Prescaler Y (PREY)
002716	Timer Y (TY)
002816	Timer count source selection register (TCSS)
002916	
002A16	
002B16	Reserved *
002C16	Reserved*
002D16	Reserved*
002E16	Reserved*
002F16	Reserved*
003016	Reserved*
003116	Reserved*
003216	
003316	
003416	A-D control register (ADCON)
003516	A-D conversion low-order register (ADL)
003616	A-D conversion high-order register (ADH)
003716	A-D input selection register (ADSEL)
003816	MISRG
003916	Watchdog timer control register (WDTCON)
003A16	Interrupt edge selection register (INTEDGE)
003B16	CPU mode register (CPUM)
003 C 16	Interrupt request register 1 (IREQ1)
003D16	Interrupt request register 2 (IREQ2)
003E16	Interrupt control register 1 (ICON1)
003F16	Interrupt control register 2 (ICON2)
OFFE16	Flash memory control register (FMCR)

* Reserved : Do not write any data to this addresses, because these areas are reserved.

Fig. 12 Memory map of special function register (SFR) (spec. A)

I/O PORTS

The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.
If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Table 8 I/O port function (spec. H)

Pin	Name	Input/Output	I/O Structure	Non-Port Function	Related SFRs	Ref.No.
POo/SIN2 P01/Sout2 P02/Sclk2 P03/SRDY2	Port P0	Input/output, individual bits	CMOS compatible input level CMOS 3-state output	Serial I/O2 function I/O	Serial I/O2 control register	(1) (2) (3) (4)
P04-P07						(5)
P10-P17	Port P1					
$\begin{aligned} & \text { P20/XCOUT } \\ & \text { P21/XCIN } \end{aligned}$	Port P2			Sub-clock generating circuit	CPU mode register	(6) (7)
$\begin{aligned} & \mathrm{P} 22 \\ & \mathrm{P} 23 \end{aligned}$			CMOS compatible input level N-channel open-drain output			(8)
$\begin{aligned} & \text { P24/RxD } \\ & \text { P25/TxD } \\ & \text { P26/ScLK1 } \end{aligned}$			CMOS compatible input level CMOS 3-state output	Serial I/O1 function I/O	Serial I/O1 control register	$\begin{gathered} \hline(9) \\ (10) \\ (11) \\ \hline \end{gathered}$
P27/CNTRo/SRDY1				Serial I/O1 function I/O Timer X function I/O	Serial I/O1 control register Timer XY mode register	(12)
$\begin{aligned} & \text { P30/AN0- } \\ & \text { P34/AN4 } \end{aligned}$	Port P3			A-D conversion input	A-D control register	(13)
P40/CNTR1	Port P4			Timer Y function I/O	Timer XY mode register	(14)
$\begin{aligned} & \mathrm{P} 41 / \mathrm{INT} 0 \\ & \mathrm{P} 42 / \mathrm{INT} 1 \end{aligned}$				External interrupt input	Interrupt edge selection register	(15)
P43/INT2/SCMP2				External interrupt input SCMP2 output	Interrupt edge selection register Serial I/O2 control register	(16)
P44/INT3/PWM				External interrupt input PWM output	Interrupt edge selection register PWM control register	(17)

I/O PORTS

The I/O ports have direction registers which determine the input/ output direction of each individual pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port.
When " 0 " is written to the bit corresponding to a pin, that pin becomes an input pin. When " 1 " is written to that bit, that pin becomes an output pin.
If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

By setting the port P0, P1, P2 pull-up control register (address 001216), the port P3 pull-up control register (address 001316), or the port P4 pull-up control register (address 001416), ports can control pull-up with a program. However, the contents of these registers do not affect ports programmed as the output ports.

Table 9 I/O port function (spec. A)

Pin	Name	Input/Output	I/O Structure	Non-Port Function	Related SFRs	Ref.No.
$\begin{aligned} & \text { P00/SIN2 } \\ & \text { P01/SOUT2 } \\ & \text { P02/SCLK2 } \\ & \text { P03/SRDY2 } \end{aligned}$	Port P0	Input/output, individual bits	CMOS compatible input level CMOS 3-state output	Serial I/O2 function I/O	Serial I/O2 control register	(1) (2) (3) (4)
P04/AN5-P07AN8				A-D conversion input	A-D control register A-D input selection register	(13)
P10-P17	Port P1					(5)
$\begin{aligned} & \text { P20/XCOUT } \\ & \text { P21/XCIN } \end{aligned}$	Port P2			Sub-clock generating circuit	CPU mode register	(6) (7)
$\begin{aligned} & \mathrm{P} 22 \\ & \mathrm{P} 23 \end{aligned}$			CMOS compatible input level N -channel open-drain output			(8)
$\begin{aligned} & \text { P24/RxD } \\ & \text { P25/TxD } \\ & \text { P26/SCLK1 } \\ & \hline \end{aligned}$			CMOS compatible input level CMOS 3-state output	Serial I/O1 function I/O	Serial I/O1 control register	$\begin{gathered} \hline(9) \\ (10) \\ (11) \\ \hline \end{gathered}$
P27/CNTRo/ $\overline{\text { SRDY1 }}$				Serial I/O1 function I/O Timer X function I/O	Serial I/O1 control register Timer XY mode register	(12)
$\begin{aligned} & \text { P30/AN0- } \\ & \text { P34/AN4 } \end{aligned}$	Port P3			A-D conversion input	A-D control register A-D input selection register	(13)
P40/CNTR1	Port P4 (Note)			Timer Y function I/O	Timer XY mode register	(14)
P41/INT0 P42/INT1				External interrupt input	Interrupt edge selection register	(15)
P43/INT2/ScMP2				External interrupt input SCMP2 output	Interrupt edge selection register Serial I/O2 control register	(16)
P44/INT3/PWM				External interrupt input PWM output	Interrupt edge selection register PWM control register	(17)

Note: When bits 5 to 7 of Ports P3 and P4 are read out, the contents are undefined.
(1) Port POo

(2) Port P01

(3) Port PO2

(4) Port PO3

(5) Ports P04-P07,P1

(7) Port P21
(6) Port P20

Fig. 13 Port block diagram (1) (spec. H)

Fig. 14 Port block diagram (2) (spec. H)
(17) Port P44

Fig. 15 Port block diagram (3) (spec. H)

Fig. 16 Port block diagram (1) (spec. A)

(11) Port P26

(13) Ports P04-P07, P30-P34

(15) Ports P41, P42

(10) Port P25

(12) Port P27

(14) Port P40

(16) Port P43

Fig. 17 Port block diagram (2) (spec. A)
(17) Port P44

Fig. 18 Port block diagram (3) (spec. A)

Note: Pull-up control is valid when the corresponding bit of the port direction register is " 0 " (input). When that bit is " 1 " (output), pull-up cannot be set to the port of which pull-up is selected.

Note: Pull-up control is valid when the corresponding bit of the port direction register is " 0 " (input). When that bit is " 1 " (output), pull-up cannot be set to the port of which pull-up is selected.

Fig. 19 Structure of port registers (1) (spec. A)

Fig. 20 Structure of port registers (2) (spec. A)

INTERRUPTS

Interrupts occur by 15 sources among 15 sources: six external, eight internal, and one software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are " 1 " and the interrupt disable flag is " 0 ".
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be set by software.
The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK instruction interrupt.
When several interrupts occur at the same time, the interrupts are received according to priority.

Interrupt Operation

By acceptance of an interrupt, the following operations are automatically performed:

1. The contents of the program counter and the processor status register are automatically pushed onto the stack.
2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
3. The interrupt jump destination address is read from the vector table into the program counter.

- Notes

When setting the followings, the interrupt request bit may be set to "1".
-When setting external interrupt active edge
Related register: Interrupt edge selection register (address 3A16) Timer XY mode register (address 2316)
-When switching interrupt sources of an interrupt vector address where two or more interrupt sources are allocated
Related register: Interrupt edge selection register (address 3A16) When not requiring for the interrupt occurrence synchronized with these setting, take the following sequence.
(1) Set the corresponding interrupt enable bit to " 0 " (disabled).
(2) Set the interrupt edge select bit or the interrupt source select bit to "1".
(3) Set the corresponding interrupt request bit to "0" after 1 or more instructions have been executed.
(4) Set the corresponding interrupt enable bit to " 1 " (enabled).

Table 10 Interrupt vector addresses and priority

Interrupt Source	Priority	Vector Addresses (Note 1)		Interrupt Request Generating Conditions	Remarks
		High	Low		
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable
INTo	2	FFFB16	FFFA16	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)
Reserved	3	FFF916	FFF816	Reserved	
INT1	4	FFF716	FFF616	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)
INT2	5	FFF516	FFF416	At detection of either rising or falling edge of INT2 input	External interrupt (active edge selectable)
INT3/ Serial I/O2	6	FFF316	FFF216	At detection of either rising or falling edge of INT3 input/ At completion of serial I/O2 data reception/transmission	External interrupt (active edge selectable) Switch by Serial I/O2/INT3 interrupt source bit
Reserved	7	FFF116	FFF016	Reserved	
Timer X	8	FFEF16	FFEE16	At timer X underflow	
Timer Y	9	FFED16	FFEC16	At timer Y underflow	
Timer 1	10	FFEB16	FFEA16	At timer 1 underflow	STP release timer underflow
Timer 2	11	FFE916	FFE816	At timer 2 underflow	
Serial I/O1 reception	12	FFE716	FFE616	At completion of serial I/O1 data reception	Valid when serial I/O1 is selected
Serial I/O1 transmission	13	FFE516	FFE416	At completion of serial I/O1 transfer shift or when transmission buffer is empty	Valid when serial I/O1 is selected
CNTRo	14	FFE316	FFE216	At detection of either rising or falling edge of CNTRo input	External interrupt (active edge selectable)
CNTR1	15	FFE116	FFE016	At detection of either rising or falling edge of CNTR1 input	External interrupt (active edge selectable)
A-D converter	16	FFDF16	FFDE16	At completion of A-D conversion	
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt

Notes 1: Vector addresses contain interrupt jump destination addresses. 2: Reset function in the same way as an interrupt with the highest priority.

Fig. 21 Interrupt control

Fig. 22 Structure of interrupt-related registers

TIMERS

The 3850 group (spec. H/A) has four timers: timer X, timer Y, timer 1 , and timer 2.
The division ratio of each timer or prescaler is given by $1 /(n+1)$, where n is the value in the corresponding timer or prescaler latch. All timers are count down. When the timer reaches " 0016 ", an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to " 1 ".

Fig. 23 Structure of timer XY mode register

Fig. 24 Structure of timer count source selection register

Timer 1 and Timer 2

The count source of prescaler 12 is the oscillation frequency which is selected by timer 12 count source selection bit. The output of prescaler 12 is counted by timer 1 and timer 2, and a timer underflow sets the interrupt request bit.

Timer \mathbf{X} and Timer \mathbf{Y}

Timer X and Timer Y can each select in one of four operating modes by setting the timer XY mode register.

(1) Timer Mode

The timer counts the count source selected by Timer count source selection bit.

(2) Pulse Output Mode

The timer counts the count source selected by Timer count source selection bit. Whenever the contents of the timer reach " 0016 ", the signal output from the CNTRo (or CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge selection bit is " 0 ", output begins at " H".
If it is " 1 ", output starts at " L ". When using a timer in this mode, set the corresponding port P27 (or port P40) direction register to output mode.

(3) Event Counter Mode

Operation in event counter mode is the same as in timer mode, except that the timer counts signals input through the CNTRo or CNTR1 pin.
When the CNTRo (or CNTR1) active edge selection bit is " 0 ", the rising edge of the CNTR 0 (or CNTR1) pin is counted.
When the CNTRo (or CNTR1) active edge selection bit is " 1 ", the falling edge of the CNTR0 (or CNTR1) pin is counted.

(4) Pulse Width Measurement Mode

If the CNTR0 (or CNTR1) active edge selection bit is " 0 ", the timer counts the selected signals by the count source selection bit while the CNTRo (or CNTR1) pin is at "H". If the CNTRo (or CNTR1) active edge selection bit is " 1 ", the timer counts it while the CNTRo (or CNTR1) pin is at " L ".

The count can be stopped by setting "1" to the timer X (or timer Y) count stop bit in any mode. The corresponding interrupt request bit is set each time a timer underflows.

- Note

When switching the count source by the timer 12, X and Y count source bits, the value of timer count is altered in unconsiderable amount owing to generating of a thin pulses in the count input signals.
Therefore, select the timer count source before set the value to the prescaler and the timer.
When timer $\mathrm{X} /$ timer Y underflow while executing the instruction which sets "1" to the timer X/timer Y count stop bits, the timer $\mathrm{X} /$ timer Y interrupt request bits are set to "1". Timer $\mathrm{X} /$ Timer Y interrupts are received if these interrupts are enabled at this time. The timing which interrupt is accepted has a case after the instruction which sets " 1 " to the count stop bit, and a case after the next instruction according to the timing of the timer underflow. When this interrupt is unnecessary, set " 0 " (disabled) to the interrupt enable bit and then set " 1 " to the count stop bit.

Fig. 25 Block diagram of timer X, timer Y, timer 1, and timer 2

SERIAL I/O
 OSERIAL I/01

Serial I/O1 can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.

(1) Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O mode can be selected by setting the serial I/O1 mode selection bit of the serial I/O1 control register (bit 6 of address 001A16) to " 1 ".
For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB.

Fig. 26 Block diagram of clock synchronous serial I/O1

Fig. 27 Operation of clock synchronous serial I/O1 function

(2) Asynchronous Serial I/O (UART) Mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O1 mode selection bit (b6) of the serial I/O1 control register to " 0 ".
Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the
two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register.
The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.

Fig. 28 Block diagram of UART serial I/O1

Fig. 29 Operation of UART serial I/O1 function

[Transmit Buffer Register/Receive Buffer Register (TB/RB)] 001816

The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is " 0 ".

[Serial I/O1 Status Register (SIOSTS)] 001916

The read-only serial I/O1 status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O1 function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to " 0 " when the receive buffer register is read.
If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O1 status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6 , respectively). Writing " 0 " to the serial I/O1 enable bit SIOE (bit 7 of the serial I/O1 control register) also clears all the status flags, including the error flags.
Bits 0 to 6 of the serial I/O1 status register are initialized to " 0 " at reset, but if the transmit enable bit (bit 4) of the serial I/O1 control register has been set to " 1 ", the transmit shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become " 1 ".

[Serial I/O1 Control Register (SIOCON)] 001A16

The serial I/O1 control register consists of eight control bits for the serial I/O1 function.

[UART Control Register (UARTCON)] 001B16

The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer and one bit (bit 4) which is always valid and sets the output structure of the $\mathrm{P} 25 / \mathrm{T} \times \mathrm{D}$ pin.

