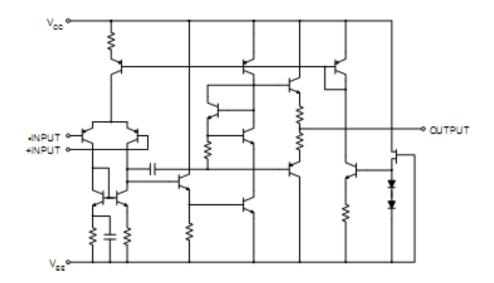


Description

The AMS4558 consists of two low noise, high performance operational amplifiers. It is specially suitable for applications in differential-in, differential-out as well as in industrial measurement tools and applications where gain and phase matched channels are mandatory.

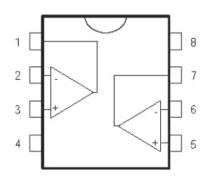
The IC features monolithic silicon chip,

internal frequency compensation, low noise, low distortion, wide operating voltage range, high gain and high bandwidth. The AMS4558 can operate under dual power supply voltage up to $\pm 18 \text{V}$ or single power supply up to 36V.


Features

- \diamond Operating voltage: $\pm 3V \sim \pm 18V$.
- → Large DC voltage gain: 100 dB
- ♦ Wide gain bandwidth product: 5 MHz
- ♦ Slew rate: 2V/µs
- → Package outline: DIP8, SOIC8

Applications


- ♦ Audio AC-3 decoded system.
- ♦ Audio amplifier

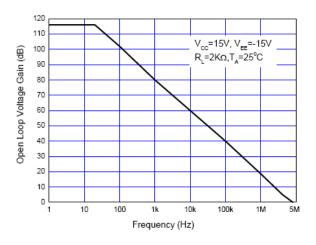
Functional Diagram

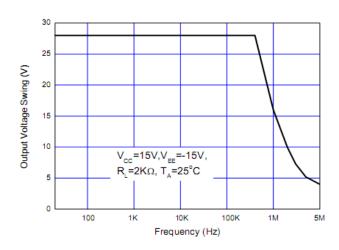
Pin Description

Symbol	Pin NO.	Description			
OUT1	1	Output 1			
IN1-	2	Inverting input1			
IN1+	3	Non- Inverting input1			
V-	4	VEE			
IN2+	5	Non- Inverting input2			
IN2-	6	Inverting input2			
OUT2	7	Output 2			
V+	8	VCC			

Absolute Maximum Ratings

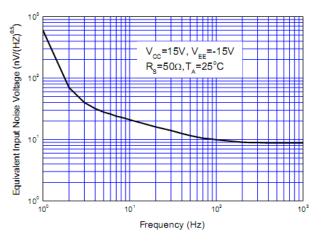
Parameter	Symbol	Value		Unit
Power Supply Voltage	VCC	+18		V
	VEE	-18		
Differential Input Voltage	V _{ID}	±30		V
Input Voltage	V _{IC}	±15		V
Power Dissipation	P _D	DIP	500	mW
		SOIC	250	
Operating Temperature Range	T _{OP}	- 40 to 85		$^{\circ}$
Storage Temperature Range	T _{STG}	-60 to 150		$^{\circ}$



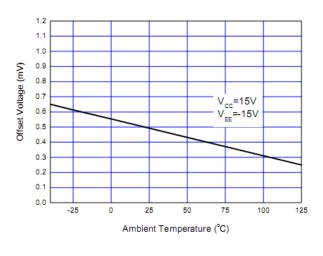

Electrical Characteristics (Vcc=+15V,VEE =-15V,TA =25 $^{\circ}$ C unless otherwise specified)

Parameter	Conditions	Min	Тур	Max	Unit
Input Offset Voltage	Rs≤10KΩ	-	2	6	mV
Input bias Current		-	60	500	nA
Input Offset Current		-	5	200	nA
Supply Current		-	3.5	5.8	mA
Large Signal Voltage Gain	$R_L^{\geq} 2K\Omega, Vo=\pm 10V$	85	100	-	dB
Common Mode Rejection Ratio	Rs≤10KΩ	70	90	-	dB
Power Supply Rejection Ratio	Rs≤10KΩ	70	90	-	dB
Output Voltage Swing	$R_L \ge 2K\Omega$	±10	±13	-	V
	$R_L^{\geq} 10K\Omega$	±12	±14	-	
Output Sink Current	V-=1V,V+=0V,Vo=2V		40		mA
Output Source Current	V-=1V,V+=0V,Vo=2V		40		mA
Slew Rate		-	2	-	V/µS
Equivalent Input Noise Voltage	RIAA,Rs=1K Ω ,30kHz LPF	-	1	-	μVRMS
Gain Bandwidth Product	f=10KHz	-	5	-	MHz