[Baud Rate Generator (BRG)] 001C16

The baud rate generator determines the baud rate for serial transfer.
The baud rate generator divides the frequency of the count source by $1 /(n+1)$, where n is the value written to the baud rate generator.

Serial I/O1 synchronous clock selection bit (SCS)
0 : BRG output divided by 4 when clock synchronous serial I/O1 is selected, BRG output divided by 16 when UART is selected.
1: External clock input when clock synchronous serial I/O1 is selected, external clock input divided by 16 when UART is selected.
$\overline{\text { SRDY1 output enable bit (SRDY) }}$
0: P27 pin operates as ordinary I/O pin
1: P27 pin operates as SRDY1 output pin
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0 : Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0 : Receive disabled
1: Receive enabled
Serial I/O1 mode selection bit (SIOM)
0: Clock asynchronous (UART) serial I/O
1: Clock synchronous serial I/O
Serial I/O1 enable bit (SIOE)
0: Serial I/O1 disabled
(pins P24 to P27 operate as ordinary I/O pins)
1: Serial I/O1 enabled
(pins P24 to P27 operate as serial I/O1 pins)

Fig. 30 Structure of serial I/01 control registers

■Notes on serial I/O

When setting the transmit enable bit of serial I/O1 to " 1 ", the serial I/O1 transmit interrupt request bit is automatically set to " 1 ". When not requiring the interrupt occurrence synchronized with the transmission enalbed, take the following sequence.
(1) Set the serial I/O1 transmit interrupt enable bit to "0" (disabled).
(2) Set the transmit enable bit to " 1 ".
(3) Set the serial I/O1 transmit interrupt request bit to "0" after 1 or more instructions have been executed.
(4) Set the serial I/O1 transmit interrupt enable bit to " 1 " (enabled).

OSERIAL I/O2

The serial I/O2 can be operated only as the clock synchronous type. As a synchronous clock for serial transfer, either internal clock or external clock can be selected by the serial I/O2 synchronous clock selection bit (b6) of serial I/O2 control register 1.
The internal clock incorporates a dedicated divider and permits selecting 6 types of clock by the internal synchronous clock selection bits ($\mathrm{b} 2, \mathrm{~b} 1, \mathrm{~b} 0$) of serial I/O2 control register 1.
Regarding Sout2 and ScLK2 being output pins, either CMOS output format or N -channel open-drain output format can be selected by the P01/Sout2, P02/Sclk2 P-channel output disable bit (b7) of serial I/O2 control register 1.
When the internal clock has been selected, a transfer starts by a write signal to the serial I/O2 register (address 001716). After completion of data transfer, the level of the Sout2 pin goes to high impedance automatically but bit 7 of the serial I/O2 control register 2 is not set to " 1 " automatically.
When the external clock has been selected, the contents of the serial I/O2 register is continuously sifted while transfer clocks are input. Accordingly, control the clock externally. Note that the Sout2 pin does not go to high impedance after completion of data transfer.
To cause the Sout2 pin to go to high impedance in the case where the external clock is selected, set bit 7 of the serial I/O2 control register 2 to " 1 " when Sclı2 is " H " after completion of data transfer. After the next data transfer is started (the transfer clock falls), bit 7 of the serial I/O2 control register 2 is set to " 0 " and the Sout2 pin is put into the active state.
Regardless of the internal clock to external clock, the interrupt request bit is set after the number of bits (1 to 8 bits) selected by the optional transfer bit is transferred. In case of a fractional number of bits less than 8 bits as the last data, the received data to be stored in the serial I/O2 register becomes a fractional number of bits close to MSB if the transfer direction selection bit of serial I/O2 control register 1 is LSB first, or a fractional number of bits close to LSB if the transfer direction selection bit is MSB first. For the remaining bits, the previously received data is shifted.
At transmit operation using the clock synchronous serial I/O, the ScMP2 signal can be output by comparing the state of the transmit pin Sout2 with the state of the receive pin $\operatorname{SIN2}$ in synchronization with a rise of the transfer clock. If the output level of the Sout2 pin is equal to the input level to the Sin2 pin, "L" is output from the Scmp2 pin. If not, "H" is output. At this time, an INT2 interrupt request can also be generated. Select a valid edge by bit 2 of the interrupt edge selection register (address 003A16).

[Serial I/O2 Control Registers 1, 2 (SIO2CON1 / SIO2CON2)] 001516, 001616

The serial I/O2 control registers 1 and 2 are containing various selection bits for serial I/O2 control as shown in Figure 31.

b2 b1 b0
$0000: f\left(X_{\text {IN }}\right) / 8\left(f\left(X_{\text {CII }}\right) / 8\right.$ in low-speed mode)
$0 \begin{array}{lll}0 & 0 & 1: \\ \mathrm{f}(\mathrm{XIN}) / 16(\mathrm{f}(\mathrm{X} \text { CIN }) / 16 \text { in low-speed mode) }\end{array}$
$\begin{array}{llll}0 & 1 & 0 & \mathrm{f}(\mathrm{XIN}) / 32(\mathrm{f}(\mathrm{XCIN}) / 32 \text { in low-speed mode) }\end{array}$
$\begin{array}{lll}0 & 1 & 1: ~ \\ f & (\mathrm{XIN}) / 64(\mathrm{f}(\mathrm{XCIN}) / 64 \text { in low-speed mode) }\end{array}$
$110: \mathrm{f}(\mathrm{XIN}) / 128 \mathrm{f}(\mathrm{XCIN}) / 128$ in low-speed mode $)$
11 1: $\mathrm{f}(\mathrm{XIN}) / 256$ ($\mathrm{f}(\mathrm{XCIN}) / 256$ in low-speed mode)

Serial I/O2 port selection bit
0: I/O port
1: Sout2,Sclk2 output pin
$\overline{\text { SRDY2 }}$ output enable bit
0 : $\mathrm{PO} 0_{3}$ pin is normal I / O pin
1: PO 3 pin is SRDY2 output pin
Transfer direction selection bit
0 : LSB first
1: MSB first

Serial I/O2 synchronous clock selection bit
0: External clock
1: Internal clock
P01/Sout2 ,P02/Sclk2 P-channel output disable bit
0 : CMOS output (in output mode)
1: N-channel open-drain output (in output mode)

Serial I/O2 control register 2
SIO2CON2 : address 001616)
Optional transfer bits
b2 b1 b0
0 0 0:1 bit
0 0 1:2 bit
$\begin{array}{lll}0 & 1 & 0: 3 \text { bit }\end{array}$
$\begin{array}{lll}0 & 1 & 1: 4 \text { bit }\end{array}$
$100: 5$ bit
10 1:6 bit
$\begin{array}{lll}1 & 1 & 0: 7 \text { bit }\end{array}$
$111: 8$ bit

Not used (returns "0" when read)
Serial I/O2 I/O comparison signal control bit
$0:$ P43 I/O
1: ScMP2 output
Sout2 pin control bit (P01)
0 : Output active
1: Output high-impedance

Fig. 31 Structure of Serial I/O2 control registers 1, 2

Fig. 32 Block diagram of Serial I/O2

Serial I/O2 interrupt request bit set

Notes 1: When the internal clock is selected as a transfer clock, the $f(X i N)$ clock division ($f(X \operatorname{CIN})$ in low-speed mode) can be selected by setting bits 0 to 2 of serial I/O2 control register 1 .
2: When the internal clock is selected as a transfer clock, the SOUT2 pin has high impedance after transfer completion.

Fig. 33 Timing chart of Serial I/O2

Fig. 34 ScMP2 output operation

PULSE WIDTH MODULATION (PWM)

The 3850 group (spec. H/A) has a PWM function with an 8-bit resolution, based on a signal that is the clock input XIN or that clock input divided by 2.

Data Setting

The PWM output pin also functions as port P44. Set the PWM period by the PWM prescaler, and set the " H " term of output pulse by the PWM register.
If the value in the PWM prescaler is n and the value in the PWM register is m (where $n=0$ to 255 and $m=0$ to 255) :
PWM period $=255 \times(n+1) / f(X I N)$
$=31.875 \times(n+1) \mu s$
(when $f(X I N)=8 \mathrm{MHz}$, count source selection bit $=$ " 0 ")
Output pulse "H" term = PWM period $\times \mathrm{m} / 255$

$$
\begin{aligned}
= & 0.125 \times(\mathrm{n}+1) \times \mathrm{m} \mu \mathrm{~s} \\
& (\text { when } \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}, \text { count source selection bit }=" 0 ")
\end{aligned}
$$

PWM Operation

When bit 0 (PWM enable bit) of the PWM control register is set to "1", operation starts by initializing the PWM output circuit, and pulses are output starting at an "H".
If the PWM register or PWM prescaler is updated during PWM output, the pulses will change in the cycle after the one in which the change was made.

m : Contents of PWM register
n : Contents of PWM prescaler
$\mathrm{T}: \mathrm{PWM}$ period (when $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$, count source selection bit = "0")

Fig. 35 Timing of PWM period

Fig. 36 Block diagram of PWM function

Fig. 37 Structure of PWM control register

When the contents of the PWM register or PWM prescaler have changed, the PWM output will change from the next period after the change.

Fig. 38 PWM output timing when PWM register or PWM prescaler is changed

- Note

The PWM starts after the PWM function enable bit is set to enable and "L" level is output from the PWM pin. The length of this " L " level output is as follows:

$$
\frac{n+1}{2 \cdot f(X I N)} \sec \quad \text { (Count source selection bit }=0 \text {, where } \mathrm{n} \text { is the value set in the prescaler) }
$$

$\frac{n+1}{f(X I N)} \sec \quad$ (Count source selection bit $=1$, where n is the value set in the prescaler)

A-D CONVERTER
 [A-D Conversion Registers (ADL, ADH)] 003516, 003616

The A-D conversion registers are read-only registers that store the result of an A-D conversion. Do not read these registers during an A-D conversion.

[A-D Control Register (ADCON)] 003416

The AD control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. Bit 4 indicates the completion of an A-D conversion. The value of this bit remains at " 0 " during an A-D conversion and changes to " 1 " when an A-D conversion ends. Writing " 0 " to this bit starts the A-D conversion.

Comparison Voltage Generator

The comparison voltage generator divides the voltage between AVSS and VREF into 1024 and outputs the divided voltages.

Channel Selector

The channel selector selects one of ports P3o/ANo to P34/AN4 and inputs the voltage to the comparator.

Comparator and Control Circuit

The comparator and control circuit compare an analog input voltage with the comparison voltage, and the result is stored in the A-D conversion registers. When an A-D conversion is completed, the control circuit sets the A-D conversion completion bit and the A-D interrupt request bit to " 1 ".
Note that because the comparator consists of a capacitor coupling, set $f(X I N)$ to 500 kHz or more during an A-D conversion. When the A-D converter is operated at low-speed mode, $f(X I N)$ and $f(X C I N)$ do not have the lower limit of frequency, because of the A-D converter has a built-in self-oscillation circuit.

Fig. 39 Structure of A-D control register (spec. H)

10-bit reading

(Read address 003616 before 003516)

Note : The high-order 6 bits of address 003616 become " 0 " at reading.

8-bit reading (Read only address 003516)

Fig. 40 Structure of A-D conversion registers (spec. H)

Fig. 41 Block diagram of A-D converter (spec. H)

A-D CONVERTER
 [A-D Conversion Registers (ADL, ADH)] 003516, 003616

The A-D conversion registers are read-only registers that store the result of an $A-D$ conversion. Do not read these registers during an A-D conversion.

[A-D Control Register (ADCON)] 003416

The A-D control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. By setting a value to these bits, when bit 0 of the A-D input selection register (address 003716) is " 0 ", P30/AN0-P34/AN4 can be selected, and when bit 0 of the A-D input selection register is " 1 ", P04/AN5-P07/AN8 can be selected.
Bit 4 indicates the completion of an A-D conversion. The value of this bit remains at " 0 " during an A-D conversion and changes to " 1 " when an A-D conversion ends. Writing " 0 " to this bit starts the A-D conversion.

[A-D Input Selection Register (ADSEL)] 003716

The analog input port selection switch bit is assigned to bit 0 of the A-D input selection register. When " 0 " is set to the analog input port selection switch bit, P30/AN0-P34/AN4 can be selected by the analog input pin selection bits (b2, b1, b0) of the A-D control register (address 003416). When "1" is set to the analog input port selection switch bit, P04/AN5-P07/AN8 can be selected by the analog input pin selection bits (b2, b1, b0) of the A-D control register (address 003416).

Comparison Voltage Generator

The comparison voltage generator divides the voltage between AVss and Vref into 1024 and outputs the divided voltages.

Channel Selector

The channel selector selects one of ports P3o/AN0 to P34/AN4, P04/AN5 to P07/AN8 and inputs the voltage to the comparator.

Comparator and Control Circuit

The comparator and control circuit compare an analog input voltage with the comparison voltage, and the result is stored in the A-D conversion registers. When an A-D conversion is completed, the control circuit sets the A-D conversion completion bit and the A-D interrupt request bit to " 1 ".
Note that because the comparator consists of a capacitor coupling, set $f(\mathrm{XIN})$ to 500 kHz or more during an A-D conversion. When the A-D converter is operated at low-speed mode, $f(X I N)$ and $f(X C I N)$ do not have the lower limit of frequency, because of the A-D converter has a built-in self-oscillation circuit.

Notes 1: This is selected when bit 0 of the A-D input selection register (address 003716) is " 0 "
2: This is selected when bit 0 of the A-D input selection register (address 003716) is " 1 ".
Fig. 42 Structure of A-D control register (spec. A)

Fig. 43 Structure of A-D input selection register (spec. A)

10-bit reading

(Read address 003616 before 003516)

Note : The high-order 6 bits of address 003616 become " 0 " at reading.

8-bit reading (Read only address 003516)

Fig. 44 Structure of A-D conversion registers (spec. A)

Fig. 45 Block diagram of A-D converter (spec. A)

WATCHDOG TIMER

The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, because of a software run-away). The watchdog timer consists of an 8 -bit watchdog timer L and an 8-bit watchdog timer H .

Standard Operation of Watchdog Timer

When any data is not written into the watchdog timer control register (address 003916) after reset, the watchdog timer is in the stop state. The watchdog timer starts to count down by writing an optional value into the watchdog timer control register (address 003916) and an internal reset occurs at an underflow of the watchdog timer H.
Accordingly, programming is usually performed so that writing to the watchdog timer control register (address 003916) may be started before an underflow. When the watchdog timer control register (address 003916) is read, the values of the high-order 6 bits of the watchdog timer H, STP instruction disable bit, and watchdog timer H count source selection bit are read.

- Initial value of watchdog timer

At reset or writing to the watchdog timer control register (address 003916), each watchdog timer H and L are set to "FF16".
-Watchdog timer H count source selection bit operation
Bit 7 of the watchdog timer control register (address 003916) permits selecting a watchdog timer H count source. When this bit is set to " 0 ", the count source becomes the underflow signal of watchdog timer L . The detection time is set to 131.072 ms at $\mathrm{f}(\mathrm{XIN})$ $=8 \mathrm{MHz}$ frequency and 32.768 s at $\mathrm{f}(\mathrm{XCIN})=32 \mathrm{kHz}$ frequency. When this bit is set to " 1 ", the count source becomes the signal divided by 16 for $f(X i n)$ (or $f(X C I N)$). The detection time in this case is set to $512 \mu \mathrm{~s}$ at $\mathrm{f}(\mathrm{XiN})=8 \mathrm{MHz}$ frequency and 128 ms at $\mathrm{f}(\mathrm{XCIN})$ $=32 \mathrm{kHz}$ frequency. This bit is cleared to " 0 " after reset.

-Operation of STP instruction disable bit

Bit 6 of the watchdog timer control register (address 003916) permits disabling the STP instruction when the watchdog timer is in operation.
When this bit is " 0 ", the STP instruction is enabled.
When this bit is " 1 ", the STP instruction is disabled, once the STP instruction is executed, an internal reset occurs. When this bit is set to "1", it cannot be rewritten to "0" by program. This bit is cleared to "0" after reset.

Fig. 46 Block diagram of Watchdog timer

Fig. 47 Structure of Watchdog timer control register

RESET CIRCUIT

To reset the microcomputer, $\overline{R E S E T}$ pin must be held at an "L" level for 20 cycles or more of XIN. Then the RESET pin is returned to an " H " level (the power source voltage must be between 2.7 V and 5.5 V , and the oscillation must be stable), reset is released. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.54 V for Vcc of 2.7 V .

Fig. 48 Reset circuit example

Fig. 49 Reset sequence

		Address R	Register contents	
(1)	Port P0 (P0)	000016	0016	(34) MISRG
(2)	Port P0 direction register (POD)	000116	0016	(35) Watchdog timer control register (WDTCON
(3)	Port P1 (P1)	000216	0016	(36) Interrupt edge selection register (INTEDGE
(4)	Port P1 direction register (P1D)	000316	0016	(37) CPU mode register (CPUM)
(5)	Port P2 (P2)	000416	0016	(38) Interrupt request register 1 (IREQ1)
(6)	Port P2 direction register (P2D)	000516	0016	(39) Interrupt request register 2 (IREQ2)
(7)	Port P3 (P3)	000616	0016	(40) Interrupt control register 1 (ICON1)
(8)	Port P3 direction register (P3D)	000716	0016	(41) Interrupt control register 2 (ICON2)
(9)	Port P4 (P4)	000816	0016	(42) Processor status register
(10)	Port P4 direction register (P4D)	000916	0016	(43) Program counter
(11)	Serial I/O2 control register 1 (SIO2CON1)	001516	0016	
(12)	Serial I/O2 control register 2 (SIO2CON2)	0016160	0 0 0 0 1 1 1	
(13)	Serial I/O2 register (SIO2)	001716 X	$x \times x\|x\| x\|x\| x$	
(14)	Transmit/Receive buffer register (TB/RB)	001816 X	X $\mathrm{X}\|\mathrm{X}\| \mathrm{X}\|\mathrm{X}\| \mathrm{X}\|\mathrm{X}\| \mathrm{X}$	
(15)	Serial I/O1 status register (SIOSTS)	0019161	1 0 0 0 0 0 0	
(16)	Serial I/O1 control register (SIOCON)	001A16	0016	
(17)	UART control register (UARTCON)	001B16 1		
(18)	Baud rate generator (BRG)	001C16 X	$x\|x\| x\|x\| x\|x\| x \mid x$	
(19)	PWM control register (PWMCON)	001D16	0016	
(20)	PWM prescaler (PREPWM)	001E ${ }_{16}$ X	$\underline{x\|x\| x\|x\| x\|x\| x \mid X ~}$	
(21)	PWM register (PWM)	001F16 X	$\mathrm{X} \mathrm{X}\|\mathrm{X}\| \mathrm{X}\|\mathrm{X}\| \mathrm{X}\|\mathrm{X}\| \mathrm{X}$	
(22)	Prescaler 12 (PRE12)	002016	FF16	
(23)	Timer 1 (T1)	$0021{ }_{16}$	0116	
(24)	Timer 2 (T2)	002216	0016	
(25)	Timer XY mode register (TM)	002316	0016	
(26)	Prescaler X (PREX)	002416	FF16	
(27)	Timer X (TX)	002516	FF16	
(28)	Prescaler Y (PREY)	002616	FF16	
(29)	Timer Y (TY)	002716	FF16	
(30)	Timer count source selection register (TCSS)	002816	0016	
(31)	A-D control register (ADCON)	0034160	0 0 0 1 0 0 0	
(32)	A-D conversion low-order register (ADL)	$003516 \times$		
(33)	A-D conversion high-order register (ADH)	0036160	0 0 0 0 0 0 X	

Fig. 51 Internal status at reset (spec. A)

CLOCK GENERATING CIRCUIT

The 3850 group (spec. H/A) has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and Xout (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and Xout since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XcIN and Xcout.
Immediately after power on, only the XIN oscillation circuit starts oscillating, and XCIN and Xcout pins function as I/O ports.

Frequency Control

 (1) Middle-speed modeThe internal clock ϕ is the frequency of XIN divided by 8 . After reset is released, this mode is selected.

(2) High-speed mode

The internal clock ϕ is half the frequency of XIN.

(3) Low-speed mode

The internal clock ϕ is half the frequency of XCIN.

- Note

If you switch the mode between middle/high-speed and lowspeed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after power on and at returning from the stop mode. When switching the mode between middle/high-speed and low-speed, set the frequency on condition that $f(X I N)>3 \cdot f(X C I N)$.

(4) Low power dissipation mode

The low power consumption operation can be realized by stopping the main clock XIN in low-speed mode. To stop the main clock, set bit 5 of the CPU mode register to " 1 ". When the main clock XIN is restarted (by setting the main clock stop bit to " 0 "), set sufficient time for oscillation to stabilize.
The sub-clock XCIN-Xcout oscillating circuit can not directly input clocks that are generated externally. Accordingly, make sure to cause an external resonator to oscillate.

Oscillation Control

(1) Stop mode

If the STP instruction is executed, the internal clock ϕ stops at an "H" level, and XIN and XCIN oscillation stops. When the oscillation stabilizing time set after STP instruction released bit is " 0 ", the prescaler 12 is set to "FF16" and timer 1 is set to " 0116 ". When the oscillation stabilizing time set after STP instruction released bit is " 1 ", set the sufficient time for oscillation of used oscillator to stabilize since nothing is set to the prescaler 12 and timer 1.
Either XIN or XCIN divided by 16 is input to the prescaler 12 as count source. Oscillator restarts when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU (remains at " H ") until timer 1 underflows. The internal clock ϕ is supplied for the first time, when timer 1 underflows. This ensures time for the clock oscillation using the ceramic resonators to be stabilized. When the oscillator is restarted by reset, apply "L" level to the RESET pin until the oscillation is stable since a wait time will not be generated.

(2) Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level, but the oscillator does not stop. The internal clock ϕ restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

To ensure that the interrupts will be received to release the STP or WIT state, their interrupt enable bits must be set to "1" before executing of the STP or WIT instruction.
When releasing the STP state, the prescaler 12 and timer 1 will start counting the clock XIN divided by 16. Accordingly, set the timer 1 interrupt enable bit to " 0 " before executing the STP instruction.

Note

When using the oscillation stabilizing time set after STP instruction released bit set to "1", evaluate time to stabilize oscillation of the used oscillator and set the value to the timer 1 and prescaler 12.

Fig. 52 Ceramic resonator circuit

Fig. 53 External clock input circuit

[MISRG (MISRG)] 003816

MISRG consists of three control bits (bits 1 to 3) for middle-speed mode automatic switch and one control bit (bit 0) for oscillation stabilizing time set after STP instruction released.
By setting the middle-speed mode automatic switch start bit to " 1 " while operating in the low-speed mode and setting the middlespeed mode automatic switch set bit to " 1 ", XIN oscillation automatically starts and the mode is automatically switched to the middle-speed mode.

Fig. 54 Structure of MISRG

Notes 1: Any one of high-speed, middle-speed or low-speed mode is selected by bits 7 and 6 of the CPU mode register. When low-speed mode is selected, set port Xc switch bit (b4) to "1".
2: $f(X I N) / 16$ is supplied as the count source to the prescaler 12 at reset, the count source
before executing the STP instruction is supplied as the count source at executing STP instruction.
3: When bit 0 of MISRG $=$ " 0 ", the prescaler 12 is set to "FF16" and timer 1 is set to " 0116 ".
When bit 0 of MISRG = "1", set the sufficient time for oscillation of used oscillator to stabilize since nothing is set to the prescaler 12 and timer 1.

Fig. 55 System clock generating circuit block diagram (Single-chip mode)

Notes 1 : Switch the mode by the allows shown between the mode blocks. (Do not switch between the modes directly without an allow.)
2: The all modes can be switched to the stop mode or the wait mode and return to the source mode when the stop mode or the wait mode is ended.
3 : Timer operates in the wait mode.
4: When bit 0 of MISRG is " 0 " and the stop mode is ended, a delay of approximately 1 ms occurs by connecting timer 1 in middle/high-speed mode.
5 : When bit 0 of MISRG is " 0 " and the stop mode is ended, the following is performed.
(1) After the clock is restarted, a delay of approximately 256 ms occurs in low-speed mode if Timer 12 count source selection bit is " 0 ".
(2) After the clock is restarted, a delay of approximately 16 ms occurs in low-speed mode if Timer 12 count source selection bit is " 1 ".

6 : Wait until oscillation stabilizes after oscillating the main clock XIN before the switching from the low-speed mode to middle/high-speed mode.
7: When the mode is switched to the middle-speed mode by the middle-speed mode automatic switch set bit of MISRG, the waiting time set by the middle-speed mode automatic switch wait time set bit is automatically generated, and then the mode is switched to the middlespeed mode.
8 : The example assumes that 8 MHz is being applied to the XIN pin and 32 kHz to the XCIN pin. ϕ indicates the internal clock.

Fig. 56 State transitions of system clock

FLASH MEMORY MODE

The M38507F8 (flash memory version) has an internal new DINOR (Dlvided bit line NOR) flash memory that can be rewritten with a single power source when Vcc is 5 V , and 2 power sources when VPP is 5 V and Vcc is $3.0-5.5 \mathrm{~V}$ in the CPU rewrite and standard serial I/O modes.
For this flash memory, three flash memory modes are available in which to read, program, and erase: the parallel I/O and standard serial I/O modes in which the flash memory can be manipulated using a programmer and the CPU rewrite mode in which the flash memory can be manipulated by the Central Processing Unit (CPU).

Summary

Table 11 lists the summary of the M38507F8 (flash memory version).
The flash memory of the M38507F8 is divided into User ROM area and Boot ROM area as shown in Figure 57.
In addition to the ordinary User ROM area to store the MCU operation control program, the flash memory has a Boot ROM area that is used to store a program to control rewriting in CPU rewrite and standard serial I/O modes. This Boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. However, the user can write a rewrite control program in this area that suits the user's application system. This Boot ROM area can be rewritten in only parallel I/O mode.

Table 11 Summary of M38507F8 (flash memory version)

Item	
Power source voltage	Vcc $=2.7-5.5 \mathrm{~V}$ (Note 1) Vcc $=2.7-3.6 \mathrm{~V}$ (Note 2)
	$4.5-5.5 \mathrm{~V}$
Flash memory mode	3 modes (Parallel I/O mode, Standard serial I/O mode, CPU rewrite mode)
Erase block division	User ROM area
	Boot ROM area
Program method	1 block (32 Kbytes)
Erase method	Byte program
Program/Erase control method	Batch erasing
Number of commands	Program/Erase control by software command
Number of program/Erase times	6 commands
ROM code protection	100 times

Notes 1: The power source voltage must be $\mathrm{Vcc}=4.5-5.5 \mathrm{~V}$ at program and erase operation.
2: The power source voltage can be $\mathrm{Vcc}=3.0-3.6 \mathrm{~V}$ also at program and erase operation.
3: The Boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the factory. This Boot ROM area can be rewritten in only parallel I/O mode.

(1) CPU Rewrite Mode

In CPU rewrite mode, the internal flash memory can be operated on (read, program, or erase) under control of the Central Processing Unit (CPU).
In CPU rewrite mode, only the User ROM area shown in Figure 57 can be rewritten; the Boot ROM area cannot be rewritten. Make sure the program and block erase commands are issued for only the User ROM area and each block area.
The control program for CPU rewrite mode can be stored in either User ROM or Boot ROM area. In the CPU rewrite mode, because the flash memory cannot be read from the CPU, the rewrite control program must be transferred to internal RAM area to be executed before it can be executed.

Microcomputer Mode and Boot Mode

The control program for CPU rewrite mode must be written into the User ROM or Boot ROM area in parallel I/O mode beforehand. (If the control program is written into the Boot ROM area, the standard serial I/O mode becomes unusable.)
See Figure 57 for details about the Boot ROM area.
Normal microcomputer mode is entered when the microcomputer is reset with pulling CNVss pin low. In this case, the CPU starts operating using the control program in the User ROM area.
When the microcomputer is reset by pulling the $\mathrm{P} 41 / \mathrm{INT} 0$ pin high, the CNVss pin high, the CPU starts operating using the control program in the Boot ROM area (program start address is FFFC_{16}, FFFD16 fixation). This mode is called the "Boot" mode.

Block Address

Block addresses refer to the maximum address of each block. These addresses are used in the block erase command. In case of the M38507F8, it has only one block.

Fig. 57 Block diagram of built-in flash memory

Outline Performance (CPU Rewrite Mode)

CPU rewrite mode is usable in the single-chip or Boot mode. The only User ROM area can be rewritten in CPU rewrite mode.
In CPU rewrite mode, the CPU erases, programs and reads the internal flash memory by executing software commands. This rewrite control program must be transferred to the RAM before it can be executed.
The MCU enters CPU rewrite mode by applying $5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ to the CNVss pin and setting " 1 " to the CPU Rewrite Mode Select Bit (bit 1 of address 0FFE16). Software commands are accepted once the mode is entered.
Use software commands to control program and erase operations. Whether a program or erase operation has terminated normally or in error can be verified by reading the status register.

Figure 58 shows the flash memory control register.
Bit 0 is the RY/BY status flag used exclusively to read the operating status of the flash memory. During programming and erase operations, it is " 0 " (busy). Otherwise, it is " 1 " (ready).
Bit 1 is the CPU Rewrite Mode Select Bit. When this bit is set to " 1 ", the MCU enters CPU rewrite mode. Software commands are accepted once the mode is entered. In CPU rewrite mode, the CPU becomes unable to access the internal flash memory directly.