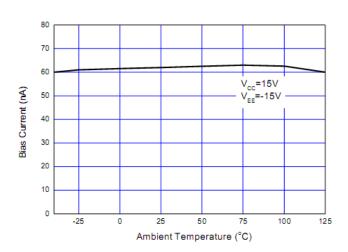
Typical Performance Characteristics



Open Loop Voltage Gain vs. Frequency

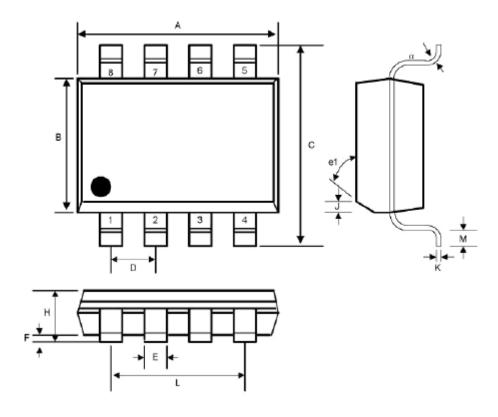

30
28
V_{cc}=15V,V_{EE}=-15V
T_A=25°C

18
16
14
12
0.1
Load Resistance (ΚΩ)


Maximum Output Voltage Swing vs. Frequency

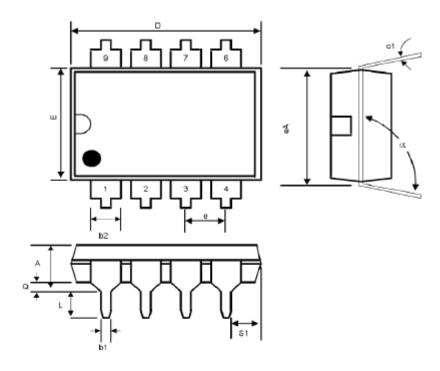
Maximum Output Voltage Swing vs. Load Resistance

Equivalent Input Noise Voltage vs. Frequency


Input Offset Voltage vs. Temperature

Input Bias Current vs. Temperature

PACKAGE DESCRIPTION


SOP8 PACKAGE OUTLINE DIMENSIONS

SYMBOL	INCHES		MILLIMETERS		Modera
	MIN	MAX	MIN	MAX	NOTES
A	0.188	0.197	4.80	5.00	
В	0.149	0.158	3.80	4.00	
C	0.228	0.244	5.80	6.20	-
D	0.050 BSC		1.27 BSC		-
E	0.013	0.020	0.33	0.51	
F	0.004	0.010	0.10	0.25	-
H	0.053	0.069	1.35	1.75	
J	0.011	0.019	0.28	0.48	
K	0.007	0.010	0.19	0.25	
M	0.016	0.050	0.40	1.27	
L	0.150 REF		3.81 REF		-
e1	45°		45°		-
а	0^0	80	00	80	

DIP8 PACKAGE OUTLINE DIMENSIONS

SYMBOL	INCHES		MILLIN	NOTES	
SIMBOL	MIN	MAX	MIN	MAX	NOTES
A	-	0.200	-	5.08	
b1	0.014	0.023	0.36	0.58	-
b2	0.045	0.065	1.14	1.65	-
c1	0.008	0.015	0.20	0.38	-
D	0.355	0.400	9.02	10.16	-
E	0.220	0.310	5.59	7.87	-
e	0.100	BSC	2.54 BSC		-
eA	0.300	BSC	7.62	7.62 BSC	
$\mathbf{L}_{:}$	0.125	0.200	3.18	5.08	-
Q	0.015	0.060	0.38	1.52	+
s1	0.005	-	0.13	-	-
α	90 ⁰	105°	90 ⁰	1050	

Disclaimer:

- AMS reserves the right to make changes to the information herein for the improvement of the design and performance
 without further notice! Customers should obtain the latest relevant information before placing orders and should verify
 that such information is complete and current.
- All semiconductor products malfunction or fail with some probability under special conditions. When using AMS products
 in system design or complete machine manufacturing, it is the responsibility of the buyer to comply with the safety
 standards strictly and take essential measures to avoid situations in which a malfunction or failure of such AMS products
 could cause loss of body injury or damage to property.
- AMS will supply the best possible product for customers!