Therefore, use the control program in the RAM for write to bit 1 . To set this bit to " 1 ", it is necessary to write " 0 " and then write " 1 " in succession. The bit can be set to " 0 " by only writing " 0 ".
Bit 2 is the CPU Rewrite Mode Entry Flag. This flag indicates " 1 " in CPU rewrite mode, so that reading this flag can check whether CPU rewrite mode has been entered or not.
Bit 3 is the flash memory reset bit used to reset the control circuit of internal flash memory. This bit is used when exiting CPU rewrite mode and when flash memory access has failed. When the CPU Rewrite Mode Select Bit is " 1 ", setting " 1 " for this bit resets the control circuit. To set this bit to " 1 ", it is necessary to write " 0 " and then write " 1 " in succession. To release the reset, it is necessary to set this bit to "0".
Bit 4 is the User Area/Boot Area Select Bit. When this bit is set to "1", Boot ROM area is accessed, and CPU rewrite mode in Boot ROM area is available. In Boot mode, this bit is set to " 1 " automatically. Reprogramming of this bit must be in the RAM.
Figure 59 shows a flowchart for setting/releasing CPU rewrite mode.

Flash memory control register (address 0FFE16) (Note 1)
FMCR
$\mathrm{RY} / \overline{\mathrm{BY}}$ status flag
0 : Busy (being programmed or erased)
1: Ready
CPU rewrite mode select bit (Note 2)
0 : Normal mode (Software commands invalid)
1: CPU rewrite mode (Software commands acceptable)
CPU rewrite mode entry flag
0 : Normal mode
1: CPU rewrite mode
Flash memory reset bit (Note 3)
0 : Normal operation
1: Reset
User ROM area / Boot ROM area select bit (Note 4) 0 : User ROM area accessed
1: Boot ROM area accessed
Reserved bits (Indefinite at read/ "0" at write)
Notes 1: The contents of flash memory control register are "XXX00001" just after reset release. In the mask ROM version, this address is reserved area.
2: For this bit to be set to " 1 ", the user needs to write " 0 " and then " 1 " to it in succession. If it is not this procedure, this bit will not be set to " 1 ". Additionally, it is required to ensure that no interrupt will be generated during that interval.
Use the control program in the area except the built-in flash memory for write to this bit.
3: This bit is valid when the CPU rewrite mode select bit is " 1 ". Set this bit 3 to " 0 " subsequently after setting bit 3 to " 1 ".
4: Use the control program in the area except the built-in flash memory for write to this bit.

Fig. 58 Structure of flash memory control register

Notes 1: When starting the MCU in the single-chip mode, supply 4.5 V to 5.25 V to the CNVss pin until checking the CPU rewrite mode entry flag.
2: Set bits 6, 7 (main clock division ratio selection bits) at CPU mode register (003B16).
3: Before exiting the CPU rewrite mode after completing erase or program operation, always be sure to execute the read array command or reset the flash memory.

Fig. 59 CPU rewrite mode set/release flowchart

Precautions on CPU Rewrite Mode

Described below are the precautions to be observed when rewriting the flash memory in CPU rewrite mode.

(1) Operation speed

During CPU rewrite mode, set the internal clock frequency 6.25 MHz or less using the main clock division ratio selection bits (bit 6, 7 at 003B16).
(2) Instructions inhibited against use

The instructions which refer to the internal data of the flash memory cannot be used during CPU rewrite mode .
(3) Interrupts inhibited against use

The interrupts cannot be used during CPU rewrite mode because they refer to the internal data of the flash memory.

(4) Watchdog timer

In case of the watchdog timer has been running already, the internal reset generated by watchdog timer underflow does not happen, because of watchdog timer is always clearing during program or erase operation.
(5) Reset

Reset is always valid. In case of CNVss $=\mathrm{H}$ when reset is released, boot mode is active. So the program starts from the address contained in address FFFC16 and FFFD16 in boot ROM area.

Software Commands (CPU Rewrite Mode)

Table 12 lists the software commands.
After setting the CPU Rewrite Mode Select Bit of the flash memory control register to " 1 ", execute a software command to specify an erase or program operation.
Each software command is explained below.

-Read Array Command (FF16)

The read array mode is entered by writing the command code "FF16" in the first bus cycle. When an address to be read is input in one of the bus cycles that follow, the contents of the specified address are read out at the data bus (D0 to D7).
The read array mode is retained intact until another command is written.

- Read Status Register Command (7016)

The read status register mode is entered by writing the command code " 7016 " in the first bus cycle. The contents of the status register are read out at the data bus (D0 to D7) by a read in the second bus cycle.
The status register is explained in the next section.

- Clear Status Register Command (5016)

This command is used to clear the bits SR1, SR4, and SR5 of the status register after they have been set. These bits indicate that operation has ended in an error. To use this command, write the command code " 5016 " in the first bus cycle.

-Program Command (4016)

Program operation starts when the command code " 4016 " is written in the first bus cycle. Then, if the address and data to program are written in the 2nd bus cycle, program operation (data programming and verification) will start.
Whether the write operation is completed can be confirmed by reading the status register or the RY/BY Status Flag of the flash memory control register. When the program starts, the read status
register mode is entered automatically and the contents of the status register is read at the data bus (Do to D7). The status register bit 7 (SR7) is set to " 0 " at the same time the write operation starts and is returned to " 1 " upon completion of the write operation. In this case, the read status register mode remains active until the next command is written.
The RY/BY Status Flag is " 0 " (busy) during write operation and " 1 " (ready) when the write operation is completed as is the status register bit 7.
At program end, program results can be checked by reading bit 4 (SR4) of the status register.

Fig. 60 Program flowchart

Table 12 List of software commands (CPU rewrite mode)

Command	Cycle number	First bus cycle			Second bus cycle		
		Mode	Address	$\begin{gathered} \text { Data } \\ \text { (Do to D7) } \end{gathered}$	Mode	Address	$\begin{gathered} \text { Data } \\ \left(\mathrm{D}_{0} \text { to } \mathrm{D}_{7}\right) \end{gathered}$
Read array	1	Write	X (Note 1)	FF16			
Read status register	2	Write	X	7016	Read	X	SRD (Note 2)
Clear status register	1	Write	X	5016			
Program	2	Write	X	4016	Write	WA (Note 3)	WD (Note 3)
Erase all blocks	2	Write	X	2016	Write	X	2016
Block erase	2	Write	X	2016	Write	BA (Note 4)	D016

Notes 1: X denotes a given address in the User ROM area.
2: SRD = Status Register Data
3: $W A=$ Write Address, WD = Write Data
4: BA = Block Address to be erased (Input the maximum address of each block.)

-Erase All Blocks Command (2016/2016)

By writing the command code " 2016 " in the first bus cycle and the confirmation command code "2016" in the second bus cycle that follows, the operation of erase all blocks (erase and erase verify) starts.
Whether the erase all blocks command is terminated can be confirmed by reading the status register or the RY/BY Status Flag of flash memory control register. When the erase all blocks operation starts, the read status register mode is entered automatically and the contents of the status register can be read out at the data bus (Do to D7). The status register bit 7 (SR7) is set to "0" at the same time the erase operation starts and is returned to " 1 " upon completion of the erase operation. In this case, the read status register mode remains active until another command is written.
The RY/BY Status Flag is " 0 " during erase operation and " 1 " when the erase operation is completed as is the status register bit 7 (SR7).
After the erase all blocks end, erase results can be checked by reading bit 5 (SRS) of the status register. For details, refer to the section where the status register is detailed.

-Block Erase Command (2016/D016)

By writing the command code " 2016 " in the first bus cycle and the confirmation command code "D016" and the blobk address in the second bus cycle that follows, the block erase (erase and erase verify) operation starts for the block address of the flash memory to be specified.
Whether the block erase operation is completed can be confirmed by reading the status register or the RY/BY Status Flag of flash memory control register. At the same time the block erase operation starts, the read status register mode is automatically entered, so that the contents of the status register can be read out. The status register bit 7 (SR7) is set to " 0 " at the same time the block erase operation starts and is returned to " 1 " upon completion of the block erase operation. In this case, the read status register mode remains active until the read array command (FF16) is written.
The RY/BY Status Flag is "0" during block erase operation and "1" when the block erase operation is completed as is the status register bit 7.
After the block erase ends, erase results can be checked by reading bit 5 (SRS) of the status register. For details, refer to the section where the status register is detailed.

Fig. 61 Erase flowchart

Status Register (SRD)

The status register shows the operating status of the flash memory and whether erase operations and programs ended successfully or in error. It can be read in the following ways:
(1) By reading an arbitrary address from the User ROM area after writing the read status register command (7016)
(2) By reading an arbitrary address from the User ROM area in the period from when the program starts or erase operation starts to when the read array command (FF16) is input.

Also, the status register can be cleared by writing the clear status register command (5016).
After reset, the status register is set to " 8016 ".
Table 13 shows the status register. Each bit in this register is explained below.

-Sequencer status (SR7)

The sequencer status indicates the operating status of the flash memory. This bit is set to " 0 " (busy) during write or erase operation and is set to " 1 " when these operations ends.
After power-on, the sequencer status is set to " 1 " (ready).

-Erase status (SR5)

The erase status indicates the operating status of erase operation. If an erase error occurs, it is set to "1". When the erase status is cleared, it is set to " 0 ".

-Program status (SR4)

The program status indicates the operating status of write operation. When a write error occurs, it is set to " 1 ".
The program status is set to " 0 " when it is cleared.

If " 1 " is written for any of the SR5 and SR4 bits, the program, erase all blocks, and block erase commands are not accepted. Before executing these commands, execute the clear status register command (5016) and clear the status register.
Also, if any commands are not correct, both SR5 and SR4 are set to "1".

Table 13 Definition of each bit in status register (SRD)

Symbol	Status name	Definition	
		"1"	"0"
SR7 (bit7)	Sequencer status	Ready	Busy
SR6 (bit6)	Reserved	-	-
SR5 (bit5)	Erase status	Terminated in error	Terminated normally
SR4 (bit4)	Program status	Terminated in error	Terminated normally
SR3 (bit3)	Reserved	-	-
SR2 (bit2)	Reserved	-	-
SR1 (bit1)	Reserved	-	-
SR0 (bit0)	Reserved	-	-

Full Status Check

By performing full status check, it is possible to know the execution results of erase and program operations. Figure 62 shows a
full status check flowchart and the action to be taken when each error occurs.

Note: When one of SR5 and SR4 is set to " 1 ", none of the read array, the program, erase all blocks, and block erase commands is accepted. Execute the clear status register command (5016) before executing these commands.

Fig. 62 Full status check flowchart and remedial procedure for errors

Functions To Inhibit Rewriting Flash Memory Version

To prevent the contents of internal flash memory from being read out or rewritten easily, this MCU incorporates a ROM code protect function for use in paralle I/O mode and an ID code check function for use in standard serial I/O mode.

-ROM Code Protect Function (in Parallel I/O Mode)

The ROM code protect function is the function to inhibit reading out or modifying the contents of internal flash memory by using the ROM code protect control (address FFDB16) in parallel I/O mode. Figure 63 shows the ROM code protect control (address FFDB16). (This address exists in the User ROM area.)
If one or both of the pair of ROM Code Protect Bits is set to " 0 ",
the ROM code protect is turned on, so that the contents of internal flash memory are protected against readout and modification. The ROM code protect is implemented in two levels. If level 2 is selected, the flash memory is protected even against readout by a shipment inspection LSI tester, etc. When an attempt is made to select both level 1 and level 2 , level 2 is selected by default. If both of the two ROM Code Protect Reset Bits are set to " 00 ", the ROM code protect is turned off, so that the contents of internal flash memory can be read out or modified. Once the ROM code protect is turned on, the contents of the ROM Code Protect Reset Bits cannot be modified in parallel I/O mode. Use the serial I/O or CPU rewrite mode to rewrite the contents of the ROM Code Protect Reset Bits.

Notes 1: This area is on the ROM in the mask ROM version.
2: When ROM code protect is turned on, the internal flash memory is protected against readout or modification in parallel I/O mode.
3. When ROM code protect level 2 is turned on, ROM code readout by a shipment inspection LSI tester, etc. also is inhibited.
4: The ROM code protect reset bits can be used to turn off ROM code protect level 1 and ROM code protect level 2. However, since these bits cannot be modified in parallel I/O mode, they need to be rewritten in standard serial I/O mode or CPU rewrite mode.

Fig. 63 Structure of ROM code protect control

ID Code Check Function (in Standard serial I/O mode)

Use this function in standard serial I/O mode. When the contents of the flash memory are not blank, the ID code sent from the programmer is compared with the ID code written in the flash memory to see if they match. If the ID codes do not match, the commands sent from the programmer are not accepted. The ID code consists of 8-bit data, and its areas are FFD416 to FFDA16. Write a program which has had the ID code preset at these addresses to the flash memory.

Fig. 64 ID code store addresses

(2) Parallel I/O Mode

Parallel I/O mode is the mode which parallel output and input software command, address, and data required for the operations (read, program, erase, etc.) to a built-in flash memory. Use the exclusive external equipment flash programmer which supports the 3850 Group (flash memory version). Refer to each programmer maker's handling manual for the details of the usage.

User ROM and Boot ROM Areas

In parallel I/O mode, the user ROM and boot ROM areas shown in Figure 57 can be rewritten. Both areas of flash memory can be operated on in the same way.
Program and block erase operations can be performed in the user ROM area. The user ROM area and its block is shown in Figure 57.
The boot ROM area is 4 Kbytes in size. It is located at addresses F00016 through FFFF16. Make sure program and block erase operations are always performed within this address range. (Access to any location outside this address range is prohibited.)
In the Boot ROM area, an erase block operation is applied to only one 4 Kbyte block. The boot ROM area has had a standard serial I/O mode control program stored in it when shipped from the Mitsubishi factory. Therefore, using the device in standard serial I/O mode, you do not need to write to the boot ROM area.

(3) Standard serial I/O Mode

The standard serial I/O mode inputs and outputs the software commands, addresses and data needed to operate (read, program, erase, etc.) the internal flash memory. This I/O is clock synchronized serial. This mode requires the exclusive external equipment (serial programmer).
The standard serial I/O mode is different from the parallel I/O mode in that the CPU controls flash memory rewrite (uses the CPU rewrite mode), rewrite data input and so forth. The standard serial I/O mode is started by connecting "H" to the P26 (SCLK1) pin and "H" to the P41 (INTo) pin and "H" to the CNVss pin (apply 4.5 V to 5.5 V to Vpp from an external source), and releasing the reset operation. (In the ordinary microcomputer mode, set CNVss pin to "L" level.)
This control program is written in the Boot ROM area when the product is shipped from Mitsubishi. Accordingly, make note of the fact that the standard serial I/O mode cannot be used if the Boot ROM area is rewritten in parallel I/O mode. Figure 65 shows the pin connection for the standard serial I/O mode.
In standard serial I/O mode, serial data I/O uses the four serial I/O pins Sclk1, RxD, TxD and $\overline{\text { SRDY1 }}$ (BUSY). The Sclk1 pin is the transfer clock input pin through which an external transfer clock is input. The TxD pin is for CMOS output. The SRDY1 (BUSY) pin outputs "L" level when ready for reception and "H" level when reception starts.
Serial data I/O is transferred serially in 8-bit units.
In standard serial I/O mode, only the User ROM area shown in Figure 44 can be rewritten. The Boot ROM area cannot.
In standard serial I/O mode, a 7-byte ID code is used. When there is data in the flash memory, commands sent from the peripheral unit (programmer) are not accepted unless the ID code matches.

Outline Performance (Standard Serial I/O Mode)

In standard serial I/O mode, software commands, addresses and data are input and output between the MCU and peripheral units (serial programmer, etc.) using 4-wire clock-synchronized serial I/O (serial I/O1).
In reception, software commands, addresses and program data are synchronized with the rise of the transfer clock that is input to the SCLK1 pin, and are then input to the MCU via the RxD pin. In transmission, the read data and status are synchronized with the fall of the transfer clock, and output from the TxD pin.
The TxD pin is for CMOS output. Transfer is in 8-bit units with LSB first.
When busy, such as during transmission, reception, erasing or program execution, the $\overline{\text { SRDY1 }}$ (BUSY) pin is "H" level. Accordingly, always start the next transfer after the $\overline{\text { SRDY1 }_{1}}$ (BUSY) pin is "L" level.
Also, data and status registers in a memory can be read after inputting software commands. Status, such as the operating state of the flash memory or whether a program or erase operation ended successfully or not, can be checked by reading the status register. Here following explains software commands, status registers, etc.

Table 14 Description of pin function (Standard Serial I/O Mode)

Pin	Name	I/O	Description
Vcc, Vss	Power input		Apply program/erase protection voltage to Vcc pin and 0 V to Vss pin.
CNVss	CNVss	1	Connect to Vcc when $\mathrm{Vcc}=4.5 \mathrm{~V}$ to 5.5 V . Connect to $\mathrm{Vpp}(=4.5 \mathrm{~V}$ to 5.5 V) when $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 4.5 V .
RESET	Reset input	1	Reset input pin. While reset is " L " level, a 20 cycle or longer clock must be input to XIN pin.
XIN	Clock input	1	Connect a ceramic resonator or crystal oscillator between XIN and
Xout	Clock output	0	and open Xout pin.
AVss	Analog power supply input		Connect AVss to Vss .
Vref	Reference voltage input	I	Enter the reference voltage for AD from this pin.
P0o to P07	Input port P0	I	Input "H" or "L" level signal or open.
P10 to P17	Input port P1	I	Input "H" or "L" level signal or open.
P20 to P23	Input port P2	1	Input "H" or "L" level signal or open.
P24	RxD input	1	Serial data input pin
P25	TxD output	0	Serial data output pin
P26	Sclk1 input	1	Serial clock input pin
P27	BUSY output	O	BUSY signal output pin
P30 to P34	Input port P3	1	Input "H" or "L" level signal or open.
P40, P42 to P44	Input port P4	1	Input "H" or "L" level signal or open.
P41	Input port P4	1	Input "H" level signal, when reset is released.

Mode setup method	
Signal Value CNVss 4.5 to 5.5 V P41 Vcc $* 3$ ScLK1 Vcc $* 3$ $\overline{\text { RESET }}$ Vss \rightarrow Vcc	

Notes 1: Connect oscillator circuit
2: Connect to Vcc when $\mathrm{Vcc}=4.5 \mathrm{~V}$ to 5.5 V .
Connect to VPP ($=4.5 \mathrm{~V}$ to 5.5 V) when $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 4.5 V . 3: It is necessary to apply Vcc only when reset is released.

Fig. 65 Pin connection diagram in standard serial I/O mode

Software Commands (Standard Serial I/O Mode)

Table 15 lists software commands. In standard serial I/O mode, erase, program and read are controlled by transferring software
commands via the RxD pin. Software commands are explained here below.

Table 15 Software commands (Standard serial I/O mode)

	Control command	1st byte transfer	2nd byte	3rd byte	4th byte	5th byte	6th byte	$\ldots . .$.	When ID is not verified
1	Page read	FF16	Address (middle)	Address (high)	Data output	Data output	Data output	Data output to 259th byte	Not acceptable
2	Page program	4116	Address (middle)	Address (high)	Data input	Data input	Data input	Data input to 259th byte	Not acceptable
3	Erase all blocks	A716	D016						Not acceptable
4	Read status register	7016	SRD output	SRD1 output					Acceptable
5	Clear status register	5016						Not acceptable	
6	ID code check	F516	Address (low)	Address (middle)	Address (high)	ID size	ID1	To ID7	Acceptable
7	Download function	FA16	Size (low)	Size (high)	Check- sum	Data input	To required number of times		Not acceptable
8	Version data output function	FB16	Version data output	Version data output to 9th byte	Acceptable				

Notes1: Shading indicates transfer from the internal flash memory microcomputer to a programmer. All other data is transferred from an external equipment (programmer) to the internal flash memory microcomputer.
2: SRD refers to status register data. SRD1 refers to status register 1 data.
3: All commands can be accepted when the flash memory is totally blank.
4: Address high must be " 0016 ".

-Page Read Command

This command reads the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page read command as explained here following.
(1) Transfer the "FF16" command code with the 1st byte.
(2) Transfer addresses A8 to A15 and A16 to A23 with the 2nd and 3rd bytes respectively.
(3) From the 4th byte onward, data (Do to D7) for the page (256 bytes) specified with addresses A8 to A23 will be output sequentially from the smallest address first synchronized with the fall of the clock.

Fig. 66 Timing for page read

-Read Status Register Command

This command reads status information. When the "7016" command code is transferred with the 1st byte, the contents of the status register (SRD) with the 2nd byte and the contents of status register 1 (SRD1) with the 3rd byte are read.

Fig. 67 Timing for reading status register

- Clear Status Register Command

This command clears the bits (SR4, SR5) which are set when the status register operation ends in error. When the "5016" command code is sent with the 1st byte, the aforementioned bits are cleared. When the clear status register operation ends, the $\overline{\text { SRDY1 }}$ (BUSY) signal changes from " H " to " L " level.

Fig. 68 Timing for clear status register

-Page Program Command

This command writes the specified page (256 bytes) in the flash memory sequentially one byte at a time. Execute the page program command as explained here following.
(1) Transfer the " 4116 " command code with the 1 st byte.
(2) Transfer addresses A8 to A15 and A16 to A23 ("0016") with the 2nd and 3rd bytes respectively.
(3) From the 4th byte onward, as write data (D0 to D7) for the page (256 bytes) specified with addresses $A 8$ to $A 23$ is input sequentially from the smallest address first, that page is automatically written.

When reception setup for the next 256 bytes ends, the $\overline{\text { SRDY1 }}$ (BUSY) signal changes from " H " to " L " level. The result of the page program can be known by reading the status register. For more information, see the section on the status register.

Fig. 69 Timing for page program

- Erase All Blocks Command

This command erases the contents of all blocks. Execute the erase all blocks command as explained here following.
(1) Transfer the "A716" command code with the 1 st byte.
(2) Transfer the verify command code "D016" with the 2nd byte. With the verify command code, the erase operation will start and continue for all blocks in the flash memory.

When erase all blocks end, the $\overline{\text { SRDY1 }}$ (BUSY) signal changes from "H" to "L" level. The result of the erase operation can be known by reading the status register.

Fig. 70 Timing for erase all blocks

-Download Command

This command downloads a program to the RAM for execution.
Execute the download command as explained here following.
(1) Transfer the "FA16" command code with the 1st byte.
(2) Transfer the program size with the 2nd and 3rd bytes.
(3) Transfer the check sum with the 4th byte. The check sum is added to all data sent with the 5th byte onward.
(4) The program to execute is sent with the 5th byte onward.

When all data has been transmitted, if the check sum matches, the downloaded program is executed. The size of the program will vary according to the internal RAM.

Fig. 71 Timing for download

- Version Information Output Command

This command outputs the version information of the control program stored in the Boot ROM area. Execute the version information output command as explained here following
(1) Transfer the "FB16" command code with the 1st byte.
(2) The version information will be output from the 2nd byte onward.
This data is composed of 8 ASCII code characters.

Fig. 72 Timing for version information output

-ID Check

This command checks the ID code. Execute the boot ID check command as explained here following.
(1) Transfer the "F516" command code with the 1st byte.
(2) Transfer addresses A0 to A7, A8 to A15 and A16 to A23 ("0016") of the 1 st byte of the ID code with the 2nd, 3rd, and 4th bytes respectively.
(3) Transfer the number of data sets of the ID code with the 5th byte.
(4) Transfer the ID code with the 6th byte onward, starting with the 1st byte of the code.

Fig. 73 Timing for ID check

OID Code

When the flash memory is not blank, the ID code sent from the serial programmer and the ID code written in the flash memory are compared to see if they match. If the codes do not match, the command sent from the serial programmer is not accepted. An ID code contains 8 bits of data. Area is, from the 1st byte, addresses FFD416 to FFDA16. Write a program into the flash memory, which already has the ID code set for these addresses.

Fig. 74 ID code storage addresses

-Status Register (SRD)

The status register indicates operating status of the flash memory and status such as whether an erase operation or a program ended successfully or in error. It can be read by writing the read status register command (7016). Also, the status register is cleared by writing the clear status register command (5016)
Table 16 lists the definition of each status register bit. After releasing the reset, the status register becomes " 8016 ".

-Sequencer status (SR7)

The sequencer status indicates the operating status of the flash memory.
After power-on and recover from deep power down mode, the sequencer status is set to " 1 " (ready)
This status bit is set to " 0 " (busy) during write or erase operation and is set to " 1 " upon completion of these operations.

-Erase status (SR5)

The erase status indicates the operating status of erase operation. If an erase error occurs, it is set to " 1 ". When the erase status is cleared, it is set to " 0 ".

-Program status (SR4)

The program status indicates the operating status of write operation. If a program error occurs, it is set to " 1 ". When the program status is cleared, it is set to " 0 ".

Table 16 Definition of each bit of status register (SRD)

SRD0 bits	Status name	Definition	
		""	"0"
SR7 (bit7)	Reserved	-	Busy
SR6 (bit6)	Erase status	Terminated in error	Terminated normally
SR5 (bit5)	Program status	Terminated in error	Terminated normally
SR4 (bit4)	Reserved	-	-
SR3 (bit3)	Reserved	-	-
SR2 (bit2)	Reserved	-	-
SR1 (bit1)	Reserved	-	-
SR0 (bit0)			

-Status Register 1 (SRD1)

The status register 1 indicates the status of serial communications, results from ID checks and results from check sum comparisons. It can be read after the status register (SRD) by writing the read status register command (7016). Also, status register 1 is cleared by writing the clear status register command (5016).
Table 17 lists the definition of each status register 1 bit. This register becomes "0016" when power is turned on and the flag status is maintained even after the reset.

-Boot update completed bit (SR15)

This flag indicates whether the control program was downloaded to the RAM or not, using the download function.

-Check sum consistency bit (SR12)

This flag indicates whether the check sum matches or not when a program, is downloaded for execution using the download function.

-ID check completed bits (SR11 and SR10)

These flags indicate the result of ID checks. Some commands cannot be accepted without an ID code check.

-Data reception time out (SR9)

This flag indicates when a time out error is generated during data reception. If this flag is attached during data reception, the received data is discarded and the MCU returns to the command wait state.

Table 17 Definition of each bit of status register 1 (SRD1)

SRD1 bits	Status name		Definition	
		"1"	"0"	
SR15 (bit7)	Boot update completed bit	Update completed	Not Update	
SR14 (bit6)	Reserved	-	-	
SR13 (bit5)	Reserved	-	-	
SR12 (bit4)	Checksum match bit	Match	Mismatch	
SR11 (bit3)	ID check completed bits	00	Not verified	
SR10 (bit2)		01	Verification mismatch	
		10	Reserved	
		11	Verified	
SR9 (bit1)	Data reception time out	Time out	Normal operation	
SR8 (bit0)	Reserved	-	-	

Full Status Check

Results from executed erase and program operations can be known by running a full status check. Figure 75 shows a flowchart of the full status check and explains how to remedy errors which occur.

Note: When one of SR5 to SR4 is set to "1", none of the program, erase all blocks commands is accepted. Execute the clear status register command (5016) before executing these commands.

Fig. 75 Full status check flowchart and remedial procedure for errors

Example Circuit Application for Standard Serial I/O Mode

Figure 76 shows a circuit application for the standard serial I/O mode. Control pins will vary according to a programmer, therefore see a programmer manual for more information.

Notes 1: Control pins and external circuitry will vary according to peripheral unit. For more information, see the peripheral unit manual.
2: In this example, the Vpp power supply is supplied from an external source (writer). To use the user's power source, connect to 4.5 V to 5.5 V .
3: It is necessary to apply Vcc to ScLK1 pin only when reset is released.

Fig. 76 Example circuit application for standard serial I/O mode

Flash memory Electrical characteristics

Table 18 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage	All voltages are based on Vss. Output transistors are cut off.	-0.3 to 6.5	V
VI	$\begin{array}{ll}\text { Input voltage } & \mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20, \mathrm{P} 21, \\ & \mathrm{P} 24-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 34, \mathrm{P} 40-\mathrm{P} 44, \\ & \text { VREF }\end{array}$		-0.3 to Vcc +0.3	V
VI	Input voltage P22, P23		-0.3 to 5.8	V
VI	Input voltage RESET, XIN		-0.3 to Vcc +0.3	V
VI	Input voltage CNVSS		-0.3 to 6.5	V
Vo	Output voltage $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20, \mathrm{P} 21$, $\mathrm{P} 24-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 34, \mathrm{P} 40-\mathrm{P} 44$, X 0 T		-0.3 to Vcc +0.3	V
Vo	Output voltage P22, P23		-0.3 to 5.8	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1000 (Note)	mW
Topr	Operating temperature		25 ± 5	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note: The rating becomes 300 mW at the 42P2R-A/E package.

Table 19 Flash memory mode Electrical characteristics
($\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=4.5$ to 5.5 V unless otherwise noted)

Symbol	Parameter	Conditions	Limits			Unit
			Min.	Typ.	Max.	
IPP1	VPP power source current (read)	VPP = VCC			100	$\mu \mathrm{A}$
IPP2	VPP power source current (program)	VPP = VCC			60	mA
IPP3	VPP power source current (erase)	VPP = VCC			30	mA
VPP	VPP power source voltage		4.5		5.5	V
Vcc	Vcc power source voltage	Microcomputer mode operation at $\mathrm{Vcc}=2.7$ to 5.5 V	4.5		5.5	V
		Microcomputer mode operation at $\mathrm{Vcc}=2.7$ to 3.6 V	3.0		3.6	V

NOTES ON PROGRAMMING

Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1". After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

- To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute an ADC or SBC instruction. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
- In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is $1 /(n+1)$.

Multiplication and Division Instructions

- The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
- The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:

- The data transfer instruction (LDA, etc.)
- The operation instruction when the index X mode flag (T) is "1"
- The addressing mode which uses the value of a direction register as an index
- The bit-test instruction (BBC or BBS, etc.) to a direction register
- The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a direction register.
Use instructions such as LDM and STA, etc., to set the port direction registers.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the $\overline{\text { SRDY1 }}$ signal, set the transmit enable bit, the receive enable bit, and the $\overline{\mathrm{SRDY1}}$ output enable bit to "1".
Serial I/O1 continues to output the final bit from the TxD pin after transmission is completed.
Sout2 pin for serial I/O2 goes to high impedance after transmission is completed.
When an external clock is used as synchronous clock in serial I/ O1 or serial I/O2, write transmission data to the transmit buffer register or serial I/O2 register while the transfer clock is "H".

A-D Converter

The comparator uses capacitive coupling amplifier whose charge will be lost if the clock frequency is too low.
Therefore, make sure that $f\left(X_{i N}\right)$ in the middle/high-speed mode is at least on 500 kHz during an A-D conversion.
Do not execute the STP instruction during an A-D conversion.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.
The number of cycles required to execute an instruction is shown in the list of machine instructions.
The frequency of the internal clock ϕ is half of the XIN frequency in high-speed mode.

NOTES ON USAGE
 Differences among 3850 group (standard), 3850 group (spec. H), and 3850 group (spec. A)

(1) The absolute maximum ratings of 3850 group (spec. H/A) is smaller than that of 3850 group (standard).
-Power source voltage $\mathrm{Vcc}=-0.3$ to 6.5 V
-CNVss input voltage $\mathrm{VI}=-0.3$ to $\mathrm{Vcc}+0.3 \mathrm{~V}$
(2) The oscillation circuit constants of XIN-Xout, XCIn-Xcout may be some differences between 3850 group (standard) and 3850 group (spec. H/A).
(3) Do not write any data to the reserved area and the reserved bit. (Do not change the contents after rest.)
(4) Fix bit 3 of the CPU mode register to " 1 ".
(5) Be sure to perform the termination of unused pins.

Handling of Source Pins

In order to avoid a latch-up occurrence, connect a capacitor suitable for high frequencies as bypass capacitor between power source pin (Vcc pin) and GND pin (Vss pin) and between power source pin (Vcc pin) and analog power source input pin (AVss pin). Besides, connect the capacitor to as close as possible. For bypass capacitor which should not be located too far from the pins to be connected, a ceramic capacitor of $0.01 \mu \mathrm{~F}-0.1 \mu \mathrm{~F}$ is recommended.

EPROM Version/One Time PROM Version/ Flash Memory Version

The CNVss pin is connected to the internal memory circuit block by a low-ohmic resistance, since it has the multiplexed function to be a programmable power source pin (VPP pin) as well.
To improve the noise reduction, connect a track between CNVss pin and Vss pin or Vcc pin with 1 to $10 \mathrm{k} \Omega$ resistance.
The mask ROM version track of CNVss pin has no operational interference even if it is connected to Vss pin or Vcc pin via a resistor.

Electric Characteristic Differences Among Mask ROM, Flash Memory, and One Time PROM Version MCUs

There are differences in electric characteristics, operation margin, noise immunity, and noise radiation among mask ROM, flash memory, and One Time PROM version MCUs due to the differences in the manufacturing processes.
When manufacturing an application system with the flash memory, One Time PROM version and then switching to use of the mask ROM version, perform sufficient evaluations for the commercial samples of the mask ROM version.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

1. Mask ROM Order Confirmation Form*
2. Mark Specification Form*
3. Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.

DATA REQUIRED FOR One Time PROM PROGRAMMING ORDERS

The following are necessary when ordering a PROM programming service:

1. ROM Programming Confirmation Form*
2. Mark Specification Form* (only special mark with customer's trade mark logo)
3. Data to be programmed to PROM, in EPROM form (three identical copies) or one floppy disk.
*For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology" Homepage Rom ordering (http://www.renesas.com/eng/rom).

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and buitin EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.

Table 20 Programming adapter

Package	Name of Programming Adapter
$42 P 4 B, 42 S 1 B$	PCA4738S-42A
42P2R-A/E	PCA4738F-42A

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 77 is recommended to verify programming.

Caution: The screening temperature is far higher than the storage temperature. Never expose to $150^{\circ} \mathrm{C}$ exceeding 100 hours.

Fig. 77 Programming and testing of One Time PROM version

Electrical characteristics

Absolute maximum ratings

Table 21 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 6.5	V
VI	Input voltage $\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20, \mathrm{P} 21$, $\mathrm{P} 24-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 34, \mathrm{P} 40-\mathrm{P} 44$, VREF	All voltages are based on Vss. Output transistors are cut off.	-0.3 to Vcc +0.3	V
VI	Input voltage P22, P23		-0.3 to 5.8	V
VI	Input voltage RESET, XIN		-0.3 to Vcc +0.3	V
VI	Input voltage CNVss		-0.3 to Vcc +0.3	V
Vo	Output voltage$\mathrm{P} 00-\mathrm{P} 07, \mathrm{P} 10-\mathrm{P} 17, \mathrm{P} 20, \mathrm{P} 21$, $\mathrm{P} 24-\mathrm{P} 27, \mathrm{P} 30-\mathrm{P} 34, \mathrm{P} 40-\mathrm{P} 44$, XOUT		-0.3 to Vcc +0.3	V
Vo	Output voltage P22, P23		-0.3 to 5.8	V
Pd	Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	1000 (Note)	mW
Topr	Operating temperature		-20 to 85	${ }^{\circ} \mathrm{C}$
Tstg	Storage temperature		-40 to 125	${ }^{\circ} \mathrm{C}$

Note: The rating becomes 300 mW at the 42P2R-A/E package.

Recommended operating conditions

Table 22 Recommended operating conditions (1) (spec. H)
(Vcc = 2.7 to $5.5 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter			Limits			Unit
				Min.	Typ.	Max.	
Vcc	Power source voltage	8 MHz (high-	d mode)	4.0	5.0	5.5	V
		8 MHz (midd	eed mode), 4 MHz (high-speed mode)	2.7	5.0	5.5	
Vss	Power source voltage				0		V
Vref	A-D convert reference voltage			2.0		Vcc	V
AVss	Analog power source voltage				0		V
VIA	Analog input voltage	AN0		AVss		Vcc	V
VIH	"H" input voltage	P00	P10-P17, P20-P27, P30-P34, P40-P44	0.8 Vcc		Vcc	V
VIH	"H" input voltage	RES	Xin, CNVss	0.8 Vcc		Vcc	V
VIL	"L" input voltage	P00	P10-P17, P20-P27, P30-P34, P40-P44	0		0.2 Vcc	V
VIL	"L" input voltage	RES	CNVss	0		0.2 Vcc	V
VIL	"L" input voltage	XIN		0		0.16 Vcc	V
$\Sigma \mathrm{IOH}$ (peak)	"H" total peak output current (Note) P00-P07, P10-P17, P30-P34					-80	mA
$\Sigma \mathrm{IOH}$ (peak)	"H" total peak output current (Note) P20, P21, P24-P27, P40-P44					-80	mA
Σ loL(peak)	"L" total peak output current (Note) P00-P07, P30-P34					80	mA
$\Sigma \mathrm{lOL}$ (peak)	"L" total peak output current (Note) P10-P17					120	mA
ミlOL(peak)	"L" total peak output current (Note) P20-P27,P40-P44					80	mA
$\mathrm{\Sigma lOH}(\mathrm{avg})$	"H" total average output current (Note)		P00-P07, P10-P17, P30-P34			-40	mA
$\Sigma \mathrm{IOH}(\mathrm{avg})$	"H" total average output current (Note)		P20, P21, P24-P27, P40-P44			-40	mA
इ OL (avg)	"L" total average output current (Note)		P00-P07, P30-P34			40	mA
EloL(avg)	"L" total average output current (Note)		P10-P17			60	mA
EloL(avg)	"L" total average output current (Note)		P20-P27,P40-P44			40	mA

Note : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Recommended operating conditions
Table 23 Recommended operating conditions (1) (spec. A)
(Vcc $=2.7$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter			Limits			Unit
				Min.	Typ.	Max.	
Vcc	Power source voltage	12.5 MHz (hig	peed mode)	4.0	5.0	5.5	V
		12.5 MHz (m 32 kHz (low-sp	-speed mode), 6 MHz (high-speed mode) d mode)	2.7	5.0	5.5	
Vss	Power source voltage				0		V
VREF	A-D convert reference voltage			2.0		Vcc	V
AVss	Analog power source voltage				0		V
VIA	Analog input voltage	AN0		AVss		Vcc	V
VIH	"H" input voltage	P00	7, P10-P17, P20-P27, P30-P34, P40-P44	0.8Vcc		Vcc	V
VIH	"H" input voltage	RE	Xin, CNVss	0.8Vcc		Vcc	V
VIL	"L" input voltage	P00	7, P10-P17, P20-P27, P30-P34, P40-P44	0		0.2Vcc	V
VIL	"L" input voltage	RE	CNVss	0		0.2 Vcc	V
VIL	"L" input voltage	XIN		0		0.16Voc	V
$\Sigma \mathrm{IOH}$ (peak)	"H" total peak output current (Note) P00-P07, P10-P17, P30-P34					-80	mA
इloh(peak)	"H" total peak output current (Note) P20, P21, P24-P27, P40-P44					-80	mA
ミlOL(peak)	"L" total peak output current (Note) P00-P07, P30-P34					80	mA
ミlOL(peak)	"L" total peak output current (Note) P10-P17					120	mA
£ loL(peak)	"L" total peak output current(Note) P20-P27,P40-P44					80	mA
ElOH(avg)	"H" total average output current (Note)		P00-P07, P10-P17, P30-P34			-40	mA
ElOH(avg)	"H" total average output current (Note)		P20, P21, P24-P27, P40-P44			-40	mA
ElOL(avg)	"L" total average output current (Note)		P00-P07, P30-P34			40	mA
EloL(avg)	"L" total average output current (Note)		P10-P17			60	mA
ElOL(avg)	"L" total average output current (Note)		P20-P27,P40-P44			40	mA

Note : The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms . The total peak current is the peak value of all the currents.

Table 24 Recommended operating conditions (2) (spec. H)
($\mathrm{VCC}=2.7$ to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
IOH (peak)	"H" peak output current	$\begin{aligned} & \text { P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, } \\ & \text { P40-P44 (Note 1) } \end{aligned}$			-10	mA
IOL(peak)	"L" peak output current (Note 1)	P00-P07, P20-P27, P30-P34, P40-P44			10	mA
		P10-P17			20	mA
$\mathrm{IOH}(\mathrm{avg})$	"H" average output current	$\begin{aligned} & \text { P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, } \\ & \text { P40-P44 (Note 2) } \end{aligned}$			-5	mA
IOL(avg)	"L" average output current (Note 2)	P00-P07, P20-P27, P30-P34, P40-P44			5	mA
		P10-P17			15	mA
$f($ XIN $)$	Internal clock oscillation frequency (Vcc = 4.0 to 5.5V) (Note 3)				8	MHz
$f(X I N)$	Internal clock oscillation frequency (Vcc = 2.7 to 5.5V) (Note 3)				4	MHz

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current loL(avg), $\mathrm{loH}(\mathrm{avg})$ are average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Electrical characteristics

Table 25 Electrical characteristics (1) (spec. H)
(VCC = 2.7 to $5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VOH	" H " output voltage$\begin{aligned} & \text { P00-P07, P10-P17, P20, P21, } \\ & \text { P24-P27, P30-P34, P40-P44 } \end{aligned}$(Note)	$\begin{aligned} & \mathrm{IOH}=-10 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$	Vcc-2.0			v
		$\begin{aligned} & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$	Vcc-1.0			V
Vol	$\begin{aligned} & \text { "L" output voltage } \\ & \text { P00-P07, P20-P27, P30-P34, } \\ & \text { P40-P44 } \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \mathrm{IOL}=1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$			1.0	V
VoL	"L" output voltage P10-P17	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$			1.0	V

Note: P25 is measured when the P25/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is " 0 ".

Table 26 Recommended operating conditions (2) (spec. A)
(Vcc = 2.7 to $5.5 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter		Limits			Unit
			Min.	Typ.	Max.	
IOH (peak)	"H" peak output current	$\begin{aligned} & \text { P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, } \\ & \text { P40-P44 (Note 1) } \end{aligned}$			-10	mA
IOL(peak)	"L" peak output current (Note 1)	P00-P07, P20-P27, P30-P34, P40-P44			10	mA
		P10-P17			20	mA
$\mathrm{IOH}(\mathrm{avg})$	"H" average output current	$\begin{aligned} & \text { P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, } \\ & \text { P40-P44 (Note 2) } \end{aligned}$			-5	mA
IOL(avg)	"L" average output current (Note 2)	P00-P07, P20-P27, P30-P34, P40-P44			5	mA
		P10-P17			15	mA
$f(X i N)$	Internal clock oscillation frequency (Vcc $=4.0$ to 5.5 V) (Note 3)				12.5	MHz
$f($ XIN $)$	Internal clock oscillation frequency (Vcc = 2.7 to 4.0 V) (Note 3)				5Vcc-7.5	MHz

Notes 1: The peak output current is the peak current flowing in each port.
2: The average output current $\operatorname{loL}(\mathrm{avg}), \mathrm{IOH}(\mathrm{avg})$ are average value measured over 100 ms .
3: When the oscillation frequency has a duty cycle of 50%.

Electrical characteristics

Table 27 Electrical characteristics (1) (spec. A)
(Vcc = 2.7 to 5.5 V , VSS $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
VOH	" H " output voltage $\begin{aligned} & \text { P00-P07, P10-P17, P20, P21, } \\ & \text { P24-P27, P30-P34, P40-P44 } \end{aligned}$ (Note)	$\begin{aligned} & \mathrm{IOH}=-10 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$	Vcc-2.0			v
		$\begin{aligned} & \mathrm{IOH}=-1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$	Vcc-1.0			V
Vol	"L" output voltage$\begin{aligned} & \text { P00-P07, P20-P27, P30-P34, } \\ & \text { P40-P44 } \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=4.0-5.5 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \hline \mathrm{IOL}=1.0 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \\ & \hline \end{aligned}$			1.0	V
VoL	"L" output voltage P10-P17	$\begin{aligned} & \mathrm{IOL}=20 \mathrm{~mA} \\ & \mathrm{Vcc}=4.0-5.5 \mathrm{~V} \end{aligned}$			2.0	V
		$\begin{aligned} & \mathrm{IOL}=10 \mathrm{~mA} \\ & \mathrm{VCC}=2.7-5.5 \mathrm{~V} \end{aligned}$			1.0	V

Note: P25 is measured when the P25/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is " 0 ".

Table 28 Electrical characteristics (2) (spec.H)
(Vcc =2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
$\mathrm{V}_{\mathrm{T}+-} \mathrm{V}^{-}$	Hysteresis CNTR0, CNTR1, INT0-INT3			0.4		V
$\mathrm{V}_{\text {+ }+ \text { - }} \mathrm{T}^{-}$	Hysteresis RxD, Sclk1, Sclk2, Sin2			0.5		V
	Hysteresis RESET			0.5		V
IIH	```"H" input current P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44```	$\mathrm{VI}=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$
IIH	"H" input current RESET, CNVss	$\mathrm{VI}=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$
IIH	"H" input current XIN	$\mathrm{VI}=\mathrm{Vcc}$		4		$\mu \mathrm{A}$
IIL	$\begin{aligned} & \text { "L" input current } \\ & \text { P00-P07, P10-P17, P20-P27 } \\ & \text { P30-P34, P40-P44 } \end{aligned}$	$\mathrm{VI}=\mathrm{Vss}$			-5.0	$\mu \mathrm{A}$
IIL	"L" input current RESET,CNVss	V I $=\mathrm{V}$ SS			-5.0	$\mu \mathrm{A}$
IIL	"L" input current XIN	$\mathrm{VI}=\mathrm{VSS}$		-4		$\mu \mathrm{A}$
VRam	RAM hold voltage	When clock stopped	2.0		5.5	V

Table 29 Electrical characteristics (2) (spec.A)
(VCC = 2.7 to $5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
V ${ }_{\text {+ }}$ - $\mathrm{V}^{\text {- }}$	Hysteresis CNTRo, CNTR1, INT0-INT3			0.4		V
$\mathrm{V}^{+}+\mathrm{V}^{-}$	Hysteresis RxD, Sclk1, Sclk2, SIN2			0.5		V
VT+-VT-	Hysteresis RESET			0.5		V
IIH	```"H" input current P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44```	$\mathrm{VI}=\mathrm{Vcc}$ Pin floating, Pull-up Transistor "off"			5.0	$\mu \mathrm{A}$
IIH	"H" input current RESET, CNVss	$\mathrm{VI}=\mathrm{Vcc}$			5.0	$\mu \mathrm{A}$
IIH	"H" input current XIN	$\mathrm{VI}=\mathrm{Vcc}$		4		$\mu \mathrm{A}$
IIL	$\begin{aligned} & \text { "L" input current } \\ & \text { P00-P07, P10-P17, P20-P27 } \\ & \text { P30-P34, P40-P44 } \end{aligned}$	$\mathrm{VI}=\mathrm{VsS}$ Pin floating, Pull-up Transistor "off"			-5.0	$\mu \mathrm{A}$
IIL	"L" input current RESET,CNVSs	$\mathrm{VI}=\mathrm{VSS}$			-5.0	$\mu \mathrm{A}$
IIL	"L" input current XIN	$\mathrm{VI}=\mathrm{VSS}$		-4		$\mu \mathrm{A}$
IIL	```"L" input current (at Pull-up) P00-P07, P10-P17, P20-P27 P30-P34, P40-P44```	$\begin{aligned} & \mathrm{VI}=\mathrm{VSS} \\ & \mathrm{Vcc}=5.0 \mathrm{~V} \end{aligned}$	-25	-65	-120	$\mu \mathrm{A}$
		$\begin{aligned} \mathrm{VI} & =\mathrm{VSS} \\ \mathrm{VI} & =3.0 \mathrm{~V} \end{aligned}$	-8	-22	-40	$\mu \mathrm{A}$
VRAM	RAM hold voltage	When clock stopped	2.0		5.5	V

Table 30 Electrical characteristics (3) (spec. H)
(Vcc = 2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
ICC	Power source current	High-speed mode $\mathrm{f}(\mathrm{X}(\mathrm{~N})=8 \mathrm{MHz}$ $f(\mathrm{XCIN})=32.768 \mathrm{kHz}$ Output transistors "off"			6.8	13	mA
		High-speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state) $f(X C I N)=32.768 \mathrm{kHz}$ Output transistors "off"			1.6		mA
		Low-speed mode f(XIN) = stopped $f($ XCIN $)=32.768 \mathrm{kHz}$ Output transistors "off"	Except M38507F8FP/SP		60	200	$\mu \mathrm{A}$
			M38507F8FP/SP		250		$\mu \mathrm{A}$
		Low-speed mode f(XIN) = stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ (in WIT state) Output transistors "off"	Except M38507F8FP/SP		20	40	$\mu \mathrm{A}$
			M38507F8FP/SP		70		$\mu \mathrm{A}$
		Low-speed mode (Vcc = 3 V) $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ Output transistors "off"	$\begin{aligned} & \text { Except } \\ & \text { M38507F8FP/SP } \end{aligned}$		20	55	$\mu \mathrm{A}$
			M38507F8FP/SP		150		$\mu \mathrm{A}$
		Low-speed mode (VcC = 3 V) $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ (in WIT state) Output transistors "off"	$\begin{aligned} & \text { Except } \\ & \text { M38507F8FP/SP } \end{aligned}$		5.0	10.0	$\mu \mathrm{A}$
			M38507F8FP/SP		20		$\mu \mathrm{A}$
		$\begin{aligned} & \text { Middle-speed mode } \\ & \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz} \\ & \mathrm{f}(\mathrm{XCIN})=\text { stopped } \\ & \text { Output transistors "off" } \end{aligned}$			4.0	7.0	mA
		Middle-speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state) $f($ XCIN $)=$ stopped Output transistors "off"			1.5		mA
		Increment when A-D conversion is executed $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$			800		$\mu \mathrm{A}$
		All oscillation stopped (in STP state) Output transistors "off"	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$\mathrm{Ta}=85{ }^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$

Table 31 Electrical characteristics (3) (spec. A)
(VCC = 2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions		Limits			Unit
				Min.	Typ.	Max.	
ICC	Power source current	High-speed mode $\mathrm{f}(\mathrm{X} \mathrm{IN})=12.5 \mathrm{MHz}$ $f(\mathrm{XCIN})=32.768 \mathrm{kHz}$ Output transistors "off"	Except M38507F8FP/SP		6.5	13.0	mA
			M38507F8FP/SP		7.5	15.0	mA
		High-speed mode $\begin{aligned} & f(\mathrm{XIN})=8 \mathrm{MHz} \\ & f(\mathrm{XCIN})=32.768 \mathrm{kHz} \end{aligned}$ Output transistors "off"	Except M38507F8FP/SP		5.0	10	mA
			M38507F8FP/SP		6.8	13	mA
		$\begin{aligned} & \text { High-speed mode } \\ & \mathrm{f}(\mathrm{XIN})=12.5 \mathrm{MHz} \text { (in WIT state) } \\ & \mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz} \\ & \text { Output transistors "off" } \end{aligned}$			1.6	4.5	mA
		High-speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state) $f($ XCIN $)=32.768 \mathrm{kHz}$ Output transistors "off"			1.6	4.2	mA
		Middle-speed mode $f(X I N)=12.5 \mathrm{MHz}$ $f($ XCIN $)=$ stopped Output transistors "off"	Except M38507F8FP/SP		4.0	7.0	mA
			M38507F8FP/SP		4.0	8.5	mA
		Middle-speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ $f($ XCIN $)=$ stopped Output transistors "off"	Except M38507F8FP/SP		3.0	6.5	mA
			M38507F8FP/SP		3.0	7.0	mA
		Middle-speed mode $\mathrm{f}(\mathrm{XIN})=12.5 \mathrm{MHz}$ (in WIT state) $f($ XCIN $)=$ stopped Output transistors "off"			1.5	4.2	mA
		Middle-speed mode $\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state) $f($ XCIN $)=$ stopped Output transistors "off"			1.5	4.0	mA
		Low-speed mode $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ Output transistors "off"	Except M38507F8FP/SP		60	200	$\mu \mathrm{A}$
			M38507F8FP/SP		250	500	$\mu \mathrm{A}$
		Low-speed mode f(XIN) = stopped $f(X C I N)=32.768 \mathrm{kHz}$ (in WIT state) Output transistors "off"	Except M38507F8FP/SP		40	70	$\mu \mathrm{A}$
			M38507F8FP/SP		70	150	$\mu \mathrm{A}$
		Low-speed mode (VcC = 3 V) $f(\text { XIN })=\text { stopped }$ $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ Output transistors "off"	Except M38507F8FP/SP		20	55	$\mu \mathrm{A}$
			M38507F8FP/SP		150	300	$\mu \mathrm{A}$
		Low-speed mode (VcC = 3 V) $\mathrm{f}(\mathrm{XIN})=$ stopped $\mathrm{f}(\mathrm{XCIN})=32.768 \mathrm{kHz}$ (in WIT state) Output transistors "off"	Except M38507F8FP/SP		5	10	$\mu \mathrm{A}$
			M38507F8FP/SP		20	40	$\mu \mathrm{A}$
		Increment when A-D conversion is executed $f(X I N)=8 \mathrm{MHz}$			800		$\mu \mathrm{A}$
		All oscillation stopped (in STP state) Output transistors "off"	$\mathrm{Ta}=25^{\circ} \mathrm{C}$		0.1	1.0	$\mu \mathrm{A}$
			$\mathrm{Ta}=85^{\circ} \mathrm{C}$			10	$\mu \mathrm{A}$

A-D converter characteristics

Table 32 A-D converter characteristics (spec. H)
(Vcc = 2.7 to 5.5 V, Vss = AVss = $0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter		Test conditions	Limits			Unit	
			Min.	Typ.	Max.			
-	Resolution						10	bit
-	Absolute accuracy (excluding quantization error)					± 4	LSB	
tCONV	Conversion time		High-speed mode, Middle-speed mode			61	2tc (XIN)	
			Low-speed mode		40		$\mu \mathrm{s}$	
RLADDER	Ladder resistor				35		$k \Omega$	
IVREF	Reference power source input current	VREF "on"	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$	
		VREF "off"				5.0		
II(AD)	A-D port input current				0.5	5.0	$\mu \mathrm{A}$	

A-D converter characteristics

Table 33 A-D converter characteristics (spec. A)
(Vcc = 2.7 to 5.5 V, Vss = AVss = $0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}, \mathrm{f}(\mathrm{XIN})=12.5 \mathrm{MHz}$, unless otherwise noted)

Symbol	Parameter		Test conditions	Limits			Unit	
			Min.	Typ.	Max.			
-	Resolution						10	bit
-	Absolute accuracy (excluding quantization error)					± 4	LSB	
tconv	Conversion time		High-speed mode, Middle-speed mode			61	2tc (XIN)	
			Low-speed mode		40		$\mu \mathrm{s}$	
Rladder	Ladder resistor				35		$\mathrm{k} \Omega$	
IVREF	Reference power source input current	VREF "on"	VREF $=5.0 \mathrm{~V}$	50	150	200	$\mu \mathrm{A}$	
		VREF "off"				5.0		
II(AD)	A-D port input current				0.5	5.0	$\mu \mathrm{A}$	

Timing requirements

Table 34 Timing requirements (1) (spec. H)
($\mathrm{Vcc}=4.0$ to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\text { RESET }}$)	Reset input "L" pulse width	20			Xin cycle
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time	200			ns
twh(CNTR)	CNTR0, CNTR1 input "H" pulse width	80			ns
twL(CNTR)	CNTR0, CNTR1 input "L" pulse width	80			ns
twh(INT)	INT0 to INT3 input "H" pulse width	80			ns
twL(INT)	INTo to INT3 input "L" pulse width	80			ns
tc(ScLK1)	Serial I/O1 clock input cycle time (Note)	800			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
twL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD-ScLk1)	Serial I/O1 input setup time	220			ns
th(SCLK1-RxD)	Serial I/O1 input hold time	100			ns
tc(Sclk2)	Serial I/O2 clock input cycle time	1000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	400			ns
twL(SCLK2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SIN2-ScLK2)	Serial I/O2 clock input setup time	200			ns
th(SCLK2-SIN2)	Serial I/O2 clock input hold time	200			ns

Note : When $f(X i n)=8 \mathrm{MHz}$ and bit 6 of address 001 A16 is " 1 " (clock synchronous).
Divide this value by four when $f(X I N)=8 \mathrm{MHz}$ and bit 6 of address 001A16 is " 0 " (UART).

Table 35 Timing requirements (2) (spec. H)
(Vcc = 2.7 to 5.5 V , Vss = $0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\text { RESET }}$)	Reset input "L" pulse width	20			XIN cycle
tc(XIN)	External clock input cycle time	250			ns
twh(XIN)	External clock input "H" pulse width	100			ns
twL(XIN)	External clock input "L" pulse width	100			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time	500			ns
twh(CNTR)	CNTR0, CNTR1 input "H" pulse width	230			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width	230			ns
twh(INT)	INT0 to INT3 input "H" pulse width	230			ns
twL(INT)	INT0 to INT3 input "L" pulse width	230			ns
tc(ScLK1)	Serial I/O1 clock input cycle time (Note)	2000			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	950			ns
tWL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	950			ns
tsu(RxD-ScLK1)	Serial I/O1 input setup time	400			ns
th(SCLK1-RxD)	Serial I/O1 input hold time	200			ns
tc(Sclk2)	Serial I/O2 clock input cycle time	2000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	950			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	950			ns
tsu(SIN2-ScLK2)	Serial I/O2 clock input setup time	400			ns
th(SCLK2-SIN2)	Serial I/O2 clock input hold time	300			ns

Note: When $f(X i n)=4 \mathrm{MHz}$ and bit 6 of address 001A16 is " 1 " (clock synchronous).
Divide this value by four when $f(X I N)=4 \mathrm{MHz}$ and bit 6 of address 001A16 is " 0 " (UART).

Timing requirements

Table 36 Timing requirements (1) (spec. A)
(Vcc = 4.0 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Limits			Unit
		Min.	Typ.	Max.	
tw($\overline{\mathrm{RESET}})$	Reset input "L" pulse width	20			XIN cycle
tc(XIN)	External clock input cycle time	80			ns
twh(XIN)	External clock input "H" pulse width	32			ns
twL(XIN)	External clock input "L" pulse width	32			ns
tc(CNTR)	CNTR0, CNTR1 input cycle time	200			ns
twh(CNTR)	CNTR0, CNTR1 input "H" pulse width	80			ns
twL(CNTR)	CNTRo, CNTR1 input "L" pulse width	80			ns
twh(INT)	INT0 to INT3 input "H" pulse width	80			ns
twL(INT)	INT0 to INT3 input "L" pulse width	80			ns
tc(SCLK1)	Serial I/O1 clock input cycle time (Note)	800			ns
twh(SCLK1)	Serial I/O1 clock input "H" pulse width (Note)	370			ns
tWL(SCLK1)	Serial I/O1 clock input "L" pulse width (Note)	370			ns
tsu(RxD-ScLK1)	Serial I/O1 input setup time	220			ns
th(SCLK1-RxD)	Serial I/O1 input hold time	100			ns
tc(SCLK2)	Serial I/O2 clock input cycle time	1000			ns
twh(SCLK2)	Serial I/O2 clock input "H" pulse width	400			ns
tWL(SCLK2)	Serial I/O2 clock input "L" pulse width	400			ns
tsu(SIN2-SCLK2)	Serial I/O2 clock input setup time	200			ns
th(SCLK2-SIN2)	Serial I/O2 clock input hold time	200			ns

Note : When $f(X i n)=8 \mathrm{MHz}$ and bit 6 of address 001A16 is " 1 " (clock synchronous).
Divide this value by four when $f(X I N)=8 \mathrm{MHz}$ and bit 6 of address 001A16 is " 0 " (UART).

Table 37 Timing requirements (2) (spec. A)
(Vcc = 2.7 to 5.5 V , Vss $=0 \mathrm{~V}, \mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

| Symbol | Parameter | Limits | | Unit |
| :--- | :--- | :---: | :---: | :---: | :---: |
| | | Min. | Typ. | |

Note: When $f(X i n)=4 \mathrm{MHz}$ and bit 6 of address 001 A 16 is " 1 " (clock synchronous).
Divide this value by four when $f(X I N)=4 \mathrm{MHz}$ and bit 6 of address 001A16 is " 0 " (UART).

Switching characteristics

Table 38 Switching characteristics (1)
(Vcc = 4.0 to 5.5 V , Vss $=0 \mathrm{~V}$, $\mathrm{Ta}=\mathbf{- 2 0}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
tWH (SCLK1)	Serial I/O1 clock output "H" pulse width	Fig. 78	tc(SCLK1)/2-30			ns
tWL (SCLK1)	Serial I/O1 clock output "L" pulse width		tc(SCLK1)/2-30			ns
td (SCLK1-TXD)	Serial I/O1 output delay time (Note 1)				140	ns
tv (SCLK1-TxD)	Serial I/O1 output valid time (Note 1)		-30			ns
tr (SCLK1)	Serial I/O1 clock output rising time				30	ns
tf (SCLK1)	Serial I/O1 clock output falling time				30	ns
tWH (SCLK2)	Serial I/O2 clock output "H" pulse width		tc(SCLK2)/2-160			ns
tWL (SCLK2)	Serial I/O2 clock output "L" pulse width		tc(SCLK2)/2-160			ns
td (SCLK2-SOUT2)	Serial I/O2 output delay time (Note 2)				200	ns
tv (SCLK2-SOUT2)	Serial I/O2 output valid time (Note 2)		0			ns
tf (SCLK2)	Serial I/O2 clock output falling time				30	ns
tr (CMOS)	CMOS output rising time (Note 3)			10	30	ns
tf (CMOS)	CMOS output falling time (Note 3)			10	30	ns

Notes 1: When the P25/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is " 0 ".
2: When the P01/SouT2 and P02/SclK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is " 0 ".
3: The Xout pin is excluded.

Table 39 Switching characteristics (2)
(Vcc = 2.7 to $5.5 \mathrm{~V}, \mathrm{VSS}=0 \mathrm{~V}, \mathrm{Ta}=-20$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Symbol	Parameter	Test conditions	Limits			Unit
			Min.	Typ.	Max.	
tWH (SCLK1)	Serial I/O1 clock output "H" pulse width	Fig. 78	tC(SCLK1)/2-50			ns
tWL (SCLK1)	Serial I/O1 clock output "L" pulse width		tc(SCLK1)/2-50			ns
td (Sclk 1 -TxD)	Serial I/O1 output delay time (Note 1)				350	ns
tv (SCLK1-TXD)	Serial I/O1 output valid time (Note 1)		-30			ns
tr (SCLK1)	Serial I/O1 clock output rising time				50	ns
tf (SCLK1)	Serial I/O1 clock output falling time				50	ns
twh (SCLK2)	Serial I/O2 clock output "H" pulse width		tc(SCLK2)/2-240			ns
tWL (SCLK2)	Serial I/O2 clock output "L" pulse width		tc(SCLK2)/2-240			ns
td (SCLK2-SOUT2)	Serial I/O2 output delay time (Note 2)				400	ns
tv (SCLK2-SOUT2)	Serial I/O2 output valid time (Note 2)		0			ns
tf (SCLK2)	Serial I/O2 clock output falling time				50	ns
tr (CMOS)	CMOS output rising time (Note 3)			20	50	ns
tf (CMOS)	CMOS output falling time (Note 3)			20	50	ns

Notes 1: When the P25/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is " 0 ".
2: When the P01/SOUT2 and P02/ScLK2 P-channel output disable bit of the Serial I/O2 control register 1 (bit 7 of address 001516) is " 0 ".
3: The Xout pin is excluded.

Fig. 78 Circuit for measuring output switching characteristics

Fig. 79 Timing diagram

PACKAGE OUTLINE

42P4B
(MMP)
Plastic 42pin 600mil SDIP

42P2R-A/E

Plastic 42pin 450mil SSOP

Symbol	Dimension in Millimeters		
	Min	Nom	Max
A	-	-	2.4
A1	0.05	-	-
A2	-	2.0	-
b	0.25	0.3	0.4
c	0.13	0.15	0.2
D	17.3	17.5	17.7
E	8.2	8.4	8.6
e	-	0.8	-
HE	11.63	11.93	12.23
L	0.3	0.5	0.7
L1	-	1.765	-
Z	-	0.75	-
Z1	-	-	0.9
y	-	-	0.15
θ	0°	-	10°
b2	-	0.5	-
e 1	-	11.43	-
I 2	1.27	-	-

42S1B-A

Keep safety first in your circuit designs!

1. Renesas Technology Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with Renesas Technology Corporation puts the maximum effort into making semiconductor per
them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.
Notes regarding these materials
2. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corporation product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corporation or a third party.
3. Renesas Technology Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
4. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor for the latest product information before purchasing a product listed herein.
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corporation assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corporation by various means, including the Renesas Technology Corporation Semiconductor home page Please also pay attention to
(http://www.renesas.com).
5. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corporation assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
6. Renesas Technology Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corporation or an authorized Renesas Technology Corporation product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
7. The prior written approval of Renesas Technology Corporation is necessary to reprint or reproduce in whole or in part these materials.
8. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
9. Please contact Renesas Technology Corporation for further details on these materials or the products contained therein
http://www.renesas.com

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{4}{|r|}{REVISION HISTORY} \& 3850 Group (Spec.H/A) Data Sheet \\
\hline \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Rev. } \\
1.0
\end{gathered}
\]} \& \multirow[t]{2}{*}{\[
\begin{gathered}
\text { Date } \\
03 / 09 / 00
\end{gathered}
\]} \& \multicolumn{3}{|r|}{Description} \\
\hline \& \& Page \& \multicolumn{2}{|r|}{Summary} \\
\hline 1.00 \& Mar. 9, 2000 \& - \& \multicolumn{2}{|l|}{First edition issued} \\
\hline 1.10 \& Mar. 22, 2000 \& \& \multicolumn{2}{|l|}{Font errors are revised.} \\
\hline 2.00 \& Dec. 22, 2000 \& \begin{tabular}{l}
\\
\hline 1 \\
1 \\
6 \\
17 \\
23 \\
27 \\
33 \\
36 \\
38 to 71 \\
41 \\
72 \\
73 \\
73 \\
73 \\
73 \\
77 \\
79 \\
79
\end{tabular} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
"Interrupts" of "FEATURES" is revised. \\
Figure 1 is partly revised. \\
Table 3 is partly revised. \\
Explanations of "INTERRUPTS" are partly revised. \\
Figure 20 is partly revised. \\
Figure 24 is partly revised. \\
Explanations of "RESET CIRCUIT" are partly revised. \\
Note 1 into Figure 42 is partly revised. \\
Explanations of "FLASH MEMORY VERSION" are added. \\
Figure 45 is partly revised. \\
"EPROM Version/One Time PROM Version/Flash Memory Version" of "NOTES ON USAGE" is added. \\
"DATA REQUIRED FOR MASK ORDERS" is added. \\
"DATA REQUIRED FOR One Time PROM PROGRAMMING ORDERS" is added. "ROM PROGRAMMING METHOD" is added. \\
Table 32 is partly revised. \\
Limit of tw(RESET) into Table 34 is revised. \\
Limit of tw(RESET) into Table 35 is revised.
\end{tabular}} \\
\hline 3.00 \& May. 29, 2002 \& 7
8
9
9
9
9
9

10
13
15
27
30
35
49
51
51
52
53
53
54
55
56
56
56

56 \& \multicolumn{2}{|l|}{| \bullet Explanations of "Spec. A" are added. |
| :--- |
| P2, P4, P6, P16, P18, P22-P26, P42,P43, P47, P82, P84, P87, P89, P91 |
| -Power dissipation is partly revised. |
| Figure 5 is partly revised. |
| Figure 6 is partly revised. |
| Table 33850 group (standard) and 3850 group (spec. H) corresponding products of Rev.2.0 is eliminated. |
| Table 4 is added. |
| Table 5 is partly added. |
| Clause name and explanations of "Notes on differences among 3850 group (standard), 3850 group (spec. H), and 3850 group (spec. A)" are partly added. |
| Explanations of "CENTRAL PROCESSING UNIT (CPU)" are partly added. |
| Figure 9 is partly revised. |
| Figure 11 is partly revised. |
| -Notes is revised. |
| © Notes is partly added. |
| - Notes on serial I/O is added. |
| Figure 55 is partly revised. |
| Explanations of "FLASH MEMORY MODE" is partly revised. |
| Table 11 is partly revised. |
| Clause name of "Microcomputer Mode and Boot Mode" is revised. |
| Explanations of "Outline Performance (CPU Rewrite Mode)" are partly revised. |
| Figure 58 is partly revised. |
| Figure 59 is partly revised. |
| Explanations of "(1) Operation speed" are partly revised. |
| Explanations of "Software Commands (CPU Rewrite Mode)" are partly revised. |
| Explanations of " \bullet Read Array Command (FF16)" are partly eliminated. |
| Explanations of " \because Read Status Register Command (7016)" are partly revised. |
| Explanations of " \bullet Program Command (4016)" are partly revised. |}

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{3}{|r|}{REVISION HISTORY} \& TORY 3850 Group (Spec.H/A) Data Sheet \\
\hline \multirow[t]{2}{*}{Rev.} \& \multirow[t]{2}{*}{Date} \& \multicolumn{2}{|r|}{Description} \\
\hline \& \& Page \& Summary \\
\hline 3.00 \& May. 29, 2002 \& \begin{tabular}{l}
57 \\
57 \\
58 \\
59 \\
60 \\
\\
60 \\
62 \\
\\
63 \\
65 \\
77 \\
77 \\
77 \\
78 \\
78 \\
79 \\
\\
\hline 86
\end{tabular} \& \begin{tabular}{l}
Explanations of "Erase All Blocks Command (2016/2016)" are partly revised. \\
Explanations of "OBlock Erase Command (2016/D016)" are partly revised. \\
Explanations of "Status Register (SRD)" are partly revised. \\
Figure 62 is partly revised. \\
Explanations of "OROM Code Protect Function (in Parallel I/O Mode)" is partly revised. \\
Figure 63 is partly revised. \\
Contents of "(2) Parallel I/O Mode" are revised. \\
(Explanations, figures, and tables of Pages 61-67 in Rev. 2.0 except "Paralle I/O Mode" and "User ROM and Boot ROM Areas" are eliminated.) \\
Explanations of "(3) Standard serial I/O Mode" are partly revised. \\
Figure 65 is partly revised. \\
Limits of VI (CNVss) into Table 18 are revised. \\
Item of VIL, VIH into Table 19 are eliminated. \\
Figures and tables of Pages 79-84 in Rev. 2.0 are eliminated. \\
Explanations of "A-D converter" are partly eliminated. \\
Clause name and explanations of "Differences among 3850 group (standard), \\
3850 group (spec. H), and 3850 group (spec. A)" are partly revised. \\
"Electric Characteristic Differences Among Mask ROM, Flash Memory, and One Time PROM Version MCUs" is added. \\
Test conditions of Low-speed mode of Icc are partly added.
\end{tabular} \\
\hline 3.01 \& Jun. 20, 2003 \& 49
50
79

85
85,86
86

88 \& | SCLK \rightarrow SCLK1 |
| :--- |
| Power dissipation is partly revised. |
| In high-speed mode 34 mW |
| \rightarrow In high-speed mode |
| Except M38507F8FP/SP ... 32.5mW M38507F8/SP.... 37.5mW |
| Mitsubishi \rightarrow Renesas Technology |
| Delete the following : Products under development or planning: the development schedule and specification may be revised without notice. The development of planning products may be stopped. |
| Fig. 55 System clock generating circuit block diagram (Single-chip mode) Note is partly added. |
| Fig. 56 State transition of system clock Note is partly added. |
| the "Mitsubishi MCU Technical information " Homepage (http://www.infomicom.maec.co.jp/indexe.html) |
| \rightarrow the "Renesas Technology" Homepage Rom ordering (http://www.renesas.com/eng/rom) |
| Table 28 Electrical characteristics (2) |
| Separate spec. H and spec.A |
| VT+-Vt- RxD, Sclk \rightarrow RxD, Sclk1, Sclk2, Sin2 |
| Table 29 Electrical characteristics (2) |
| Limit of "L" input current (at Pull-up) is added |
| Table 31 Electrical characteristics (3) |
| Limit of power source current is partly revised. |
| Limit of M38507F8FP/SP is added |
| Limit of the high-speed mode [$f(\mathrm{XIN})=8 \mathrm{MHz}$] is added. |
| Limit of the high-speed mode $[\mathrm{f}(\mathrm{XIN})=8 \mathrm{MHz}$ (in WIT state) $]$ is added. |
| Limit of the middle-speed mode [$\mathrm{f}(\mathrm{XIN})=12.5 \mathrm{MHz}]$ is added. |
| Limit of the middle-speed mode $[\mathrm{f}(\mathrm{XIN})=12.5 \mathrm{MHz}$ (in WIT state)] is added. |

\hline
\end{tabular}

